Nuclear Structure Features of Very Heavy and Superheavy Nuclei—Tracing Quantum Mechanics Towards the ‘Island of Stability’
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shell Structure of Nuclei Far from Stability H. Grawea and M
FR0106040 Gestion 1NI Doc. Enreg. le J./il/ N" TRN A Shell structure of nuclei far from stability H. Grawea and M. Lewitowiczb a Gesellschafit fur Schwerionenforschung mbH, D-64291 Darmstadt, Germany b Grand Accelerateur National d'lons Lourds, BP 55027, F-14076 Caen, France Submitted to the Special Issue of Nuclear Physics A "Research Opportunities with Accelerated Beams of Radioactive Ions" GANIL P 01 03 Shell structure of nuclei far from stability H. Grawea, M. Lewitowiczb * aGesellschaft fur Schwerionenforschung mbH, D- 64291 Darmstadt, Germany bGrand Accelerateur National d'lons Lourds, BP 55027, F-14076 Caen, France The experimental status of shell structure studies in medium-heavy nuclei far off the line of /^-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around 48'56Ni, I00Sn for proton rich nuclei and the neutron-rich N=20 isotones, Ca, Ni and Sn isotopes. PACS: 21.10.Dr, 21.10.Pc, 21.60.Cs, 23.40.Hc, 29.30.-h. Keywords: Shell model, shell closure, single particle energies, exotic nuclei. 1. Introduction Doubly magic nuclei in exotic regions of the nuclidic chart are key points to determine shell structure as documented in single particle energies (SPE) and residual interaction between valence nucleons. The parameters of schematic interactions, entering e.g. the numerous versions of Skyrme-Hartree-Fock calculations, are not well determined by the spectroscopy of nuclei close to /^-stability [1]. Relativistic mean field predictions are hampered by the delicate balance of single particle and spin-orbit potentials, which are determined by the small difference and the large sum, respectively, of the contributions from vector and scalar mesons [2]. -
Contents Contents
Contents CHEMISTRY International January-March 2019 Volume 41 No. 1 Introduction The International Year of the Periodic Table 2019 2 by Jan Reedijk and Natalia Tarasova Features IUPAC and the Periodic Table by G.J. Leigh 6 Criteria for New Element Discovery: Providing Assurance 10 in a Field of Allure and Romance by Sigurd Hofmann Looking Backwards and Forwards at the Development 16 of the Periodic Table by Eric Scerri Isotopic Abundances and Atomic Weights: History of IUPAC 21 Commission II.1 in the Service of Chemistry by John R. De Laeter IUPAC Commission II.1 Today by Juris Meija 24 Isotopes Matter by Norman E. Holden, Tyler B. Coplen, and Peter Mahaffy 27 The New SI: The International System of Units is Getting 32 a Makeover by Ian Mills and Roberto Marquardt IUPAC Wire Election of IUPAC Officers and Bureau Members 36 Juris Meija Made the Top 40 Under 40 37 C. Oliver Kappe is Awarded the 2018 IUPAC-ThalesNano Prize 37 for Flow Chemistry OPCW to Further Enhance Contributions to United Nations’ 38 Sustainable Development Goals 1001 Inventions: Journeys from Alchemy to Chemistry 38 Stamps International 39 Project Place Critical evaluation of homogeneous equilibrium and solubility 40 constants of gadolinium in environmental and biological- relevant conditions 23rd UNESCO/IUPAC Postgraduate Course in Polymer Science 40 Guidance for the Compilation, Critical Evaluation and 40 Dissemination of Chemical Data Making an imPACt On the Discovery of New Elements (IUPAC/IUPAP 42 Provisional Report) IUPAC Periodic Table of the Elements and Isotopes -
Chemical Element 112 Named 'Copernicium' 24 February 2010
Chemical element 112 named 'Copernicium' 24 February 2010 IUPAC (International Union of Pure and Applied Copernicium is the sixth chemical element GSI Chemistry) accepted the name proposed by the scientist named. The other elements carry the international discovering team around Sigurd names Bohrium (element 107), Hassium (element Hofmann at the GSI Helmholtzzentrum. The team 108), Meitnerium (element 109), Darmstadtium had suggested "Cp" as the chemical symbol for the (element 110), and Roentgenium (element 111). 21 new element. However, since the chemical symbol scientists from Germany, Finland, Russia, and "Cp" gave cause for concerns, as this abbreviation Slovakia collaborated in the GSI experiments that also has other scientific meanings, the discoverers lead to the discovery of element 112. and IUPAC agreed to change the symbol to "Cn". Copernicium is 277 times heavier than hydrogen, More information: 'Copernicium' proposed as making it the heaviest element officially recognized name for newly discovered element 112 -- by IUPAC. www.physorg.com/news166791177.html The suggested name "Copernicium" in honor of Nicolaus Copernicus follows the tradition of naming chemical elements after merited scientists. IUPAC Provided by Helmholtz Association of German officially announced the endorsement of the new Research Centres element's name on February 19th, Nicolaus Copernicus' birthday. Copernicus was born on February 19, 1473 in Toru?, Poland. His work in the field of astronomy is the basis for our modern, heliocentric world view, which states that the Sun is the center of our solar system with the Earth and all the other planets circling around it. An international team of scientists headed by Sigurd Hofmann was able to produce the element copernicium at GSI for the first time already on February 9, 1996. -
The Nucleus and Nuclear Instability
Lecture 2: The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the “mass number” A = N + Z. N is the number of neutrons (N = A - Z) Nuclide: A species of nucleus of a given Z and A. Isotope: Nuclides of an element (i.e. same Z) with different N. Isotone: Nuclides having the same N. Isobar: Nuclides having the same A. [A handy way to keep these straight is to note that isotope includes the letter “p” (same proton number), isotone the letter “n” (same neutron number), and isobar the letter “a” (same A).] Example: 206 82 Pb124 is an isotope of 208 82 Pb126 is an isotone of 207 83 Bi124 and an isobar of 206 84 Po122 1 Chart of the Nuclides Image removed. 90 natural elements 109 total elements All elements with Z > 42 are man-made Except for technicium Z=43 Promethium Z = 61 More than 800 nuclides are known (274 are stable) “stable” unable to transform into another configuration without the addition of outside energy. “unstable” = radioactive Images removed. [www2.bnl.gov/ton] 2 Nuclear Structure: Forces in the nucleus Coulomb Force Force between two point charges, q, separated by distance, r (Coulomb’s Law) k0 q1q2 F(N) = 9 2 -2 r 2 k0 = 8.98755 x 10 N m C (Boltzman constant) Potential energy (MeV) of one particle relative to the other k q q PE(MeV)= 0 1 2 r Strong Nuclear Force • Acts over short distances • ~ 10-15 m • can overcome Coulomb repulsion • acts on protons and neutrons Image removed. -
Low-Energy Nuclear Physics Part 2: Low-Energy Nuclear Physics
BNL-113453-2017-JA White paper on nuclear astrophysics and low-energy nuclear physics Part 2: Low-energy nuclear physics Mark A. Riley, Charlotte Elster, Joe Carlson, Michael P. Carpenter, Richard Casten, Paul Fallon, Alexandra Gade, Carl Gross, Gaute Hagen, Anna C. Hayes, Douglas W. Higinbotham, Calvin R. Howell, Charles J. Horowitz, Kate L. Jones, Filip G. Kondev, Suzanne Lapi, Augusto Macchiavelli, Elizabeth A. McCutchen, Joe Natowitz, Witold Nazarewicz, Thomas Papenbrock, Sanjay Reddy, Martin J. Savage, Guy Savard, Bradley M. Sherrill, Lee G. Sobotka, Mark A. Stoyer, M. Betty Tsang, Kai Vetter, Ingo Wiedenhoever, Alan H. Wuosmaa, Sherry Yennello Submitted to Progress in Particle and Nuclear Physics January 13, 2017 National Nuclear Data Center Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Range of Usefulness of Bethe's Semiempirical Nuclear Mass Formula
RANGE OF ..USEFULNESS OF BETHE' S SEMIEMPIRIC~L NUCLEAR MASS FORMULA by SEKYU OBH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment or the requirements tor the degree of MASTER OF SCIENCE June 1956 TTPBOTTDI Redacted for Privacy lrrt rtllrt ?rsfirror of finrrtor Ia Ohrr;r ef lrJer Redacted for Privacy Redacted for Privacy 0hrtrurn of tohoot Om0qat OEt ttm Redacted for Privacy Dru of 0rrdnrtr Sohdbl Drta thrrlr tr prrrEtrl %.ifh , 1,,r, ," r*(,-. ttpo{ by Brtty Drvlr ACKNOWLEDGMENT The author wishes to express his sincere appreciation to Dr. G. L. Trigg for his assistance and encouragement, without which this study would not have been concluded. The author also wishes to thank Dr. E. A. Yunker for making facilities available for these calculations• • TABLE OF CONTENTS Page INTRODUCTION 1 NUCLEAR BINDING ENERGIES AND 5 SEMIEMPIRICAL MASS FORMULA RESEARCH PROCEDURE 11 RESULTS 17 CONCLUSION 21 DATA 29 f BIBLIOGRAPHY 37 RANGE OF USEFULNESS OF BETHE'S SEMIEMPIRICAL NUCLEAR MASS FORMULA INTRODUCTION The complicated experimental results on atomic nuclei haYe been defying definite interpretation of the structure of atomic nuclei for a long tfme. Even though Yarious theoretical methods have been suggested, based upon the particular aspects of experimental results, it has been impossible to find a successful theory which suffices to explain the whole observed properties of atomic nuclei. In 1936, Bohr (J, P• 344) proposed the liquid drop model of atomic nuclei to explain the resonance capture process or nuclear reactions. The experimental evidences which support the liquid drop model are as follows: 1. Substantially constant density of nuclei with radius R - R Al/3 - 0 (1) where A is the mass number of the nucleus and R is the constant of proportionality 0 with the value of (1.5! 0.1) x 10-lJcm~ 2. -
Nuclear Physics
Massachusetts Institute of Technology 22.02 INTRODUCTION to APPLIED NUCLEAR PHYSICS Spring 2012 Prof. Paola Cappellaro Nuclear Science and Engineering Department [This page intentionally blank.] 2 Contents 1 Introduction to Nuclear Physics 5 1.1 Basic Concepts ..................................................... 5 1.1.1 Terminology .................................................. 5 1.1.2 Units, dimensions and physical constants .................................. 6 1.1.3 Nuclear Radius ................................................ 6 1.2 Binding energy and Semi-empirical mass formula .................................. 6 1.2.1 Binding energy ................................................. 6 1.2.2 Semi-empirical mass formula ......................................... 7 1.2.3 Line of Stability in the Chart of nuclides ................................... 9 1.3 Radioactive decay ................................................... 11 1.3.1 Alpha decay ................................................... 11 1.3.2 Beta decay ................................................... 13 1.3.3 Gamma decay ................................................. 15 1.3.4 Spontaneous fission ............................................... 15 1.3.5 Branching Ratios ................................................ 15 2 Introduction to Quantum Mechanics 17 2.1 Laws of Quantum Mechanics ............................................. 17 2.2 States, observables and eigenvalues ......................................... 18 2.2.1 Properties of eigenfunctions ......................................... -
The ALTO Project at IPN Orsay*
Physics of Atomic Nuclei, Vol. 66, No. 8, 2003, pp. 1399–1406. From Yadernaya Fizika, Vol. 66, No. 8, 2003, pp. 1445–1452. Original English Text Copyright c 2003 by Ibrahim. The ALTO Project at IPN Orsay* F. I b r a h i m ** Institut de Physique Nucleaire,´ Orsay, France Received December 15, 2002 Abstract—In order to probe neutron-rich radioactive noble gases produced by photofission, a PARRNe 1 experiment (Production d’Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine (LEP Injector Linac). The experiment allowed one to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photofission. The obtained results show that the use of the electrons is a promising mode to obtain intense neutron-rich ion beams. Thereafter, with the success of this photofission experiment, a conceptual design for the installation at IPN Orsay of a 50-MeV electron accelerator close to the PARRNe 2 device has been worked out: the ALTO project. This work has started within a collaboration between IPNO, LAL, and CERN groups. c 2003 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION of such beams. The neutron-rich radioactive nuclides are to be produced by fissioning a heavy nuclide, There is currently in the nuclear physics commu- such as 238U. The technique originally proposed [3] nity a strong interest in the use of beams of acceler- is the use of energetic neutrons to induce fission of ated radioactive ions. Although a fast glance at the depleted uranium. -
Stefan Schramm Mirko Schäfer Editors New Horizons in Fundamental Physics FIAS Interdisciplinary Science Series
FIAS Interdisciplinary Science Series Series Editor: Walter Greiner Stefan Schramm Mirko Schäfer Editors New Horizons in Fundamental Physics FIAS Interdisciplinary Science Series Editor-in-chief Walter Greiner, Frankfurt am Main, Germany Editorial Board Ernst Bamberg, Frankfurt am Main, Germany Marc Thilo Figge, Jena, Germany Thomas Haberer, Heidelberg, Germany Volker Lindenstruth, Frankfurt am Main, Germany Joachim Reinhardt, Frankfurt, Germany Klaus Schulten, Urbana, USA Wolf Singer, Frankfurt am Main, Germany Horst Stöcker, Darmstadt, Germany The Frankfurt Institute for Advanced Studies (FIAS) is an independent research institute pursuing cutting-edge theoretical research in the areas of physics, life-science and chemistry, neuroscience, and computer science. A central aim of FIAS is to foster interdisciplinary co-operation and to provide a common platform for the study of the structure and dynamics of complex systems, both animate and inanimate. FIAS closely cooperates with the science faculties of Goethe University (Frankfurt) and with various experimentally oriented research centers in the vicinity. The series is meant to highlight the work of researchers at FIAS and its partner institutions, illustrating current progress and also reflecting on the historical development of science. The series comprises monographs on specialized current research topics, reviews summarizing the state of research in more broadly-framed areas, and volumes of conferences organized by FIAS. More information about this series at http://www.springer.com/series/10781 -
Nuclear Physics News
Nuclear Physics Nuclear Physics News is published on behalf of the Nuclear Physics European Collaboration Commit- tee (NuPECC), an Expert Committee of the Euro- pean Science Foundation, with colleagues from News Europe, America, and Asia. Volume 14/No. 4 Editor: Gabriele-Elisabeth Körner Editorial Board J. D’Auria, Vancouver W. Kutschera, Vienna R. F. Casten, Yale M. Leino, Jyväskylä T. W. Donnelly, MIT Cambridge R. Lovas, Debrecen A. Eir’o, Lisbon S. Nagamiya, Tsukuba M. Huyse, Leuven (Chairman) G. van der Steenhoven, Amsterdam Editorial Office: Physikdepartment, E12, Technische Universitat München, 85748 Garching, Germany, Tel: +49 89 2891 2293, +49 172 89 15011, Fax: +49 89 2891 2298, E-mail: [email protected] Correspondents Argentina: O. Civitaresse, La Plata; Australia: A. W. Thomas, Adelaide; Austria: H. Oberhummer, Vienna; Belgium: C. Angulo, Louvain-la-Neuve; Brasil: M. Hussein, Sao Paulo; Bulgaria: D. Balabanski, Sofia; Canada: J.-M. Poutissou, TRIUMF; K. Sharma, Manitoba; C. Svensson, Guelph; China: W. Zhan, Lanzhou; Croatia: R. Caplar, Zagreb; Czech Republic: J. Kvasil, Prague; Slovak Republic: P. Povinec, Bratislave; Denmark: K. Riisager, Århus; Finland: M. Leino, Jyväskylä; France: G. De France, GANIL Caen; B. Blank, Bordeaux; M. Guidal, IPN Orsay; Germany: K. D. Gross, GSI Darmstadt; K. Kilian, Jülich; K. Lieb, Göttingen; Greece: E. Mavromatis, Athens; Hungary: B. M. Nyako, Debrecen; India: D. K. Avasthi, New Delhi; Israel: N. Auerbach, Tel Aviv; Italy: E. Vercellin, Torino; M. Ripani, Genova; L. Corradi, Legnaro; D. Vinciguerra, Catania; Japan: T. Motobayashi, Riken; H. Toki, Osaka; Malta: G. Buttigieg, Kalkara; Mexico: J. Hirsch, Mexico DF; Netherlands: G. Onderwater, KVI Groningen; T. -
IUPAC Wire See Also
News and information on IUPAC, its fellows, and member organizations. IUPAC Wire See also www.iupac.org/news Naming Ceremony for Element 112 at GSI. The new element has officially carried the in Darmstadt name copernicium and the symbol “Cn” since 19 February 2010.* Naming the element after scientist n 12 July 2010, the chemical element Nicolaus Copernicus follows the longstanding tradi- with the atomic number 112 was “chris- tion of choosing an accomplished scientist as eponym. Otened” copernicium at the Gesellschaft für Copernicus’ work in astronomy is the basis of our Schwerionenforschung (GSI) in Darmstadt, Germany, modern world view, which states that the Sun is the where it was discovered. This symbolic christen- center of our solar system with the Earth and all the ing celebrated the element’s eternal entry into the other planets circling around it. periodic table of elements. Copernicium is 277 times Copernicium is the sixth chemical element that GSI heavier than hydrogen and the heaviest element scientists discovered and named. The other elements officially recognized in the periodic table. Its name carry the names bohrium (element 107), hassium (ele- honors the great astronomer Nicolaus Copernicus ment 108), meitnerium (element 109), darmstadtium (1473–1543). (element 110), and roentgenium (element 111). *www.iupac.org/publications/ci/2010/3202/iw1_copernicus.html www.gsi.de/portrait/presse/Pressemeldungen/12072010_e.html InChI 1.03 Released The July 2010 celebration of element 112 at Gesellschaft he InChI Trust and IUPAC are pleased to fü r Schwerionenforschung (Center for Heavy Ion announce the release of a new version of the Research) in Darmstadt, Germany. -
NUCLEAR STRUCTURE/NUCLEI FAR from STABILITY Report of Working Group II
DISCLAIMER BNL-44737 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any iegal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- BNL~ — 447 O / •} ence herein to any specific commercial product, process, or service by trade name, trademark, | manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- DE90 013732 mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NUCLEAR STRUCTURE/NUCLEI FAR FROM STABILITY Report of Working Group II Co-chairmen: R. F. Casten [1] and J. D. Garrett [2] Local Coordinator: P. Moller Members: W. W. Bauer, D. S. Brenner, G. W. Butler, J. E. Crawford, C. N. Davids, P. L. Dyer, K. Gregorich, E. G. Hag- bert, W. D. Hamilton, S. Harar, P. E. Haustein, A. C. Hayes, D. C. Hoffman, H. H. Hsu, D. G. Madland, W. D. Myers, H. T. Penttila, I. Ragnarsson, P. L. Reeder, G. H. Robertson, N. Rowley, F. Schreiber, H. L. Seifert, B. M. Sherrill, E. R. Siciliano, G. D. Sprouse, F. S. Stephens, K. Subotic, W. Tal- bert, K. S. Toth, X. L. Tu, D. J. Vieira, A.