The ALTO Project at IPN Orsay*

Total Page:16

File Type:pdf, Size:1020Kb

The ALTO Project at IPN Orsay* Physics of Atomic Nuclei, Vol. 66, No. 8, 2003, pp. 1399–1406. From Yadernaya Fizika, Vol. 66, No. 8, 2003, pp. 1445–1452. Original English Text Copyright c 2003 by Ibrahim. The ALTO Project at IPN Orsay* F. I b r a h i m ** Institut de Physique Nucleaire,´ Orsay, France Received December 15, 2002 Abstract—In order to probe neutron-rich radioactive noble gases produced by photofission, a PARRNe 1 experiment (Production d’Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine (LEP Injector Linac). The experiment allowed one to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photofission. The obtained results show that the use of the electrons is a promising mode to obtain intense neutron-rich ion beams. Thereafter, with the success of this photofission experiment, a conceptual design for the installation at IPN Orsay of a 50-MeV electron accelerator close to the PARRNe 2 device has been worked out: the ALTO project. This work has started within a collaboration between IPNO, LAL, and CERN groups. c 2003 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION of such beams. The neutron-rich radioactive nuclides are to be produced by fissioning a heavy nuclide, There is currently in the nuclear physics commu- such as 238U. The technique originally proposed [3] nity a strong interest in the use of beams of acceler- is the use of energetic neutrons to induce fission of ated radioactive ions. Although a fast glance at the depleted uranium. The neutrons are generated by the nuclide chart immediately shows the vast unknown breakup of deuterons in a thick target, a so-called territories on the neutron-rich side of the valley of beta converter, of sufficient thickness to prevent charged stability (see Fig. 1), only few projects are concerned particles from escaping. The energetic forward-going with the neutron-rich nuclides. neutrons impinge on a thick production target of The availability of intense neutron-rich ion beams fissionable material. The resulting fission products will open new perspectives in the study of nuclei very accumulate in the target, diffuse to the surface from far away from the valley of stability. It would allow one which they evaporate, are ionized, mass-selected, and to apprehend the behavior of the nuclear matter under finally postaccelerated. An ISOL device has been de- extreme conditions [1, 2]. Several laboratories have veloped to carry out various R&D projects [4] (see concentrated their efforts in studies aiming to pro- Fig. 2). duce beams intense enough for the next generation of experiments (SPIRAL II and EURISOL projects). This method has several advantages. The highly To get such beams, a large R&D effort is required. activated converter can be kept at low temperature Uranium fission is a very powerful mechanism to pro- without affecting the neutron flux. The target is bom- duce such radioactive beams. A substantial part of the barded by neutral projectiles losing energy only by PARRNe program (Production d’Atomes Radioactifs useful nuclear interactions and having a high pene- Riches en Neutrons) at the IPN Orsay is dedicated to trating power allowing very thick targets. the development of neutron-rich isotope beams by the One of the main objectives of the R&D program ISOL (Isotopes Separator On-Line) method. wastodeterminetheenergyoftheprimarydeuteron beam giving the best yields of radioactive nuclides of interest for radioactive beams while taking into 2. INVESTIGATION OF FAST NEUTRON account beam power evacuation and safe operation PRODUCTION MODE of the facility. The approach has consisted in carry- The aim of the PARRNe program is to establish ing out simulations with various codes available or the feasibility of producing neutron-rich radioactive developed by different task groups of the SPIRAL II beams for the SPIRAL II project at GANIL and to project and performing a number of key experiments determine the optimum conditions for the production to validate the simulations. In this way, confidence is gained about the predictive power of the codes ∗This article was submitted by the author in English. for situations where experiments could not be set up **e-mail: [email protected] within the allocated time for the study. 1063-7788/03/6608-1399$24.00 c 2003 MAIK “Nauka/Interperiodica” 1400 IBRAHIM 114 184 162 Fission 82 Z 126 Sn 50 132Sn N/Z = 1.6 4 Ni 28 82 20 78Ni / ≅ 1.79 8 50 N Z 28 2 20 N 8 Fig. 1. The production of fission fragments (upper light gray part) in comparison with the production for SPIRAL (dark gray part). The concept of using neutrons generated by neutrons since evaporation is not implemented in the deuteron breakup implies a study of the production code. LAHET reproduces the low-energy neutron yields, energy spectrum, and angular distributions spectrum, while it tends to slightly underestimate of neutrons in converters made of various materials (less than a factor of 2) the neutron distributions at and as a function of deuteron energy. Experiments very forward angles. were performed at IPN Orsay, KVI Groningen, and A strong increase in neutron production is ob- SATURNE at Saclay. They explored a deuteron served for deuteron energy between 14 and 100 MeV. energy range between 14 and 200 MeV. The main It is much less pronounced between 100 and features of neutron spectra are listed below. 200 MeV (see Fig. 3). Among converters tested, Be At forward angles, the energy distribution has a is slightly more productive than C. It has, however, broad peak centered at about 0.4 times the deuteron disadvantages related to its physical and chemical energy. The angle of emission becomes narrower with properties. increasing energy. For 100-MeV deuterons, the en- Productions of radioactive noble gases on a cryo- ergy width (FWHM) of the neutron spectrum is about genic finger have been measured for different deuteron 30 MeV and the FWHM opening angle of the cone of ◦ energy in the same experimental conditions with the emission is about 10 [5, 6]. so-called PARRNe 1 setup [8] in the framework of the There is a rather isotropic distribution of neutrons European RTD program SPIRAL II. The PARRNe 1 of a few MeV due to evaporation in the fusion reac- setup has been designed to be compact and portable tion. to enable its installation at various accelerators. The angular distributions and energy spectra are The search of the optimal energy of the deuterons in fair agreement with calculations with an extended was done by installing this setup successively at version of the Serber model [7] and with the LAHET IPN Orsay (20 MeV) [9], at CRC Louvain La code. The Serber model reproduces the distributions Neuve (50 MeV), and at KVI Groningen (80 and of high-energy neutrons but not of the low-energy 130 MeV) [10]. PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 8 2003 THE ALTO PROJECT AT IPN ORSAY 1401 Hall 210 Derouleur Hall 110 Q8 Q1 Q6 Target Q3 Q7 Focal plane Q2 Q5 Q4 Deuterons Fig. 2. Schematic view of the ISOL device PARRNe 2 at the Tandem of IPN Orsay. 3. INVESTIGATION OF PHOTOFISSION in a thick target eventually lead to a fission through PRODUCTION MODE the resulting photon produced. In the same manner, the neutrons produced by (γ,n)and(γ,2n) reactions It has recently appeared that photofission could as well as the (γ,f) itself can also induce fission, this be an alternative to neutron-induced fission [11, 12]. time by the regular (n, f) high cross section (0.5 b for We have therefore initiated a study of photofission fast neutrons). Therefore, in a thick target, photofis- induced by bremsstrahlung generated by electrons. sion may be a rather interesting way of creating ra- With an electron driver, electron interaction with dioactive fission fragments. matter will radiate bremsstrahlung photons inside the Unfortunately, no efficient monochromatic target. Fission will then be induced by those photons sources of 15-MeV photons are available. The most exciting the giant dipolar resonance (GDR) of the common way for producing high gamma fluxes is nucleus at the right energy. This well-known process the bremsstrahlung radiated by passage of electrons is called photofission. through matter. This process has a cross section The GDR cross section for 238U is shown in Fig. 4. rising linearly with energy. It will dominate the ioniza- Amaximumfission probability of 160 mb is ob- tion process above a critical energy (around 20 MeV). tained for photons having energy around 15 MeV. But the resulting bremsstrahlung spectrum is widely At that energy, the photoelectric and the Compton spread in energy from zero up to the full initial electron and Rayleigh scattering cross sections start to fall off energy (Fig. 4). Although each single electron may rapidly, so the main contributions to gamma absorp- ultimatelyproduceasmanyas20photons,only e+e− a small fraction of them (0.5 to 0.7 gamma per tion are pair production and the photonuclear − reactions (γ,f), (γ,n), and (γ,2n). Although the ab- e )are“useful” photons lying in the GDR range solute fission cross section is rather small (compared (15 ± 5 MeV). to normal fission with neutrons), its contribution is A simple calculation including the main electron not negligible as even a pair production reaction may interactions (bremsstrahlung and ionization) and the PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 8 2003 1402 IBRAHIM φ, 1010 µC–1 sr–1 Nγ/(MeV sr e) Fission cross section, mb 103 101 250 Target W (d = 2 mm) 2 10 100 200 GDR 101 150 10–1 Ee = 45 MeV 100 100 –2 10 = 25 MeV Ee 50 10–1 Ee = 10 MeV 0 50 100 150 200 E , MeV d –3 0 10 1 11 21 31 41 Eγ, MeV Fig.
Recommended publications
  • Shell Structure of Nuclei Far from Stability H. Grawea and M
    FR0106040 Gestion 1NI Doc. Enreg. le J./il/ N" TRN A Shell structure of nuclei far from stability H. Grawea and M. Lewitowiczb a Gesellschafit fur Schwerionenforschung mbH, D-64291 Darmstadt, Germany b Grand Accelerateur National d'lons Lourds, BP 55027, F-14076 Caen, France Submitted to the Special Issue of Nuclear Physics A "Research Opportunities with Accelerated Beams of Radioactive Ions" GANIL P 01 03 Shell structure of nuclei far from stability H. Grawea, M. Lewitowiczb * aGesellschaft fur Schwerionenforschung mbH, D- 64291 Darmstadt, Germany bGrand Accelerateur National d'lons Lourds, BP 55027, F-14076 Caen, France The experimental status of shell structure studies in medium-heavy nuclei far off the line of /^-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around 48'56Ni, I00Sn for proton rich nuclei and the neutron-rich N=20 isotones, Ca, Ni and Sn isotopes. PACS: 21.10.Dr, 21.10.Pc, 21.60.Cs, 23.40.Hc, 29.30.-h. Keywords: Shell model, shell closure, single particle energies, exotic nuclei. 1. Introduction Doubly magic nuclei in exotic regions of the nuclidic chart are key points to determine shell structure as documented in single particle energies (SPE) and residual interaction between valence nucleons. The parameters of schematic interactions, entering e.g. the numerous versions of Skyrme-Hartree-Fock calculations, are not well determined by the spectroscopy of nuclei close to /^-stability [1]. Relativistic mean field predictions are hampered by the delicate balance of single particle and spin-orbit potentials, which are determined by the small difference and the large sum, respectively, of the contributions from vector and scalar mesons [2].
    [Show full text]
  • Nuclear Structure Features of Very Heavy and Superheavy Nuclei—Tracing Quantum Mechanics Towards the ‘Island of Stability’
    Physica Scripta INVITED COMMENT Related content - Super-heavy nuclei Nuclear structure features of very heavy and Sigurd Hofmann superheavy nuclei—tracing quantum mechanics - New elements - approaching towards the ‘island of stability’ S Hofmann - Review of metastable states in heavy To cite this article: D Ackermann and Ch Theisen 2017 Phys. Scr. 92 083002 nuclei G D Dracoulis, P M Walker and F G Kondev View the article online for updates and enhancements. Recent citations - Production cross section and decay study of Es243 and Md249 R. Briselet et al - Colloquium : Superheavy elements: Oganesson and beyond S. A. Giuliani et al - Neutron stardust and the elements of Earth Brett F. Thornton and Shawn C. Burdette This content was downloaded from IP address 213.131.7.107 on 26/02/2019 at 12:10 | Royal Swedish Academy of Sciences Physica Scripta Phys. Scr. 92 (2017) 083002 (83pp) https://doi.org/10.1088/1402-4896/aa7921 Invited Comment Nuclear structure features of very heavy and superheavy nuclei—tracing quantum mechanics towards the ‘island of stability’ D Ackermann1,2 and Ch Theisen3 1 Grand Accélérateur National d’Ions Lourds—GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, F-14076 Caen, France 2 GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, D-62491 Darmstadt, Germany 3 Irfu, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] Received 13 March 2017, revised 19 May 2017 Accepted for publication 13 June 2017 Published 18 July 2017 Abstract The quantum-mechanic nature of nuclear matter is at the origin of the vision of a region of enhanced stability at the upper right end of the chart of nuclei, the so-called ‘island of stability’.
    [Show full text]
  • The Nucleus and Nuclear Instability
    Lecture 2: The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the “mass number” A = N + Z. N is the number of neutrons (N = A - Z) Nuclide: A species of nucleus of a given Z and A. Isotope: Nuclides of an element (i.e. same Z) with different N. Isotone: Nuclides having the same N. Isobar: Nuclides having the same A. [A handy way to keep these straight is to note that isotope includes the letter “p” (same proton number), isotone the letter “n” (same neutron number), and isobar the letter “a” (same A).] Example: 206 82 Pb124 is an isotope of 208 82 Pb126 is an isotone of 207 83 Bi124 and an isobar of 206 84 Po122 1 Chart of the Nuclides Image removed. 90 natural elements 109 total elements All elements with Z > 42 are man-made Except for technicium Z=43 Promethium Z = 61 More than 800 nuclides are known (274 are stable) “stable” unable to transform into another configuration without the addition of outside energy. “unstable” = radioactive Images removed. [www2.bnl.gov/ton] 2 Nuclear Structure: Forces in the nucleus Coulomb Force Force between two point charges, q, separated by distance, r (Coulomb’s Law) k0 q1q2 F(N) = 9 2 -2 r 2 k0 = 8.98755 x 10 N m C (Boltzman constant) Potential energy (MeV) of one particle relative to the other k q q PE(MeV)= 0 1 2 r Strong Nuclear Force • Acts over short distances • ~ 10-15 m • can overcome Coulomb repulsion • acts on protons and neutrons Image removed.
    [Show full text]
  • Low-Energy Nuclear Physics Part 2: Low-Energy Nuclear Physics
    BNL-113453-2017-JA White paper on nuclear astrophysics and low-energy nuclear physics Part 2: Low-energy nuclear physics Mark A. Riley, Charlotte Elster, Joe Carlson, Michael P. Carpenter, Richard Casten, Paul Fallon, Alexandra Gade, Carl Gross, Gaute Hagen, Anna C. Hayes, Douglas W. Higinbotham, Calvin R. Howell, Charles J. Horowitz, Kate L. Jones, Filip G. Kondev, Suzanne Lapi, Augusto Macchiavelli, Elizabeth A. McCutchen, Joe Natowitz, Witold Nazarewicz, Thomas Papenbrock, Sanjay Reddy, Martin J. Savage, Guy Savard, Bradley M. Sherrill, Lee G. Sobotka, Mark A. Stoyer, M. Betty Tsang, Kai Vetter, Ingo Wiedenhoever, Alan H. Wuosmaa, Sherry Yennello Submitted to Progress in Particle and Nuclear Physics January 13, 2017 National Nuclear Data Center Brookhaven National Laboratory U.S. Department of Energy USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26) Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Range of Usefulness of Bethe's Semiempirical Nuclear Mass Formula
    RANGE OF ..USEFULNESS OF BETHE' S SEMIEMPIRIC~L NUCLEAR MASS FORMULA by SEKYU OBH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment or the requirements tor the degree of MASTER OF SCIENCE June 1956 TTPBOTTDI Redacted for Privacy lrrt rtllrt ?rsfirror of finrrtor Ia Ohrr;r ef lrJer Redacted for Privacy Redacted for Privacy 0hrtrurn of tohoot Om0qat OEt ttm Redacted for Privacy Dru of 0rrdnrtr Sohdbl Drta thrrlr tr prrrEtrl %.ifh , 1,,r, ," r*(,-. ttpo{ by Brtty Drvlr ACKNOWLEDGMENT The author wishes to express his sincere appreciation to Dr. G. L. Trigg for his assistance and encouragement, without which this study would not have been concluded. The author also wishes to thank Dr. E. A. Yunker for making facilities available for these calculations• • TABLE OF CONTENTS Page INTRODUCTION 1 NUCLEAR BINDING ENERGIES AND 5 SEMIEMPIRICAL MASS FORMULA RESEARCH PROCEDURE 11 RESULTS 17 CONCLUSION 21 DATA 29 f BIBLIOGRAPHY 37 RANGE OF USEFULNESS OF BETHE'S SEMIEMPIRICAL NUCLEAR MASS FORMULA INTRODUCTION The complicated experimental results on atomic nuclei haYe been defying definite interpretation of the structure of atomic nuclei for a long tfme. Even though Yarious theoretical methods have been suggested, based upon the particular aspects of experimental results, it has been impossible to find a successful theory which suffices to explain the whole observed properties of atomic nuclei. In 1936, Bohr (J, P• 344) proposed the liquid drop model of atomic nuclei to explain the resonance capture process or nuclear reactions. The experimental evidences which support the liquid drop model are as follows: 1. Substantially constant density of nuclei with radius R - R Al/3 - 0 (1) where A is the mass number of the nucleus and R is the constant of proportionality 0 with the value of (1.5! 0.1) x 10-lJcm~ 2.
    [Show full text]
  • Nuclear Physics
    Massachusetts Institute of Technology 22.02 INTRODUCTION to APPLIED NUCLEAR PHYSICS Spring 2012 Prof. Paola Cappellaro Nuclear Science and Engineering Department [This page intentionally blank.] 2 Contents 1 Introduction to Nuclear Physics 5 1.1 Basic Concepts ..................................................... 5 1.1.1 Terminology .................................................. 5 1.1.2 Units, dimensions and physical constants .................................. 6 1.1.3 Nuclear Radius ................................................ 6 1.2 Binding energy and Semi-empirical mass formula .................................. 6 1.2.1 Binding energy ................................................. 6 1.2.2 Semi-empirical mass formula ......................................... 7 1.2.3 Line of Stability in the Chart of nuclides ................................... 9 1.3 Radioactive decay ................................................... 11 1.3.1 Alpha decay ................................................... 11 1.3.2 Beta decay ................................................... 13 1.3.3 Gamma decay ................................................. 15 1.3.4 Spontaneous fission ............................................... 15 1.3.5 Branching Ratios ................................................ 15 2 Introduction to Quantum Mechanics 17 2.1 Laws of Quantum Mechanics ............................................. 17 2.2 States, observables and eigenvalues ......................................... 18 2.2.1 Properties of eigenfunctions .........................................
    [Show full text]
  • Systematics of Radii and Nuclear Charge Distributions Deduced from Elastic Electron Scattering, Muonic X-Ray
    SYSTEMATICS OF RADII AND NUCLEAR CHARGE DISTRIBUTIONS DEDUCED FROM ELASTIC ELECTRON SCATTERING, MUONIC X-RAY AND OPTICAL ISOTOPE SHIFT MEASUREMENTS H.J. Emrich+), G. Fricke+^, M. Hoehn+++), K. Käser++), M. Mallot+), H. Miska+), B. Robert-Tissot++), D. Rychel+^, L. Schaller++), L. Schellenberg"^, H. Schneuwly++^, B. Shera+++), H.G. Sieberling+), R. Steffen++++), H.D. Wohlfahrt+++), Y. Yamazaki+++) +) Institut für Kernphysik, Universität Mainz, Mainz, Germany ++) Institut de Physique de l'Université de Fribourg, Pérolles, Fribourg, Suisse +++) Los Alamos Scientific Lab., University of California, Los Alamos N.M., U.S.A. ++++) Department of Physics, Purdue University, Lafayette, Indiana, U.S.A. Abstract nuclear charge distributions between neighbouring nuclei. The nuclear charge distribution and nuclear charge distribution differences have been investiga• These quantities are determined by high energy ted by 350 MeV elastic electron scattering at the elastic electron scattering measurements - up to Institut für Kernphysik, Universität Mainz. 350 MeV at the Mainz University(l>2,3,4) _ an(j ^ muonic X-ray studies: the region ^Ca to 70Zn in Muonic X-ray measurements yield complementary Los Alamos (5,6,7) and the region 69Ga to 100Mo at information to electron scattering results. Both S.I.N.(8). All the latter data are not yet pub• experimental data are analysed in an almost model lished and are to be regarded as preliminary. independent way. Muonic X-ray measurements have been performed for the region 40Ca up to IOOMO. Elastic electron scattering yields information about the charge distribution and charge distribu• Muonic X-ray transition energies allow the deter• tion differences. Electron scattering data essen• mination ofone radial parameter R^ - the Barrett tially determines the Fourier transform of the nucle• radius - with high precision.
    [Show full text]
  • Nuclear Magic Numbers: New Features Far from Stability
    Nuclear magic numbers: new features far from stability O. Sorlin1, M.-G. Porquet2 1Grand Acc´el´erateur National d’Ions Lours (GANIL), CEA/DSM - CNRS/IN2P3, B.P. 55027, F-14076 Caen Cedex 5, France 2Centre de Spectrom´etrie Nucl´eaire et de Spectrom´etrie de Masse (CSNSM), CNRS/IN2P3 - Universit´eParis-Sud, Bˆat 104-108, F-91405 Orsay, France May 19, 2008 Abstract The main purpose of the present manuscript is to review the structural evolution along the isotonic and isotopic chains around the ”traditional” magic numbers 8, 20, 28, 50, 82 and 126. The exotic regions of the chart of nuclides have been explored during the three last decades. Then the postulate of permanent magic numbers was definitely abandoned and the reason for these structural mutations has been in turn searched for. General trends in the evolution of shell closures are discussed using complementary experimental information, such as the binding energies of the orbits bounding the shell gaps, the trends of the first collective states of the even-even semi-magic nuclei, and the behavior of certain single-nucleon states. Each section is devoted to a particular magic number. It describes the underlying physics of the shell evolution which is not yet fully understood and indicates future experimental and theoretical challenges. The nuclear mean field embodies various facets of the Nucleon- Nucleon interaction, among which the spin-orbit and tensor terms play decisive roles in the arXiv:0805.2561v1 [nucl-ex] 16 May 2008 shell evolutions. The present review intends to provide experimental constraints to be used for the refinement of theoretical models aiming at a good description of the existing atomic nuclei and at more accurate predictions of hitherto unreachable systems.
    [Show full text]
  • RADIOCHEMISTRY and NUCLEAR CHEMISTRY – Vol
    RADIOCHEMISTRY AND NUCLEAR CHEMISTRY – Vol. I - Radiochemistry and Nuclear Chemistry - Sándor Nagy RADIOCHEMISTRY AND NUCLEAR CHEMISTRY Sándor Nagy Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary Keywords: activation, activity, aftereffects, annihilation, attenuation, binding energy, bremsstrahlung, charts of nuclides, cross section, decay chains, decay schemes, equilibrium, exponential law, half-life, half-thickness, isobar, isotone, isotope, lethargy, mass excess, moderator, nuclear isomer, nuclear reactions, nuclide, nuclidic mass, radiation–matter interactions, range, recoil, separation energy, X-rays Contents 1. Introduction 2. The beginnings of RC&NC and the timeline of nuclear science 3. Nuclides and nuclei – isotopes, isobars, isotones, and isomers 4. Nuclear starter – concepts, quantities and units 5. Kinetics of radioactive decay and activation 6. Aftereffects of radioactive decay and nuclear reactions 7. Interaction of nuclear radiations with matter 8. Conclusions Acknowledgements Appendices Glossary Bibliography Biographical Sketch Summary This chapter outlines the field of radiochemistry and nuclear chemistry (RC&NC). It gives a short summary of the early history of RC&NC as well as a detailed timeline of the development of subatomic concepts, nuclear science and technology. The basic nuclear concepts, units and relationships are also introduced here. The chapter explains in some detailUNESCO radioactive decay, nuclear reac –tions, EOLSS and radiation–matter interactions to serve with necessary background to related chapters on a selection of the applications of RC&NC written by specialists of their fields. 1. IntroductionSAMPLE CHAPTERS The “official” definitions of radiochemistry (RC) and nuclear chemistry (NC) in the “IUPAC Gold Book” (http://goldbook.iupac.org/index-alpha.html) read as follows: Radiochemistry: “That part of chemistry which deals with radioactive materials.
    [Show full text]
  • Single Particle Versus Collectivity, Shapes of Exotic Nuclei
    EPJ manuscript No. (will be inserted by the editor) Single particle versus collectivity, shapes of exotic nuclei Andrea Jungclaus Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain Received: date / Revised version: date Abstract. In this article some selected topics of nuclear structure research will be discussed as illustration of the progress reached in this field during the last thirty years. These examples evidence the improvement of our understanding of the atomic nucleus reached on the basis of countless experiments, performed to study both exotic nuclei (nuclei far-off the valley of stability) as well as nuclei under exotic conditions (high excitation energy/temperature or large angular momentum/rotational frequency), using stable and radioactive ion beams. The experimental progress, in parallel to the advancement of modern theoretical descriptions, led us to a much richer view of this fundamental many-body system. PACS. PACS-key discribing text of that key { PACS-key discribing text of that key 1 Introduction During the last decades, nuclear structure physics has ex- perienced a worldwide renaissance and our understanding of the atomic nucleus has not only improved, but very of- ten we have found ourselves confronted with real surprises which demanded changes in our view of this fundamental system. As is often the case in the history of science, the very dynamic evolution of this field of research has been closely related to the development of new experimental tools. As we will see in the course of this article, the prob- ably most important new tools were on one hand side the first generation radioactive ion beams and on the other hand highly efficient 4π γ-ray spectrometer in conjunc- tion with different highly sophisticated ancillary detectors.
    [Show full text]
  • Study of Isotope Shifts, Isotone Shifts and Nuclear Compressibility from the Analysis of Muonic X-Ray Transitions
    Prama-.na, Vol. 20, No. 5, May 1983, pp. 363-373. © Printed in India. Study of isotope shifts, isotone shifts and nuclear compressibility from the analysis of muonic x-ray transitions K V SUBBA RAO and A A KAMAL Physics Department, Osmania University, Hyderabad 500 007, India MS received 13 December 1982; revised 19 March 1983 Abstract. Muonic x-ray transitions in various spherical nuclei in the region 13 < Z < 83 have been analysed and the isotope and isotone shifts in charge radius R are investigated, Assuming R = rot.dl/$ , the isotopic and isotonic behaviour of the parameter r0 (= RA -1~3) is also studied. The variation of r3 with mass number A reveals the variation of average nucleon density, which in turn sheds light on the compressibility of nuclear matter. The isotope and isotone shifts in R exhibit the shell effects in the vicinity of magic neutron and proton numbers: 20, 28, 50, 82 and 126. The results indicate that neutron-proton interaction is maximum at the beginning of a major neutron shell and decreases gradually as the shell gets filled up. The behaviour of parameter re clearly suggests that low-Z nuclei are highly compressi- ble while high-Z nuclei are more or less incompressible. The parameter re too is observed to exhibit profound shell effects. Keywords. Muonic atoms; charge radius; isotope shifts; isotone shifts; nuclear compressibility. 1. Introduction In the uniform model, the nuclear charge is assumed to be uniformly distributed in the nucleus with radius R = r o A 1/3. The parameter r o (= RA -1/3) would then be directly proportional to the cube root of volume per nucleon or inversely proportional to the cube root of average nucleon density.
    [Show full text]
  • Arxiv:2102.03686V1 [Nucl-Th] 6 Feb 2021
    Fission fragment distributions and their impact on the r-process nucleosynthesis in neutron star mergers J.-F. Lema^ıtre∗ Institut d'Astronomie et d'Astrophysique, Universit´eLibre de Bruxelles, Campus de la Plaine CP 226, BE-1050 Brussels, Belgium and CEA, DAM, DIF, F-91297 Arpajon, France S. Goriely Institut d'Astronomie et d'Astrophysique, Universit´eLibre de Bruxelles, Campus de la Plaine CP 226, BE-1050 Brussels, Belgium A. Bauswein GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Helmholtz Forschungsakademie Hessen f¨urFAIR (HFHF), GSI Helmholtzzentrum f¨urSchwerionenforschung, Campus Darmstadt, Germany H.-T. Janka Max-Planck-Institut f¨urAstrophysik, Postfach 1317, D-85741 Garching, Germany Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A & 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties. Here, we introduce new improve- ments to our scission-point model, called SPY, to derive the fission fragment distribution for all neutron-rich fissioning nuclei of relevance in r-process calculations. These improvements include a phenomenological modification of the scission distance and a smoothing procedure of the distribu- tion. Such corrections lead to a much better agreement with experimental fission yields. Those yields are also used to estimate the number of neutrons emitted by the excited fragments on the basis of different neutron evaporation models. Our new fission yields are extensively compared to those predicted by the so-called GEF model. The impact of fission on the r-process nucleosynthesis in binary neutron mergers is also re- analyzed.
    [Show full text]