Spectral Counts ID Description Gene P1 1 P1 2 P2 1 P2 2 P3 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And Β-Keratins on Developing Chicken Skin Integuments: Functional Interaction and Evolutionary Perspectives
Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives Ping Wua,1, Chen Siang Ngb,1, Jie Yana,c, Yung-Chih Laia,d,e, Chih-Kuan Chenb,f, Yu-Ting Laib, Siao-Man Wub, Jiun-Jie Chenb, Weiqi Luoa, Randall B. Widelitza, Wen-Hsiung Lib,g,2, and Cheng-Ming Chuonga,d,e,h,2 aDepartment of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; bBiodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan; cJiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; dResearch Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10041, Taiwan; eIntegrative Stem Cell Center, China Medical University, Taichung 40447, Taiwan; fInstitute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan; gDepartment of Ecology and Evolution, University of Chicago, Chicago, IL 60637; and hCenter for the Integrative and Evolutionary Galliform Genomics, National Chung Hsing University, Taichung 40227, Taiwan Contributed by Wen-Hsiung Li, October 19, 2015 (sent for review July 19, 2015; reviewed by Scott V. Edwards and Roger H. Sawyer) Avian integumentary organs include feathers, scales, claws, and innovations of feather development genes predate the origin of beaks. They cover the body surface and play various functions to feathers, suggesting that the avian dinosaur ancestor already had help adapt birds to diverse environments. These keratinized struc- the nonkeratin protein-coding toolkit for making feathers (12). α tures are mainly composed of corneous materials made of -keratins, While fewer new genes have been found in bird genomes (13) β which exist in all vertebrates, and -keratins, which only exist in birds and the α-keratin gene family has shrunk in birds relative to and reptiles. -
Universidade Estadual De Campinas Instituto De Biologia
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso. -
Downregulation of Salivary Proteins, Protective Against Dental Caries, in Type 1 Diabetes
proteomes Article Downregulation of Salivary Proteins, Protective against Dental Caries, in Type 1 Diabetes Eftychia Pappa 1,* , Konstantinos Vougas 2, Jerome Zoidakis 2 , William Papaioannou 3, Christos Rahiotis 1 and Heleni Vastardis 4 1 Department of Operative Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 2 Proteomics Laboratory, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; [email protected] (K.V.); [email protected] (J.Z.) 3 Department of Preventive and Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] 4 Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; [email protected] * Correspondence: effi[email protected] Abstract: Saliva, an essential oral secretion involved in protecting the oral cavity’s hard and soft tissues, is readily available and straightforward to collect. Recent studies have analyzed the sali- vary proteome in children and adolescents with extensive carious lesions to identify diagnostic and prognostic biomarkers. The current study aimed to investigate saliva’s diagnostic ability through proteomics to detect the potential differential expression of proteins specific for the occurrence of carious lesions. For this study, we performed bioinformatics and functional analysis of proteomic datasets, previously examined by our group, from samples of adolescents with regulated and unreg- ulated type 1 diabetes, as they compare with healthy controls. Among the differentially expressed Citation: Pappa, E.; Vougas, K.; proteins relevant to caries pathology, alpha-amylase 2B, beta-defensin 4A, BPI fold containing family Zoidakis, J.; Papaioannou, W.; Rahiotis, C.; Vastardis, H. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Supplementary Information Method CLEAR-CLIP. Mouse Keratinocytes
Supplementary Information Method CLEAR-CLIP. Mouse keratinocytes of the designated genotype were maintained in E-low calcium medium. Inducible cells were treated with 3 ug/ml final concentration doxycycline for 24 hours before performing CLEAR-CLIP. One 15cm dish of confluent cells was used per sample. Cells were washed once with cold PBS. 10mls of cold PBS was then added and cells were irradiated with 300mJ/cm2 UVC (254nM wavelength). Cells were then scraped from the plates in cold PBS and pelleted by centrifugation at 1,000g for 2 minutes. Pellets were frozen at -80oC until needed. Cells were then lysed on ice with occasional vortexing in 1ml of lysis buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 1mM MgCl2, 0.1 mM CaCl2, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS) containing 1X protease inhibitors (Roche #88665) and RNaseOUT (Invitrogen #10777019) at 4ul/ml final concentration. Next, TurboDNase (Invitrogen #AM2238, 10U), RNase A (0.13ug) and RNase T1 (0.13U) were added and samples were incubated at 37oC for 5 minutes with occasional mixing. Samples were immediately placed on ice and then centrifuged at 16,160g at 4oC for 20 minutes to clear lysate. 25ul of Protein-G Dynabeads (Invitrogen #10004D) were used per IP. Dynabeads were pre-washed with lysis buffer and pre- incubated with 3ul of Wako Anti-Mouse-Ago2 (2D4) antibody. The dynabead/antibody mixture was added to the lysate and rocked for 2 hours at 4oC. All steps after the IP were done on bead until samples were loaded into the polyacrylamide gel. -
Under Serratia Marcescens Treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2*
www.nature.com/scientificreports OPEN SMRT sequencing of the full‑length transcriptome of Odontotermes formosanus (Shiraki) under Serratia marcescens treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2* Odontotermes formosanus (Shiraki) is an important pest in the world. Serratia marcescens have a high lethal efect on O. formosanus, but the specifc insecticidal mechanisms of S. marcescens on O. formosanus are unclear, and the immune responses of O. formosanus to S. marcescens have not been clarifed. At present, genetic database resources of O. formosanus are extremely scarce. Therefore, using O. formosanus workers infected by S. marcescens and the control as experimental materials, a full-length transcriptome was sequenced using the PacBio Sequel sequencing platform. A total of 10,364 isoforms were obtained as the fnal transcriptome. The unigenes were further annotated with the Nr, Swiss-Prot, EuKaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog public databases. In a comparison between the control group and a Serratia marcescens-infected group, a total of 259 diferentially expressed genes (DEGs) were identifed, including 132 upregulated and 127 downregulated genes. Pathway enrichment analysis indicated that the expression of the mitogen-activated protein kinase (MAPK) pathway, oxidative stress genes and the AMP-activated protein kinase (AMPK) pathway in O. formosanus may be associated with S. marcescens treatment. This research intensively studied O. formosanus at the high-throughput full-length transcriptome level, laying a foundation for further development of molecular markers and mining of target genes in this species and thereby promoting the biological control of O. -
Diabetes Induced Alterations in Murine Vitreous Proteome Are Mitigated by IL-6 Trans-Signaling Inhibition
Retina Diabetes Induced Alterations in Murine Vitreous Proteome Are Mitigated by IL-6 Trans-Signaling Inhibition Rebekah Robinson,1 Hannah Youngblood,2 Hersha Iyer,1 Justin Bloom,1 Tae Jin Lee,1 Luke Chang,3 Zachary Lukowski,3 Wenbo Zhi,1 Ashok Sharma,1,3–5 and Shruti Sharma1,3,5 1Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States 2Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States 3Department of Ophthalmology, Augusta University, Augusta, Georgia, United States 4Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States 5Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States Correspondence: Shruti Sharma, PURPOSE. Diabetic retinopathy (DR) is a microvascular complication caused by prolonged Center for Biotechnology and hyperglycemia and characterized by leaky retinal vasculature and ischemia-induced Genomic Medicine, Medical College angiogenesis. Vitreous humor is a gel-like biofluid in the posterior segment of the eye of Georgia, Augusta University, 1460 between the lens and the retina. Disease-related changes are observed in the biochem- Laney Walker Blvd, CAII 4139, ical constituents of the vitreous, including proteins and macromolecules. Recently, we Augusta, GA 30912, USA; [email protected]. found that IL-6 trans-signaling plays a significant role in the vascular leakage and retinal pathology associated with DR. Therefore, in this study, comprehensive proteomic profil- Received: May 18, 2020 ing of the murine vitreous was performed to identify diabetes-induced alterations and to Accepted: August 5, 2020 determine effects of IL-6 trans-signaling inhibition on these changes. Published: September 1, 2020 METHODS. Vitreous samples from mice were collected by evisceration, and proteomic Citation: Robinson R, Youngblood H, Iyer H, et al. -
Supporting Information
Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures. -
The Correlation of Keratin Expression with In-Vitro Epithelial Cell Line Differentiation
The correlation of keratin expression with in-vitro epithelial cell line differentiation Deeqo Aden Thesis submitted to the University of London for Degree of Master of Philosophy (MPhil) Supervisors: Professor Ian. C. Mackenzie Professor Farida Fortune Centre for Clinical and Diagnostic Oral Science Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2009 Contents Content pages ……………………………………………………………………......2 Abstract………………………………………………………………………….........6 Acknowledgements and Declaration……………………………………………...…7 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...12 Abbreviations….………………………………………………………………..…...14 Chapter 1: Literature review 16 1.1 Structure and function of the Oral Mucosa……………..…………….…..............17 1.2 Maintenance of the oral cavity...……………………………………….................20 1.2.1 Environmental Factors which damage the Oral Mucosa………. ….…………..21 1.3 Structure and function of the Oral Mucosa ………………...….……….………...21 1.3.1 Skin Barrier Formation………………………………………………….……...22 1.4 Comparison of Oral Mucosa and Skin…………………………………….……...24 1.5 Developmental and Experimental Models used in Oral mucosa and Skin...……..28 1.6 Keratinocytes…………………………………………………….….....................29 1.6.1 Desmosomes…………………………………………….…...............................29 1.6.2 Hemidesmosomes……………………………………….…...............................30 1.6.3 Tight Junctions………………………….……………….…...............................32 1.6.4 Gap Junctions………………………….……………….….................................32 -
Keratin-Pan Polyclonal Antibody Catalog # AP73512
苏州工业园区双圩路9号1幢 邮 编 : 215000 电 话 : 0512-88856768 Keratin-pan Polyclonal Antibody Catalog # AP73512 Specification Keratin-pan Polyclonal Antibody - Product info Application WB, IHC-P Primary Accession P35908 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Keratin-pan Polyclonal Antibody - Additional info Gene ID 3849 Other Names KRT2; KRT76; KRT3; KRT5; KRT6A; KRT6B; KRT6C; KRT71; KRT72; KRT73; KRT74; KRT75; KRT79; KRT8; KRT84; Keratin, type II cytoskeletal 2 epidermal; Keratin, type II cytoskeletal 2 oral; Keratin, type II cytoskeletal 3; Keratin, type II cytoskeletal 5;Keratin, type II cytoskeletal 6A; Keratin, type II cytoskeletal 6B; Keratin, type II cytoskeletal 6C; Keratin, type II cytoskeletal 71; Keratin, type II cytoskeletal 72; Keratin, type II cytoskeletal Western Blot analysis of Jurkat cells 73; Keratin, type II cytoskeletal 74; using Keratin-pan Polyclonal Antibody.. Secondary antibody was diluted at Dilution 1:20000 WB~~Western Blot: 1/500 - 1/2000. IHC-p: 1/100-1/300. ELISA: 1/20000. Not yet tested in other applications. Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Storage Conditions -20℃ Keratin-pan Polyclonal Antibody - Protein Information Immunohistochemical analysis of Name KRT2 paraffin-embedded human-mammary-cancer, antibody was Synonyms KRT2A, KRT2E diluted at 1:100 Function Probably contributes to terminal cornification (PubMed:<a href="http://www.uniprot.org/citations/1380918" target="_blank">1380918</a>). Associated with keratinocyte activation, proliferation and keratinization (PubMed:<a href="http://www.uniprot.org/citations/12598329" target="_blank">12598329</a>). Plays a role in the establishment of the epidermal barrier on plantar skin (By similarity). Tissue Location Expressed in the upper spinous and granular suprabasal layers of normal adult epidermal tissues from most body sites including thigh, breast nipple, foot sole, penile shaft and axilla. -
Proteomic Expression Profile in Human Temporomandibular Joint
diagnostics Article Proteomic Expression Profile in Human Temporomandibular Joint Dysfunction Andrea Duarte Doetzer 1,*, Roberto Hirochi Herai 1 , Marília Afonso Rabelo Buzalaf 2 and Paula Cristina Trevilatto 1 1 Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; [email protected] (R.H.H.); [email protected] (P.C.T.) 2 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-991-864-747 Abstract: Temporomandibular joint dysfunction (TMD) is a multifactorial condition that impairs human’s health and quality of life. Its etiology is still a challenge due to its complex development and the great number of different conditions it comprises. One of the most common forms of TMD is anterior disc displacement without reduction (DDWoR) and other TMDs with distinct origins are condylar hyperplasia (CH) and mandibular dislocation (MD). Thus, the aim of this study is to identify the protein expression profile of synovial fluid and the temporomandibular joint disc of patients diagnosed with DDWoR, CH and MD. Synovial fluid and a fraction of the temporomandibular joint disc were collected from nine patients diagnosed with DDWoR (n = 3), CH (n = 4) and MD (n = 2). Samples were subjected to label-free nLC-MS/MS for proteomic data extraction, and then bioinformatics analysis were conducted for protein identification and functional annotation. The three Citation: Doetzer, A.D.; Herai, R.H.; TMD conditions showed different protein expression profiles, and novel proteins were identified Buzalaf, M.A.R.; Trevilatto, P.C. -
Biological Models of Colorectal Cancer Metastasis and Tumor Suppression
BIOLOGICAL MODELS OF COLORECTAL CANCER METASTASIS AND TUMOR SUPPRESSION PROVIDE MECHANISTIC INSIGHTS TO GUIDE PERSONALIZED CARE OF THE COLORECTAL CANCER PATIENT By Jesse Joshua Smith Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University In partial fulfillment of the requirements For the degree of DOCTOR OF PHILOSOPHY In Cell and Developmental Biology May, 2010 Nashville, Tennessee Approved: Professor R. Daniel Beauchamp Professor Robert J. Coffey Professor Mark deCaestecker Professor Ethan Lee Professor Steven K. Hanks Copyright 2010 by Jesse Joshua Smith All Rights Reserved To my grandparents, Gladys and A.L. Lyth and Juanda Ruth and J.E. Smith, fully supportive and never in doubt. To my amazing and enduring parents, Rebecca Lyth and Jesse E. Smith, Jr., always there for me. .my sure foundation. To Jeannine, Bill and Reagan for encouragement, patience, love, trust and a solid backing. To Granny George and Shawn for loving support and care. And To my beautiful wife, Kelly, My heart, soul and great love, Infinitely supportive, patient and graceful. ii ACKNOWLEDGEMENTS This work would not have been possible without the financial support of the Vanderbilt Medical Scientist Training Program through the Clinical and Translational Science Award (Clinical Investigator Track), the Society of University Surgeons-Ethicon Scholarship Fund and the Surgical Oncology T32 grant and the Vanderbilt Medical Center Section of Surgical Sciences and the Department of Surgical Oncology. I am especially indebted to Drs. R. Daniel Beauchamp, Chairman of the Section of Surgical Sciences, Dr. James R. Goldenring, Vice Chairman of Research of the Department of Surgery, Dr. Naji N.