Liver Rot (Fascioloidiasis) in Ruminants

Total Page:16

File Type:pdf, Size:1020Kb

Liver Rot (Fascioloidiasis) in Ruminants LIVER ROT (FASCIOLOIDIASIS) IN RUMINANTS By A.A. KING-SCOTE' INTRODUCTION A sometimes serious and fatal liver disease of cattle, sheep, deer, elk and A1 moose is caused by the large American liver fluke, Fascioloides magna (Bassi, 1875). The parasite was first observed by Bassi in Italy, to which country it bad been introduced by an American Elk (Cervus canadensis). The flukes spread to deer in Italy and Southern Germany causing enzootic liver rot disease (Swales (1) ). In the United States Dillon (2) reports F. magna was first recorded at an early date in white-tailed deer of the west and subsequently spread eastward in deer and elk. In 1934 flukes were found in deer and moose of the upper Michigan Peninsula and twelve years later the parasite was recorded in Cer- vidae of the lower Peninsula. Olsen (3) in 1949, states 69 per cent of the white-tailed deer in Texas were infested. At an abattoir in Logan, Utah, 867 out of 2,364 cattle livers were condemned because of liver flukes. These con- demnations represented more than 9,500 lbs. of liver. No figures were avail- able for weight losses or interference with milk production in cattle or from stunting and deaths in sheep (Krull (4)). In Canada, the parasite was observed by Hadwen (5) in 1915 in deer of British Columbia. Swales (1) studied infestations of F. magna in the buffalo, elk and other animals in 1935 and conducted extensive researches on the life history, and published a paper with specific reference to liver flukes in deer (Swales (6)). Concern regarding the existence of F. magna in Ontario arose when meat inspectors observed beef livers from the Burwash district seriously damaged by the flukes. Subsequent investigations revealed elk and buffalo which had shared ranges with the infested cattle, were also parasitized. A herd of over 400 Hereford cattle and a large flock of Oxford sheep were involved in the Burwash, Ontario, enzootic. Swales (7), Fallis (8) and Clarke (9) report other records of the para- site from the Rainy River and Kenora Districts and Frontenac County, res- pectively. Until the summer of 1949, therefore, knowledge regarding the distri- bution of the flukes in Ontario was limited to three widely separated locations in the central and extreme eastern and western parts of the Province. It was considered advisable to obtain definite data on the range of the parasites and specific information on their incidence in wild and domestic ruminants with the ultimate object of curtailing the spread of fluke disease. A survey was organized and preliminary information was obtained jointly by personnel of lDepartment of Parasitology, Ontario Veterinary College, Guelph, Ontario [2031 Canadian Journal o' LIVER ROT Vol. XIV, No. 6 [204]' Comparative Medicine June, 1950 the Fish and Wild Life Division (Ontario Department of Lands and Forests) and the Ontario Veterinary College (Ontario Department of Agriculture). *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. .. ....-.1............... ~~~~~~~~~~~~~~~~~~~~~~~~~~~. Fig. 1. Large American Liver Flukes, FaEcioloides mamna (Bassi, 1875), (x2). Right, dorsal; left, ventral. MORPHOLOGY AND LIFE HISTORY The large American liver flukes are aptly described by hunters as re- sembling "blood suckers" or "leeches". The adult worms are thick and flesh- coloured measuring up to 100 by 26 mm. Individual adults produce an estim- ated 6000 eggs per day. The eggs are oval, operculated at one pole and mea- sure 109-168 by 75-96 microns. The life history has been described in detail by Swales (1). Briefly, the eggs are passed from the liver of natural hosts, through the bile ducts to the intestines and then out of the host's body with the droppings. Only those eggs which reach water or wet ground complete their development. The larval flukes (miracidia) take a month or longer to hatch. The young flukes, only complete the next stage of their lives (sporocysts and rediae) in certain aquatic or amphibious species of snail. (Fossaria parva and Stagnicola palustris nutta- ana) in Canada. Growth and multiplication in the snails takes 7 to 8 weeks. For each young fluke that enters a snail a great many may emerge as cercariae. These larvae attach themselves to aquatic or shoreline vegetation and be- come cysts which are resistant to a variety of climatic conditions for at least three months. Any suitable animal (usually ruminants) which feed upon plants contaminated with cysts may become infested with the flukes. The pa- rasites take. about five months to reach maturity in the liver. The flukes normally complete their life cycle in wild ruminants. In do- mestic animals when they ultimately reach the liver, they cause violent tissue reactions which encapsulate the worms and prevent escape of the eggs. Canadian Journal of LIVER ROT Vol. XIV, No1 6 Comparative Medicine June, 1950 [205] PATHOGENFSIS Sudden infestation of animals with large numbers of larval flukes, whikh penetrate the intestinal wall and wander about the body cavities, may cause death in a relatively short time. In cases where infestation is moderate and gradual no signs of ill health are usually observable. Later, when the worms commence to burrow into the liver, tracts, cysts, abscesses and secondary bac- terial infections may destroy much liver tissue. These lesions, in the advanced stages, are associated with marked dark pigmentation of the liver surface and associated lymph glands. The flukes are usually found in pairs, within cysts containing a dark liquid. In chronic cases the lesions become calcified, scar tissue is formed and the livers become rough, irregular and lumpy. Succeed- ing years of infestation result in progressive and permanent damage to the livers. The classical symptoms of the disease are "bottle-jaw" (a swelling in the intermandibular space), anaemia and jaundice associated with unthrifti- ness. These symptoms, however, are not always constant. Cervidae are the natural hosts of F. magna and tolerate moderate infes- tations. Deer and elk in Ontario containing up to 30 flukes per liver show little ill effect from the parasites. Olsen (3) on the other hand described cysts and destruction of 10 per cent of the livers of Texas deer with 30 flukes. The great damage that large numbers of flukes are capable of causin-g in Ontario has been demonstrated in the elk herds of Pembroke and Burwash and in a herd of over 400 Herefords in the last named district. Cattle and sheep which are unnatural hosts of F. magna suffer severely even with light infestations of the parasites. DtIAGNOSIS The most certain method of recognizing F. magna infestations is by find- ing the parasites in the livers by cutting the latter into thin slices. F. magna Fig. 2. Section of beef liver showing extensive chronic pathological changes caused by. F. magna Canadian Journal of LIVER ROT Vol. XIV, No. 6 [26[206] Comparative Medicine June,19N0 must be distinguished from Fasciola hepatica, which is a smaller fluke with a pronounced cone protruding from the anterior end. Dicrocoelium dentriticum a still smaller fluke than the preceding species; it is 5-12 mm. long and 1 mm. wide. The eggs of F. magna may be found with the aid of a microscope in the bile or droppings of infected natural hosts. For dropping examinations sedi- mentation methods of egg concentration are used. Flotation techniques are un- satisfactory. INCIDENCE OF F. MAGNA IN THE RUMINANTS OF ONTARIO The results of the 1949 summer and fall survey revealed F. magna over a much greater area than had been expected. Sixteen counties or districts with a total of 42 townships or localities were checked. Deer, elk, and/or moose were found infested with the parasit-es in 11 counties or districts viz: - Renfrew, Hastings, Peterborough, Frontenac, Bruce, Carleton, Algoma, Ni- pissing, Rainy River, Kenora and Sudbury. In Ontario 203 deer of various ages from widely separate localities were examined. Ninety-one livers examined showed 13.2 infested with from 1 to 31 flukes. Microscopic examination of 112 deer droppings revealed 11.6 per cent animals infested withe F. magna. Records obtained regarding the incidence of F. magna in elk during 1949 and preceding years showed 78 positive on post mortem and 36 per cent posi- tive by faecal examination in 77 animals checked. These results are exclusive of known super-infested herds. Ten moose droppings showed an incidence of 40 per cent infestation with F. magna. One moose liver examined was negative. As regards domestic animals available records indicate that during the past decade approximately 1200 head of cattle and sheep in Ontario, have suf- fered or died from fluke infestation. In 1949, 9 flocks of sheep (all in one district) out of 29 flocks examined in the Province, harboured F. magna. Forty-four beef livers in one abattoir were infested. DISCUSSION The information gathered during preliminary studies of F. magna in Ontario indicates that flukes are widely established in the Cervidae of the Prov- ince and have caused several enzootics among domestic animals. Elk with an average of 58 per cent infestation are the main reservoir of the flukes, and as such are the greatest danger in spreading and increasing the incidence of the di- sease among their own species as well as deer and moose. Some five hundred elk are estimated to be superinfested with flukes at the present time. Other herds known to be infected on restricted ranges, if they increase in numbers, may be expected to follow a similar fate. The high incidence in elk is attributed to their original importation from a liver fluke area (Wainright) ; their habit of herding, often on restricted ranges and to their feeding habits. Canadian Journal of LIVER ROT Vol.J-XIVNoe 6 Comparative Medicine June, 1950 [2071fL7J The white-tailed deer (Odocoileus virginianus) in Ontario, as has been indicated, show an overall incidence of approximately 12 per cent infestation with F.
Recommended publications
  • Variation in the Intensity and Prevalence of Macroparasites in Migratory Caribou: a Quasi-Circumpolar Study
    Canadian Journal of Zoology Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Journal: Canadian Journal of Zoology Manuscript ID cjz-2015-0190.R2 Manuscript Type: Article Date Submitted by the Author: 21-Mar-2016 Complete List of Authors: Simard, Alice-Anne; Université Laval, Département de biologie et Centre d'études nordiques Kutz, Susan; University of Calgary Ducrocq, Julie;Draft Calgary University, Faculty of Veterinary Medicine Beckmen, Kimberlee; Alaska Department of Fish and Game, Division of Wildlife Conservation Brodeur, Vincent; Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune du Nord-du-Québec Campbell, Mitch; Government of Nunavut, Department of Environment Croft, Bruno; Government of the Northwest Territories, Environment and Natural Resources Cuyler, Christine; Greenland Institute of Natural Resources, Davison, Tracy; Government of the Northwest Territories in Inuvik, Department of ENR Elkin, Brett; Government of the Northwest Territories, Environment and Natural Resources Giroux, Tina; Athabasca Denesuline Né Né Land Corporation Kelly, Allicia; Government of the Northwest Territories, Environment and Natural Resources Russell, Don; Environnement Canada Taillon, Joëlle; Université Laval, Département de biologie et Centre d'études nordiques Veitch, Alasdair; Government of the Northwest Territories, Environment and Natural Resources Côté, Steeve D.; Université Laval, Département de Biologie and Centre of Northern Studies COMPARATIVE < Discipline, parasite, caribou, Rangifer tarandus, helminth, Keyword: arthropod, monitoring https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 46 Canadian Journal of Zoology 1 Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Alice-Anne Simard, Susan Kutz, Julie Ducrocq, Kimberlee Beckmen, Vincent Brodeur, Mitch Campbell, Bruno Croft, Christine Cuyler, Tracy Davison, Brett Elkin, Tina Giroux, Allicia Kelly, Don Russell, Joëlle Taillon, Alasdair Veitch, Steeve D.
    [Show full text]
  • Bovine Fascioliasis with Emphasis on Fasciola Hepatica
    PEER REVIEWED Bovine fascioliasis with emphasis on Fasciola hepatica Gary L. Zimmerman, MS, PhD, DVM 1106 West Park 424, Livingston, MT 59047 Corresponding author: Gary L. Zimmerman, [email protected], 406-223-3704 Abstract over 135 million years, with the divergent evolution of Fasciola hepatica and F. gigantica occurring ap­ Fasciola hepatica, the common liver fluke, is an proximately 19 million years ago. 14 In the continental economically important parasite of ruminants. Although United States, Fasciola hepatica is the most common and infections in cattle are generally chronic and sub-clinical, economically important fluke infecting domestic large the overall impacts on health and productivity can be and small ruminants. The related species F. gigantica, significant, including decreased feed efficiency, weight which is common worldwide, has also been reported in 24 32 gain, reproductive rates, immunity, immunodiagnostic the southeastern United States. • Fascioloides magna, tests, and responses to vaccinations. Acute infections normally a parasite of deer, elk, and moose, also occurs can occur in cattle, but are more common in sheep. There in cattle as an incidental finding at necropsy or slaugh­ 9 38 are no pathognomonic signs of fascioliasis. Fecal ex­ ter, whereas in sheep it is often fatal. • Previously aminations using sedimentation or filtration techniques reported to infect Bison bison, recent research efforts remain the most commonly used diagnostic tools. In the to experimentally infect bison with Fascioloides magna United States, albendazole and a combined clorsulon/ have not been successful.10,38 Dicrocoelium dendriticum ivermectin formulation are the only currently approved is a smaller and less pathogenic liver fluke ofruminants products for treatment of liver flukes.
    [Show full text]
  • 5. Obratlovci
    5. OBRATLOVCI EEncyklopedieNDFF.inddncyklopedieNDFF.indd 367367 110/25/060/25/06 12:58:5512:58:55 PMPM 368 OBRATLOVCI PAPRSKOPLOUTVÍ 5.1 ACTINOPTERYGII – PAPRSKOPLOUTVÍ ACTINOPTERYGII – PAPRSKOPLOUTVÍ Třetí kategorie je tvořena druhy vypuštěnými do přírody akvaris- ty. Zde má smysl zmínit se pouze o koljušce tříostné Gasterosteus Třída paprskoploutví (Actinopterygii), jejíž zástupci se nazývají aculeatus Linnaeus, 1758, zpracované ve formě fact-sheetu. Dále obecně ryby, je nejpočetnější třídou obratlovců. V současnosti se u nás byl z volných vod zaznamenán úlovek blíže neurčených dru- v této třídě rozeznává kolem 45 řádů a něco přes 28 000 druhů. hů jihoamerických piraní. V roce 1998 v Odře u Ostavy14 a v roce V původní fauně ČR byl zastoupen jen zlomek tohoto počtu druhů, 2003 ve slepém rameni Orlice v Hradci Králové22. V Praze ve Vltavě celkem 55. Z toho některé druhy jsou dnes u nás vymizelé. Jed- byl uloven jihoamerický pancéřníček kropenatý Megalechis thora- ná se většinou o tažné anadromní druhy, žijící v dospělosti v moři cata (Valenciennes, 1840)18. V těchto případech se jedná evident- a rozmnožující se ve sladkých vodách. Část z nich se i v minulosti ně o vypuštění nechtěných jedinců z akvarijních chovů, kteří by 5. u nás vyskytovala jen velmi vzácně. Jde o platýze bradavičnatého v našich podmínkách neměli šanci přežít zimní období. Pokud by se Platichthys fl esus (Linnaeus, 1758), placku pomořanskou Alosa alo- měly vzít v úvahu všechny druhy chované v akváriích, byl by výčet sa (Linnaeus, 1758), vyzu velkou Huso huso (Linnaeus, 1758), jese- nepůvodních druhů nalézajících se na území ČR velmi obsáhlý. tera velkého Acipenser sturio (Linnaeus, 1758) a síha Coregonus Některé druhy, pocházející z mírných oblastí, by však potenciálně lavaretus (Linnaeus, 1758).
    [Show full text]
  • Giant Liver Fluke in Alberta (Fascioloides Magna) Parasitic Diseases of Wild Mammals 2Nd Edition
    Giant liver fluke (Fascioloides magna) D Leighton in Alberta Common Significance Often there are fibrous adhesions (pale little tufts of connective tissue) attached name Giant liver fluke (GLF) causes to the outer surface of the liver. On cut conspicuous lesions in the liver of giant liver fluke, surfaces, you may see white fibrous fascioloidiasis, liver cervids. It can be a concern when capsules containing mature flukes, dark rot excessive numbers of flukes solid balls of eggs, blood-filled tracks/ interfere with proper liver function tunnels, and thin lines of black pigment in some individuals and in extreme embedded in the liver tissue. Black inky cases, cause death of the critter fluid sometimes leaks from the cut providing shelter for the flukes. surfaces. In most infected moose, the Moose are less able to control the damage is quite extensive and similar to Scientific the worst cases in elk. flukes and more likely to have name significant liver damage than other a trematode (fluke), cervids. Giant liver fluke infections Transmission Cycle Fascioloides magna are an increasing concern on game Giant liver flukes are simple animals with farms in Alberta. a very complicated life history. Adult flukes produce eggs that are carried from the liver into the small intestine and What? Where? How? eventually leave the gut along with the As their common name implies, these faecal pellets. If the eggs land in water, flukes are giants in their world. Adult each one hatches into a fringed larva flukes may grow to 70-80 mm long and 30 (miracidium) that actively looks for and mm wide (approximately 3 x 1 ¼in.) but burrows into an aquatic snail.
    [Show full text]
  • 4. Bezobratlí
    4. BEZOBRATLÍ EEncyklopedieNDFF.inddncyklopedieNDFF.indd 199199 110/25/060/25/06 12:57:5212:57:52 PMPM 200 BEZOBRATLÍ ŽAHAVCI 4.1 CNIDARIA – ŽAHAVCI CNIDARIA – ŽAHAVCI na světě či v Evropě byl zkompilován několikrát mezi 30. a 80. léty 20. století4, 20, 28, kvalitní souhrn údajů z posledních desetiletí k dis- Žahavci jsou zastoupeni v české fauně pouze dvěma řády třídy po- pozici bohužel není. lypovci (Hydrozoa): Hydroida s pěti druhy nezmarů a Limnomedusae, Rozšíření v ČR První nález medúzky sladkovodní v ČR pochází kam patří jediný nepůvodní druh žahavce u nás, medúzka sladko- z roku 1930 z Vltavy v okolí Prahy a dále po proudu (až po Mělník, vodní (Craspedacusta sowerbii). Vzhledem k tomu, že na evrop- kv. 5952–5652). Právě studium vltavské populace umožnilo vznik ském kontinentě je jediným sladkovodním druhem žahavce tvořícím 4. detailní monografi e o tomto druhu od E. Dejdara4. Populace pravdě- medúzová stádia, je v našich vodách zcela nezaměnitelná. podobně postupně zanikla po výstavbě vltavské kaskády a trvalém Medúzka sladkovodní je u nás populárním živočichem již od 30. let ochlazení vltavské vody. Ze 30. letech 20. století pochází také něko- 20. století, kdy byla poprvé v Čechách ve Vltavě pozorována1, lik nálezů z akvárií v Brně a Praze4. a vzhledem k tomu, že se jedná v současnosti o téměř kosmopolit- Další dokladované nálezy medúzky z volné přírody v ČR pocházejí ního živočicha2, 3, ani řada biologů si není vědoma toho, že se jedná z Ostravy (kv. 6175)17, v jejímž okolí bylo pravděpodobně již na přelo- o nepůvodní druh. Ve skutečnosti se však rozšířila po světě ze své mu 50.
    [Show full text]
  • Life History and Biology of Fascioloides Magna (Trematoda)
    REVIEW Life history and biology of Fascioloides magna (Trematoda) and its native and exotic hosts Miriama Malcicka Department of Ecological Sciences, Animal Ecology, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, The Netherlands Keywords Abstract Definitive host, intermediate host, parasite, – phylogeny. Host parasite interactions are model systems in a wide range of ecological and evolutionary fields and may be utilized for testing numerous theories and Correspondence hypotheses in terms of both applied and fundamental research. For instance, Miriama Malcicka, Department of Ecological they are important in terms of studying coevolutionary arms races, species inva- Sciences, Animal Ecology, VU University sions, and in economic terms the health of livestock and humans. Here, I pres- Amsterdam, De Boelelaan 1085, 1081HV, ent a comprehensive description of the life history, biogeography, and biology The Netherlands. of the giant liver fluke, Fascioloides magna, and both its intermediate and defin- Tel: +31 20 59 87217; E-mail: [email protected] itive hosts. F. magna is native to North America where it uses several species of freshwater snails (Lymnaeidae) as intermediate hosts and four main species Funding Information of ungulates as definitive hosts. The fluke has also been introduced into parts No funding information provided. of Europe where it is now established in two lymnaeid snail species and three ungulate species. This study gives a comprehensive description of different Received: 19 November 2014; Revised: 6 developmental stages of the fluke in its two host classes, as well as detailed January 2015; Accepted: 12 January 2015 notes on historical and present distributions of F. magna in North America and Ecology and Evolution 2015; 5(7): Europe as well as in its snail and deer hosts (with range maps provided).
    [Show full text]
  • Schistosoma Turkestanicum
    Liu et al. Parasites & Vectors (2016) 9:143 DOI 10.1186/s13071-016-1436-2 RESEARCH Open Access De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum Guo-Hua Liu1, Min-Jun Xu1,3, Qiao-Cheng Chang2, Jun-Feng Gao4, Chun-Ren Wang2* and Xing-Quan Zhu1,5* Abstract Background: Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can also infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases. Methods: Herein, we performed the transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females of S. turkestanicum and de novo transcriptome assembly. Results: Approximately 81.1 (female) and 80.5 (male) million high-quality clean reads were obtained and then 29,526 (female) and 41,346 (male) unigenes were assembled. A total of 34,624 unigenes were produced from S. turkestanicum females and males, with an average length of 878 nucleotides (nt) and N50 of 1480 nt. Of these unigenes, 25,158 (72.7 %) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 21,995 (63.5 %), 22,189 (64.1 %) and 13,754 (39.7 %) of the unigenes had significant similarity in the NCBI non-redundant protein (NR), non-redundant nucleotide (NT) and Swiss-Prot databases, respectively. In addition, 3150 unigenes were identified to be expressed specifically in females and 1014 unigenes were identified to be expressed specifically in males.
    [Show full text]
  • Tištěná Verze Článku V
    48 Zahraničí 6 /2015 Ochrana přírody 26 / 20152016 OchranaOchrana přírodypřírody Kulér I Ochrana přírody ročníkročník 7170 čísločíslo 62 20152016 Kulérová příloha Zprávy / Aktuality / 1995v minulosti pod lavinou k Šumavě ve slovenských se zkušenostmi Tatrách. z dlou - (Landesbunddě důsledně fürodborných Vogelschutz), principů, ANL nikoli (Akademie na zá - Zprávy / Aktuality / Oznámení Hlavnímihodobé existenceúčastníky výročníhovšech národních setkání byloparků šest – fürkladě Naturschutz politické dohodyund Landschaftspflege) (tzv. managementová Oznámení prezidentůnovela se tedyMKOL, nevztahuje kteří se postupně pouze na Národ vystřídali- azonace Euroregionu). Vltava – Dunaj. Na organizaci vní čele park komise Šumava, ve tříletýchale i na všechny obdobích ostatní.(autor se také významně podílela Česká společnost Seminář „Nová právní tohotoZvolenou textu cestou byl v čele obecného komise zákonav letech tak 2005 ornitologická,Ředitel Krkonošského Agentura národníhoochrany přírody parku a Jankra- Mezinárodníúprava národních komise parků“ ažbyly 2007). eliminovány Za široké obavy, účasti žemédií některé prezidenti návrhy jinyHřebačka České republikypopsal proces (AOPK přípravy ČR) a Zoologická novely proV Poslanecké ochranu sněmovně Labe se 25. února 2016 zformulovalizákonných opatřenísvoje osobní vycházející přání pro z nedobrých řeku Labe azákona, botanická kdy zahrada MŽP od počátku města Plzně. zřídilo Konference pracovní konal důležitý seminář „Nová právní úprava avztahů v zapečetěné na Šumavě lahvi v minulosti pak byly originální by
    [Show full text]
  • And Liver Flukes (Fascioloides
    PREVALENCE AND INTENSITY OF MENINGEAL WORMS (PARELAPHOSTRONGYLUS TENUIS) AND LIVER FLUKES (FASCIOLOIDES MAGNA) IN ELK (CERVUS ELAPHUS) OF NORTHERN WISCONSIN BY Trina M. Weiland A Thesis Submitted in partial fulfillment of the requirements of the degree MASTER OF SCIENCE IN NATURAL RESOURCES (WILDLIFE) College of Natural Resources UNVERSITY OF WISCONSIN Stevens Point, Wisconsin May 2008 APPROVED BY THE GRADUATE COMMITTEE OF: Dr. Shelli A. Dubay, Committee Co-Chairman Assistant Professor of Wildlife Dr. Tim F. Ginnett, Committee Co-Chairman Associate Professor of Wildlife Dr. Todd C. Huspeni Assistant Professor of Biology ii PREFACE The chapters of this thesis were written in the format of the Journal of Wildlife Diseases. Any duplication in methods or citations among chapters is intentional. Each of the two research chapters is designed for easier editing before submission to the Journal of Wildlife Diseases for publication. iii ACKNOWLEDGEMENTS I would like to thank my advisors Dr. Shelli Dubay and Dr. Tim Ginnett and my committee member Dr. Todd Huspeni for their support, encouragement, and guidance in all aspects of my degree and research project. Their advice and suggestions have greatly aided me in my pursuit of a career in wildlife ecology. I am indebted to the Wisconsin Department of Natural Resources and all the support they have given to this project. Specifically, I want to thank Laine Stowell and Matt McKay who were a wealth of information and provided me with invaluable assistance each time I was in the field. These two individuals truly made my field work possible and I admire their dedication to the elk herd.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    GLOBAL EXPANSION OF CATTLE EGRETS (Bubulcus ibis) AND THEIR ROLE IN MOVEMENT OF AVIAN HAEMOSPORIDIA By SHANNON PATRICIA MOORE A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 © 2018 Shannon Patricia Moore To Mom, Dad, and Thomas ACKNOWLEDGMENTS I would first like to thank my thesis advisor Dr. Samantha Wisely for always being there to help troubleshoot problems or discussion questions about my research or writing. She allowed this research to be my own work, but steered me in the right direction whenever I need it. I would also like to acknowledge my committee, Dr. James Austin, Dr. Abigail Powell, and Dr. Greg Glass. I am grateful for their comments and feedback throughout my thesis work. I would like to thank the many people involved with sample collection, Mike Milleson and the USDA BASH Biologists, Mike Legare and the Merritt Island National Wildlife Refuge, Roger Widrick and the Sarasota International Airport, and Gene and Laurent Lollis from Buck Island Ranch, without whom none of this research would have been possible. I also thank Dr. Claudia Ganser for her training that prepared me for this project, as well as her assistance throughout and Lisa Shender for her assistance and training for conducting avian necropsies. I would also like to thank Hanna Innocent and Gabriella Gonzalez, my enthusiastic mentees who assisted with this research and hopefully learned as much as they taught me about being a mentor. I would like to thank the members of the Wisely Lab for their support and friendship throughout this process.
    [Show full text]
  • Giant Liver Fluke
    Giant Liver Fluke SPRING, BASICS LATE The giant liver fluke or deer fluke, Fascioloides magna, is a parasitic flatworm that may grow SUMMER up to 8 cm long, 3 cm wide, and 2-5 mm thick. & FALL They have a multi-host life cycle, using snails as intermediate hosts and WHITE-TAILED DEER, elk, and caribou as the definitive hosts, (where the parasite completes its life cycle). There are usually NO CLINICAL SIGNS, but signs can appear dependent on the species. TRANSMISSION most often occurs in spring and late summer or fall. Mature F. magna flukes residing in the liver of an infected ruminant release up to 4000 eggs per day. These are carried to the small intestine thru the bile ducts and shed in the feces. Eggs hatch in water and release free-swimming larvae, who then seek out a suitable snail to infect. Larvae mature within the snail and are released, usually at night, to encyst on aquatic plants. The encysted larvae are TRANSMITTED to a new host when the plants are ingested. Upon INGESTION by a suitable definitive host, the larvae activate in the gastrointestinal tract and INGESTION migrate through to penetrate the liver. OF INFECTED Fluke infection is DIAGNOSED via necropsy VEGETATION and visual examination of the liver for parasites. Feces from definitive hosts may be examined microscopically for the parasite eggs, and DNA extraction techniques may be used to test for Fascioloides species in snails. WHITE- In aberrant hosts such as MOOSE, the parasite does not complete the life cycle and fecal exam is TAILED not useful for diagnosis.
    [Show full text]
  • A Century of Parasitology: Discoveries, Ideas and Lessons Learned by Scientists Who Published in the Journal of Parasitology, 1914–2014, First Edition
    History of microevolutionary thought in parasitology: The integration of molecular population genetics Charles D. Criscione Department of Biology, Texas A&M University, College Station, Texas, U.S.A. I never cease to marvel that the DNA and protein markers magically emerging from molecular-genetic analyses in the laboratory can reveal so many otherwise hidden facets about the world of nature. —John C. Avise, Molecular Markers, Natural History, and Evolution (2004). Molecular population genetics has had two major As chapter authors, we were also asked to pick an early impacts in biology. It has opened the door to many paper from JP to highlight its relevance or impact in its questions in areas such as genetic inheritance modes and respective field. I have selected Steven Nadler’s (1995) mapping, reproductive modes (sexual vs. asexual repro- review, “Microevolution and the genetic structure of duction), mating systems (random vs. nonrandom), parasite populations,” because I believe, personally, relatedness, population demography (growth/decline) that it is one of the most under-recognized papers with and connectivity (gene flow), inference of selection, regards to parasite microevolution. Indeed, I recall early phylogeography, and delimitation of species. It has also in my graduate career reading his elegant analysis, but mixed the disciplines of ecology, evolution, genetics, filing it away. When I started to write my dissertation, and molecular biology. As a result, we have a better I felt that several of my ideas were novel. However, understanding of microevolution (theory and empiri- upon revisiting Nadler (1995), I realized otherwise cal), and a means (albeit often indirectly) to study the and remember begrudgingly yelping, “Nadler!” (in population biology of any living organism.
    [Show full text]