4. Bezobratlí
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Species and Additional Records of Protura from Michigan
The Great Lakes Entomologist Volume 8 Number 4 - Winter 1975 Number 4 - Winter Article 3 1975 December 1975 New Species and Additional Records of Protura from Michigan Ernest C. B Bernard Michigan State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation B, Ernest C. Bernard 1975. "New Species and Additional Records of Protura from Michigan," The Great Lakes Entomologist, vol 8 (4) Available at: https://scholar.valpo.edu/tgle/vol8/iss4/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. B: New Species and Additional Records of Protura from Michigan THE GREAT LAKES ENTOMOLOGlST NEW SPECIES AND ADDITIONAL RECORDS OF PROTURA FROM MICHIGAN1 Ernest C. Bernard2 ABSTRACT Three new species, Eosentomon antrimense, E. pinusbanksianum, and Berberentulus mcqueeni, and one new record, E. australicum Womersley are added to the known Protura fauna of Michigan Further records of E. wheeleri Silvestri, Protentomon michiganense Bernard, Proturentomon iowaense Womersley, Acerentulus confinis (Berlese) and Amerentulus amencanus (Ewing) are listed from various parts of the state. INTRODUCTION In a previous paper (Bernard, 1976), several new species of Protura were described and other known species were listed from Michigan. The present paper contains descriptions of two new species of Eosentomon Berlese and a new Berberentulus Tuxen, in addition to previously unpublished records of other species. -
Going Deeper Into High and Low Phylogenetic Relationships of Protura
G C A T T A C G G C A T genes Article Going Deeper into High and Low Phylogenetic Relationships of Protura 1, , 2,3, 3 1 1 Antonio Carapelli * y , Yun Bu y, Wan-Jun Chen , Francesco Nardi , Chiara Leo , Francesco Frati 1 and Yun-Xia Luan 3,4,* 1 Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; [email protected] (F.N.); [email protected] (C.L.); [email protected] (F.F.) 2 Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200041, China; [email protected] 3 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; [email protected] 4 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China * Correspondence: [email protected] (A.C.); [email protected] (Y.-X.L.); Tel.: +39-0577-234410 (A.C.); +86-18918100826 (Y.-X.L.) These authors contributed equally to this work. y Received: 16 March 2019; Accepted: 5 April 2019; Published: 10 April 2019 Abstract: Proturans are small, wingless, soil-dwelling arthropods, generally associated with the early diversification of Hexapoda. Their bizarre morphology, together with conflicting results of molecular studies, has nevertheless made their classification ambiguous. Furthermore, their limited dispersal capability (due to the primarily absence of wings) and their euedaphic lifestyle have greatly complicated species-level identification. -
Variation in the Intensity and Prevalence of Macroparasites in Migratory Caribou: a Quasi-Circumpolar Study
Canadian Journal of Zoology Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Journal: Canadian Journal of Zoology Manuscript ID cjz-2015-0190.R2 Manuscript Type: Article Date Submitted by the Author: 21-Mar-2016 Complete List of Authors: Simard, Alice-Anne; Université Laval, Département de biologie et Centre d'études nordiques Kutz, Susan; University of Calgary Ducrocq, Julie;Draft Calgary University, Faculty of Veterinary Medicine Beckmen, Kimberlee; Alaska Department of Fish and Game, Division of Wildlife Conservation Brodeur, Vincent; Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune du Nord-du-Québec Campbell, Mitch; Government of Nunavut, Department of Environment Croft, Bruno; Government of the Northwest Territories, Environment and Natural Resources Cuyler, Christine; Greenland Institute of Natural Resources, Davison, Tracy; Government of the Northwest Territories in Inuvik, Department of ENR Elkin, Brett; Government of the Northwest Territories, Environment and Natural Resources Giroux, Tina; Athabasca Denesuline Né Né Land Corporation Kelly, Allicia; Government of the Northwest Territories, Environment and Natural Resources Russell, Don; Environnement Canada Taillon, Joëlle; Université Laval, Département de biologie et Centre d'études nordiques Veitch, Alasdair; Government of the Northwest Territories, Environment and Natural Resources Côté, Steeve D.; Université Laval, Département de Biologie and Centre of Northern Studies COMPARATIVE < Discipline, parasite, caribou, Rangifer tarandus, helminth, Keyword: arthropod, monitoring https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 46 Canadian Journal of Zoology 1 Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Alice-Anne Simard, Susan Kutz, Julie Ducrocq, Kimberlee Beckmen, Vincent Brodeur, Mitch Campbell, Bruno Croft, Christine Cuyler, Tracy Davison, Brett Elkin, Tina Giroux, Allicia Kelly, Don Russell, Joëlle Taillon, Alasdair Veitch, Steeve D. -
Bovine Fascioliasis with Emphasis on Fasciola Hepatica
PEER REVIEWED Bovine fascioliasis with emphasis on Fasciola hepatica Gary L. Zimmerman, MS, PhD, DVM 1106 West Park 424, Livingston, MT 59047 Corresponding author: Gary L. Zimmerman, [email protected], 406-223-3704 Abstract over 135 million years, with the divergent evolution of Fasciola hepatica and F. gigantica occurring ap Fasciola hepatica, the common liver fluke, is an proximately 19 million years ago. 14 In the continental economically important parasite of ruminants. Although United States, Fasciola hepatica is the most common and infections in cattle are generally chronic and sub-clinical, economically important fluke infecting domestic large the overall impacts on health and productivity can be and small ruminants. The related species F. gigantica, significant, including decreased feed efficiency, weight which is common worldwide, has also been reported in 24 32 gain, reproductive rates, immunity, immunodiagnostic the southeastern United States. • Fascioloides magna, tests, and responses to vaccinations. Acute infections normally a parasite of deer, elk, and moose, also occurs can occur in cattle, but are more common in sheep. There in cattle as an incidental finding at necropsy or slaugh 9 38 are no pathognomonic signs of fascioliasis. Fecal ex ter, whereas in sheep it is often fatal. • Previously aminations using sedimentation or filtration techniques reported to infect Bison bison, recent research efforts remain the most commonly used diagnostic tools. In the to experimentally infect bison with Fascioloides magna United States, albendazole and a combined clorsulon/ have not been successful.10,38 Dicrocoelium dendriticum ivermectin formulation are the only currently approved is a smaller and less pathogenic liver fluke ofruminants products for treatment of liver flukes. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Street Cats, City Rats: Synanthropes and Cinematic Urban Ecologies
The Cine-Files, Issue 14 (spring 2019) Street Cats, City Rats: Synanthropes and Cinematic Urban Ecologies Graig Uhlin The second season of the BBC documentary series Planet Earth concluded with a somewhat atypical episode that focused on animals in urban environments. The episode, titled “Cities,” highlights the creation of habitats by various animal species out of the “unnatural” landscapes of global metropolises – including peregrine falcons in New York, leopards in Mumbai, and raccoons in Toronto. Urban development encroaches on natural habitats, and as animals move into urban spaces, they must adapt to new terrains in order to survive. The episode at times stresses the similarity of these built environments to the animals’ original environs; New York’s skyscrapers, for instance, provide falcons with tall ledges for nesting and updraft for flight, as well as ample prey at street level. Accordingly, the city is presented as an environment subject to the same competitive pressures seen in nature, wherein animals enact the same dominance rituals and territorial disputes. This ecosystem’s “top predator,” the voiceover narration comments, is humanity; it is people who “make the rules here.” Nonetheless, the episode emphasizes that urban habitats are often beneficial for animals. In Jodhpur, India, langur monkeys have access to an abundant food supply, provided by the residents of the city. This “constantly replenished source of food” enables more time for intra-species play and greater population growth, as the langurs “create troops far larger than in the forests nearby.” Far from functioning as a hindrance to the flourishing of animal life, the urban ecosystem provides a comparative advantage. -
Eosentomon Rusekianum Sp. N., a New Species of Proiura (Arthropoda: Insecta) from South Germany
©Staatl. Mus. f. Naturkde Karlsruhe & Naturwiss. Ver. Karlsruhe e.V.; download unter www.zobodat.at Carolines, 47 (1989): 141-146, 5 Abb.; Karlsruhe, 30. 10. 1989 141 J ö r g S t u m p p & A n d r z e j S z e p t y c k i Eosentomon rusekianum sp. n., a new species of Proiura (Arthropoda: Insecta) from South Germany Kurzfassung same length than c; d long; e equal or a little shorter than Eosentomon rusekianum sp. n. wurde im Boden eines Auwal g, with spatulate dilatation about half of the sensilla des (Fra.cno-Ulmetum) bei Ulm-Wiblingen (Süddeutschland) length; f1 long and not dilated, but always shorterthan e, entdeck* t1 in the middle of line a3and a 3’; a’ and b2’ long, twice Abstract as long as c’; c' not dilated. Eosentomon rusekianum sp. n., an edaphic species of Protura BS 0.9-1.0, TR 5.0-5.6, EU about 0.8 Basal seta of leg was found in an alluvial forest association „Fraxino-Ulmetum“ III long, of normal shape. Urotergites (T) IV—VII with nearby Ulm-Wiblingen (South Germany, FRG). 10,10,10,6 anterior setae; T VII with a1 and a3 lacking. pT of T VII exceptionally long, surpassing by far the hind Résumé margin of tergite (apex of p1 ’ slightly split). p1 ” on T VIII Eosentomon rusekianum sp. n., une espèce édaphique était dé very short with basal dilatation. Laterostigma II — IV lar couverte dans une forêt alluviale (Fraxino-Ulmetum) près ge. Lateral sclerotization of urosternite VIII distinct, with d’Ulm-Wiblingen (Allemagne du Sud, RFA). -
Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships
Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships Submitted by: Dipl. Biol. Robin Niechoj Supervisor: Prof. John Breen Submitted in accordance with the academic requirements for the Degree of Doctor of Philosophy to the Department of Life Sciences, Faculty of Science and Engineering, University of Limerick Limerick, April 2011 Declaration I hereby declare that I am the sole author of this thesis and that it has not been submitted for any other academic award. References and acknowledgements have been made, where necessary, to the work of others. Signature: Date: Robin Niechoj Department of Life Sciences Faculty of Science and Engineering University of Limerick ii Acknowledgements/Danksagung I wish to thank: Dr. John Breen for his supervision, encouragement and patience throughout the past 5 years. His infectious positive attitude towards both work and life was and always will be appreciated. Dr. Kenneth Byrne and Dr. Mogens Nielsen for accepting to examine this thesis, all the CréBeo team for advice, corrections of the report and Dr. Olaf Schmidt (also) for verification of the earthworm identification, Dr. Siobhán Jordan and her team for elemental analyses, Maria Long and Emma Glanville (NPWS) for advice, Catherine Elder for all her support, including fieldwork and proof reading, Dr. Patricia O’Flaherty and John O’Donovan for help with the proof reading, Robert Hutchinson for his help with the freeze-drying, and last but not least all the staff and postgraduate students of the Department of Life Sciences for their contribution to my work. Ich möchte mich bedanken bei: Katrin Wagner für ihre Hilfe im Labor, sowie ihre Worte der Motivation. -
Systematic and Biogeographical Study of Protura (Hexapoda) in Russian Far East: New Data on High Endemism of the Group
A peer-reviewed open-access journal ZooKeys 424:Systematic 19–57 (2014) and biogeographical study of Protura (Hexapoda) in Russian Far East... 19 doi: 10.3897/zookeys.424.7388 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Systematic and biogeographical study of Protura (Hexapoda) in Russian Far East: new data on high endemism of the group Yun Bu1, Mikhail B. Potapov2, Wen Ying Yin1 1 Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China 2 Moscow State Pedagogical University, Kibalchich str., 6, korp. 5, Moscow, 129278 Russia Corresponding author: Yun Bu ([email protected]) Academic editor: L. Deharveng | Received 4 March 2014 | Accepted 4 June 2014 | Published 8 July 2014 http://zoobank.org/38EAC4B7-8834-4054-B9AC-9747AC476543 Citation: Bu Y, Potapov MB, Yin WY (2014) Systematic and biogeographical study of Protura (Hexapoda) in Russian Far East: new data on high endemism of the group. ZooKeys 424: 19–57. doi: 10.3897/zookeys.424.7388 Abstract Proturan collections from Magadan Oblast, Khabarovsk Krai, Primorsky Krai, and Sakhalin Oblast are re- ported here. Twenty-five species are found of which 13 species are new records for Russian Far East which enrich the knowledge of Protura known for this area. Three new species Baculentulus krabbensis sp. n., Fjellbergella lazovskiensis sp. n. and Yichunentulus alpatovi sp. n. are illustrated and described. The new materials of Imadateiella sharovi (Martynova, 1977) are studied and described in details. Two new combi- nations, Yichunentulus borealis (Nakamura, 2004), comb. n. and Fjellbergella jilinensis (Wu & Yin, 2007), comb. -
A Guide to Biology, Dispersal, and Management of the House Fly and Related Flies for Farmers, Municipalities, and Public Health Offi Cials 3
The Fly Management Handbook A Guide to Biology, Dispersal, Connecticut and Management of the House Agricultural Fly and Related Flies for Experiment Farmers, Municipalities, and Station, Public Health Offi cials New Haven Bulletin 1013 KIRBY C. STAFFORD III, PH.D. Vice Director, State Entomologist May 2008 The Connecticut Agricultural Experiment Station New Haven, CT 06504 GENERAL ACKNOWLEDGEMENTS Thanks are given to Joyce Meader, Connecticut Cooperative Extension Service, Dr. Bruce Sherman, Connecticut Department of Agriculture, Patricia M. Beckenhaupt, Director of Health of the Northeast District Department of Health, and Dr. Louis A. Magnarelli, The Connecticut Agricultural Experiment Station (CAES), for reviewing the handbook. Their comments and suggestions were sincerely appreciated. I extend a particular thank you to James Rock (emeritus), Connecticut Cooperative Extension Service, for his considerable input and support. Thanks are also extended to Rose Bonito (CAES) for scanning illustrations and pictures and Vickie Bomba-Lewandoski (CAES) for publication and printing assistance. Much of the material on cluster flies is from a CAES fact sheet by Gale E. Ridge (available on the CAES website, www.ct.gov/caes). Thank you, Gale. Several portions on poultry IPM are based on Special Circular 338, Poultry Pest Management for Pennsylvania and the Northeast (1986), by Kirby C. Stafford III and Clarence A. Collison. ACKNOWLEDGEMENT FOR FIGURES Most sources for the pictures and illustrations are noted in the figure captions. Requests for use of photographs and illustrations by the author or CAES may be directed to the author. Permission to use any other material must be obtained from the original source. The historical 1916 illustration of the unsanitary conditions in the introduction is from the Centers for Disease Control and Prevention Public Health Image Library (8264); the stable fly and green-bottle fly in Figure 6 and 8, respectively, are from United States Department of Agriculture Farmer’s Bulletin 1408. -
Arthropod Communities in Urban Agricultural Production Systems Under Different Irrigation Sources in the Northern Region of Ghana
insects Article Arthropod Communities in Urban Agricultural Production Systems under Different Irrigation Sources in the Northern Region of Ghana Louis Amprako 1, Kathrin Stenchly 1,2,3 , Martin Wiehle 1,4,5,* , George Nyarko 6 and Andreas Buerkert 1 1 Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany; [email protected] (L.A.); [email protected] (K.S.); [email protected] (A.B.) 2 Competence Centre for Climate Change Mitigation and Adaptation (CliMA), University of Kassel, Kurt-Schumacher-Straße 25, D-34117 Kassel, Germany 3 Grassland Science and Renewable Plant Resources (GNR), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany 4 Tropenzentrum-Centre for International Rural Development, University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany 5 International Center for Development and Decent Work, University of Kassel, Kleine Rosenstrasse 1-3, D-34109 Kassel, Germany 6 Department of Horticulture, Faculty of Agriculture, University for Development Studies (UDS), P.O. Box TL 1882, Tamale, Ghana; [email protected] * Correspondence: [email protected] Received: 31 May 2020; Accepted: 27 July 2020; Published: 1 August 2020 Abstract: Urban and peri-urban agricultural (UPA) production systems in West African countries do not only mitigate food and financial insecurity, they may also foster biodiversity of arthropods and partly compensate for structural losses of natural environments. However, management practices in UPA systems like irrigation may also contribute to disturbances in arthropod ecology. To fill knowledge gaps in the relationships between UPA management and arthropod populations, we compared arthropods species across different irrigation sources in Tamale. -
5. Obratlovci
5. OBRATLOVCI EEncyklopedieNDFF.inddncyklopedieNDFF.indd 367367 110/25/060/25/06 12:58:5512:58:55 PMPM 368 OBRATLOVCI PAPRSKOPLOUTVÍ 5.1 ACTINOPTERYGII – PAPRSKOPLOUTVÍ ACTINOPTERYGII – PAPRSKOPLOUTVÍ Třetí kategorie je tvořena druhy vypuštěnými do přírody akvaris- ty. Zde má smysl zmínit se pouze o koljušce tříostné Gasterosteus Třída paprskoploutví (Actinopterygii), jejíž zástupci se nazývají aculeatus Linnaeus, 1758, zpracované ve formě fact-sheetu. Dále obecně ryby, je nejpočetnější třídou obratlovců. V současnosti se u nás byl z volných vod zaznamenán úlovek blíže neurčených dru- v této třídě rozeznává kolem 45 řádů a něco přes 28 000 druhů. hů jihoamerických piraní. V roce 1998 v Odře u Ostavy14 a v roce V původní fauně ČR byl zastoupen jen zlomek tohoto počtu druhů, 2003 ve slepém rameni Orlice v Hradci Králové22. V Praze ve Vltavě celkem 55. Z toho některé druhy jsou dnes u nás vymizelé. Jed- byl uloven jihoamerický pancéřníček kropenatý Megalechis thora- ná se většinou o tažné anadromní druhy, žijící v dospělosti v moři cata (Valenciennes, 1840)18. V těchto případech se jedná evident- a rozmnožující se ve sladkých vodách. Část z nich se i v minulosti ně o vypuštění nechtěných jedinců z akvarijních chovů, kteří by 5. u nás vyskytovala jen velmi vzácně. Jde o platýze bradavičnatého v našich podmínkách neměli šanci přežít zimní období. Pokud by se Platichthys fl esus (Linnaeus, 1758), placku pomořanskou Alosa alo- měly vzít v úvahu všechny druhy chované v akváriích, byl by výčet sa (Linnaeus, 1758), vyzu velkou Huso huso (Linnaeus, 1758), jese- nepůvodních druhů nalézajících se na území ČR velmi obsáhlý. tera velkého Acipenser sturio (Linnaeus, 1758) a síha Coregonus Některé druhy, pocházející z mírných oblastí, by však potenciálně lavaretus (Linnaeus, 1758).