Nobel Prize 2008 - Broken Symmetries
Total Page:16
File Type:pdf, Size:1020Kb
Nobel Prize 2008 - broken symmetries - Bohdan GRZADKOWSKI University of Warsaw • Nobel Prize Laureates in Physics 2008 • Yoichiro Nambu and spontaneous chiral symmetry breaking • The Goldstone theorem • Makoto Kobayashi and Toshihide Maskawa and explicit CP violation • Comments: – Giovanni Jona-Lasinio - ”the Nambu-Jona-Lasinio model” – Jeffrey Goldstone - ”the Nambu-Goldstone bosons” – Robert Brout, Francois Englert, Peter Higgs, . - the Higgs mechanism – Nicola Cabibbo - the Cabibbo angle • Cosmological illustrations e.g. baryogenesis • We are not yet done: the strong CP problem • Hints for beyond the Standard Model physics • Conclusions Nobel Prize 2008, December 5th, 2008, University of Warsaw 1 Nobel Prize Laureates in Physics 2008 • ”for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics”: – Yoichiro Nambu, Enrico Fermi Institute, University of Chicago Chicago, IL, USA, 1/2 of the prize, born 1921, ”A ”Superconductor” Model of Elementary Particles and its Consequences” given at a conference at Perdue (1960) reprinted in ”Broken Symmetries, Selected Papers by Y.Nambu” ed. T. Eguchi and K. Nishijima, World Scientific 1995 • ”for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature”: – Makoto Kobayashi, High Energy Accelerator Research Organization (KEK) Tsukuba, Japan, 1/4 of the prize, born 1944 – Toshihide Maskawa, Kyoto Sangyo University; Yukawa Institute for Theoretical Physics (YITP), Kyoto University Kyoto, Japan, 1/4 of the prize, born 1940 M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak Interaction”, Prog. Theor. Phys. 49, 652 (1973), 5503 citations Nobel Prize 2008, December 5th, 2008, University of Warsaw 2 Yoichiro Nambu and spontaneous chiral symmetry breaking The state of the art in strong interactions in 1960: • Isospin symmetry, SU(2) (introduced by Werner Heisenberg in 1932 to explain properties of the then newly discovered neutron): – mp = 938.3 MeV and mn = 939.6 MeV. – The strength of the strong interaction between any pair of nucleons is the same, independent of whether they are interacting as protons or as neutrons. • The baryon number conservation ↔ U(1)B symmetry ± 0 • 3 pions: π , π , with mπ± = 139.6 MeV and mπ0 = 135.0 MeV, so mπ± ' mπ0 mp ' mn ⇓ The hypothesis of spontaneous chiral symmetry breaking Nambu 1960, Goldstone 1961 Nobel Prize 2008, December 5th, 2008, University of Warsaw 3 a a • symmetry: SU(2)A × SU(2)V with Q5 and Q (a = 1, 2, 3) are generators of SU(2)A,V • vacuum |0i: h0|H|0i = minhHi a a The hypothesis of spontaneous chiral symmetry breaking: Q5|0i= 6 0 and Q |0i = 0 Nambu 1960, Goldstone 1961 SU(2)A is spontaneously broken ⇓ The theory contains massless bosons corresponding to each generator that does not a a annihilate the vacuum (since [Q5,H] = 0 therefore Q5|0i= 6 0 is degenerate with a |0i applying successively Q5 one can generate infinite number of degenerate states - massless particle). Nobel Prize 2008, December 5th, 2008, University of Warsaw 4 The sigma model of the strong interactions The theory of pions as Nambu-Goldston bosons -Gell-Mann & L´evy- The symmetry: SU(2)L × SU(2)R ⇔ SU(2)A × SU(2)V The elementary fields: p N = and ~π (0−), σ0 (0+) n The Lagrangian: 1 1 1 L = Ni¯ 6∂N−gN¯ (σ0 + i~σ · ~πγ ) N+ (∂ ~π)2 + (∂ σ0)2− µ2(σ02+~π2)− λ(σ02+~π2)2 5 2 µ µ 2 4 where σ0 is needed to make L chirally symmetric, ~σ = (σ1, σ2, σ3) and Ni¯ 6∂N = N¯Ri 6∂NR + N¯Li 6∂NL 0 0 0 N¯ (σ + i~σ · ~πγ5) N = N¯L (σ + i~σ · ~π) NR + N¯R (σ − i~σ · ~π) NL The transformation properties of σ0 ± i~σ · ~π are determined by the requirement of the invariance of L under SU(2)L × SU(2)R: Nobel Prize 2008, December 5th, 2008, University of Warsaw 5 0 0 1 1 1 0 • SU(2)L: σ → σ + 2~π · δ~αL and ~π → ~π − 2~π × δ~αL − 2σ δ~αL 0 0 1 1 1 0 • SU(2)R: σ → σ − 2~π · δ~αR and ~π → ~π − 2~π × δ~αR + 2σ δ~αR The ground state is (at the tree level) the minimum of the potential: 1 µ22 V (σ0, ~π) = λ σ02 + ~π2 + 4 λ So, either • σ0 = ~π = 0 for µ2/λ > 0, or 2 • σ02 + ~π2 = µ for µ2/λ < 0 λ a a To satisfy Q5|0i 6= 0 and Q |0i = 0 we must choose 2 1/2 0 µ h0|~π|0i = 0 and h0|σ |0i = ≡ v λ Expanding around v, σ = σ0 − v one obtains: Nobel Prize 2008, December 5th, 2008, University of Warsaw 6 L = N¯(i 6∂ − gv)N − gN¯ (σ + i~σ · ~πγ5) N+ 1 1 + (∂ ~π)2 + (∂ σ)2 − |µ2|σ2 − λ(σ2 + ~π2)2 − λv(σ3 + σ~π2) + const. 2 µ µ 4 2 2 • So, we have massive nucleons mN = gv, a sigma meson of mass mσ = 2|µ | and the isospin triplet of massless pions: (π+, π0, π−). a a 0 ab −iqx • Using the current implied by SU(2)A one finds h0|JA µ(x)|π (q)i = −h0|σ |0iiqµδ e , so 0 fπ = −h0|σ |0i • since in reality mπ 6= 0, one should break the chiral symmetry explicitly preserving isospin SU(2): δL = −m3σ0. Then 3 2 m mπ = 6= 0 fπ • The axial current is not conserved and one obtains PCAC (Partial Conservation of Axial Current) µ a 2 a ∂ JA µ(x) = mπfππ (x) Nobel Prize 2008, December 5th, 2008, University of Warsaw 7 The Goldstone theorem 1 L = ∂ φ ∂µφ − V (φ ) 2 µ i i i 0 a a If L is symmetric with respect to φi → φi ' φi − iΘ Tijφj then ∂V ∂V a a 0 = δV (φi) = δφi = −i Θ Tijφj (1) ∂φi ∂φi 0 Expanding V (φi) around its minimum φi = vi one gets (φi = φi − vi) 1 V (φ ) = const. + M 2 φ0φ0 + ··· i 2 ij i j where 2 2 ∂ V Mij = ∂φi∂φj φi=vi Differentiating (1) at the minimum one gets 2 a Mij Tijvj = 0 (2) a So, for all broken generators (Tijvj 6= 0), (2) implies the existence of a massless Nambu-Goldstone boson. Nobel Prize 2008, December 5th, 2008, University of Warsaw 8 Makoto Kobayashi and Toshihide Maskawa and explicit CP violation The state of the art in quark weak interactions in 1973 : • James Cronin, Val Fitch, 1964 =⇒ CP violation in K → ππ • Steven Weinberg, ”A Model of Leptons”, Phys.Rev.Lett. 19, 1264 (1967) • Charm quark predicted in 1970 by S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970) • Quarks: u,d,s known while charm (c) still unobserved till its discovery in 1974 Kobayashi-Maskawa: N ≥ 3 implies CP violation in the Weinberg model Nobel Prize 2008, December 5th, 2008, University of Warsaw 9 • Parity: (t, ~x) →P (t, −~x) S(t, ~x) →P +S(t, −~x) scalar P (t, ~x) →P −P (t, −~x) pseudoscalar ¯ P ¯ µ ψa(t, ~x)γµψb(t, ~x) → +ψa(t, −~x)γ ψb(t, −~x) vector current ¯ P ¯ µ ψa(t, ~x)γµγ5ψb(t, ~x) → −ψa(t, −~x)γ γ5ψb(t, −~x) axial current P µ Vµ(t, ~x) → +V (t, −~x) vector P µ Aµ(t, ~x) → −A (t, −~x) axial • Charge conjugation: φ →C φ† ¯ C ¯ ψaγµψb → −ψbγµψa vector current ¯ C ¯ ψaγµγ5ψb → +ψbγµγ5ψa vector current C ? Vµ → −Vµ vector C ? Aµ → +Aµ axial −1 T 2 0 where C γµC = −γµ and e.g. C = iγ γ . Nobel Prize 2008, December 5th, 2008, University of Warsaw 10 • CP : (t, ~x) CP→ (t, −~x) φ CP→ φ† ¯ CP ¯ µ ψaγµψb → −ψbγ ψa vector current ¯ CP ¯ µ ψaγµγ5ψb → −ψbγ γ5ψa vector current CP µ ? Vµ → −V vector CP µ ? Aµ → −A axial The Standard Model in the interaction basis: • gauge boson self-interactions symmetric under CP , • gauge boson ↔ fermion interactions symmetric under CP , • gauge boson ↔ Higgs boson interactions symmetric under CP , • Higgs boson self-interactions symmetric under CP , • Higgs boson ↔ fermion (Yukawa) interactions ??? under CP . Nobel Prize 2008, December 5th, 2008, University of Warsaw 11 Hadronic Yukawa interactions in the SM N (" # X u0 L = − Γu (u¯0, d¯0) Huˆ 0 + Γu ?u¯0 Hˆ † Y jk j L k R jk k R d0 j,k=1 j L " #) u0 Γd (u¯0, d¯0) Hd0 + Γd ?d¯0 H† jk j L k R jk k R d0 j L where φ+ φ0 ? H = and Hˆ ≡ iσ H? = φ0 2 −φ− 0 CP u (u¯0, d¯0) Huˆ 0 → u¯0 Hˆ † j L k R k R d0 j L 0 CP u (u¯0, d¯0) Hd0 → d¯0 H† j L k R k R d0 j L u u ? d d ? If Γjk 6= Γjk and/or Γjk 6= Γjk then CP invariance seems to be broken explicitly by the Yukawa interactions ! Nobel Prize 2008, December 5th, 2008, University of Warsaw 12 0 Spontaneous symmetry breaking =⇒ H → √1 2 v + h ⇓ N v v X 0 u 0 ¯0 d 0 LY → Lm = − u¯ j L √ Γ u + d j L √ Γ d + H.c. 2 jk k R 2 jk k R j,k=1 | M{zu } | {zd } jk Mjk Mass matrix diagonalization (optional): 0 0 u u † uL = ULuL dL = DLdL for M = ULM UR diagonal 0 0 d d † uR = URuR dR = DRdR for M = DLM DR diagonal N N X h X h L = − u¯ M uu + d¯ M dd + H.c.