The High Subarctic Forest-Tundrao F Northwestern Canada: Position, Width, and Vegetation Gradients in Relation to Climate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Canada GREENLAND 80°W
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources. -
Integrating Arctic Plant and Microbial Ecology ‐ 21St ITEX Meeting ‐ September 16‐18 2015
Abstracts: Integrating Arctic Plant and Microbial Ecology ‐ 21st ITEX meeting ‐ September 16‐18 2015 Integrating Arctic Plant and Microbial Ecology ‐ 21st ITEX meeting ORAL PRESENTATIONS: O1. Impacts of winter snow on plants and microbes in a mountain peatland Ellen Dorrepaal1,2, Vincent Jassey2,3, Constant Signarbieux2,3, Rob Mills2,3, Alexandre Buttler2,3, Luca Bragazza2,4, Bjorn Robroek2,5 1: Climate Impacts Research Centre, Umeå University, Sweden 2: Laboratory of Ecological Systems, École Polytechnique Fédérale de Lausanne, Switzerland 3: Swiss Federal Research Institute‐WSL, Community Ecology Research Unit, Switzerland 4: Department of Biology and Evolution, University of Ferrara, Italy 5: Ecology and Biodiversity, Utrecht University, The Netherlands Winter in the arctic and mid‐ and high latitude mountains are characterised by frost, snow and darkness. Ecosystem processes such as plant photosynthesis, nutrient uptake and microbial activities are therefore often thought to strongly slow down compared to summer. However, sufficient snow insulates and might enable temperature‐limited processes to continue. Changes in winter precipitation may alter this, yet, winter ecosystem processes remain poorly understood. We removed snow on an ombrotrophic bog in the Swiss Jura mountains to compare impacts and legacy effects on above‐ and belowground ecosystem processes. Snow in mid‐winter (1m; February) and late‐winter (0.4m; April) reduced the photosynthetic capacity (Amax) of Eriophorum vaginatum and the total microbial biomass compared to the subsequent spring 15 (June) and summer (July) values. Amax of Sphagnum magellanicum and N‐uptake by vascular plants were, however, almost as high or higher in mid‐ and late‐winter as in summer. Snow removal enhanced freeze‐thaw cycles and minimum soil temperatures. -
CANADA's SIBERIAN POLICY I918
CANADA'S SIBERIAN POLICY i918 - 1919 ROBERT NEIL MURBY B.A,, University of British Columbia, 1968 A1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in the DEPARTMENT OF SLAVONIC STUDIES We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA April, 1969 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thes,is for financial gain shall not be allowed without my written permission. Robert N. Murby Department of Slavonic Studies The University of British Columbia Vancouver 8, Canada Da 1e April 17th. 1969 - ii - ABSTRACT The aim of this essay was to add to the extremely limited fund of knowledge regarding Canada's relations with Siberia during the critical period of the Intervention, The result hopefully is a contribution both to Russian/Soviet and Canadian history. The scope of the subject includes both Canada's military participation in the inter-allied intervention and simultaneously the attempt on the part of Canada to economically penetrate Siberia, The principal research was carried out at the Public Archives of Canada, Ottawa during September and October, 1968. The vast majority of the documents utilized in this essay have never previously been published either in whole or in part. -
Taiga Plains
ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta. -
Geophysical and Geological Integration and Interpretation of the Northeast Thelon Basin, Nunavut
GEOPHYSICAL INTERPRETATION OF THE NORTHEAST THELON BASIN GEOPHYSICAL AND GEOLOGICAL INTEGRATION AND INTERPRETATION OF THE NORTHEAST THELON BASIN, NUNAVUT By VICTORIA LYNN TSCHIRHART, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy McMaster University © Copyright for Victoria Tschirhart, November 2013 i McMaster University DOCTORATE OF PHILOSPHY (2013) Hamilton, Ontario TITLE: Geophysical and geological integration and interpretation of the northeast Thelon Basin, Nunavut AUTHOR: Victoria Lynn Tschirhart, B.Sc. (McMaster University) SUPERVISOR: Dr. William A. Morris NUMBER OF PAGES: xii, 196 ii Abstract The northeast Thelon Basin, Nunavut, is a rapidly developing albeit poorly studied, frontier exploration domain for unconformity-associated uranium deposits. Critical criteria for unconformity –associated uranium deposit models are knowledge of the basement geology, fault history and depth to unconformity surface. This thesis sets forth to derive working geological and geophysical models for the northeast Thelon Basin through the implementation of integrated geophysical techniques. A physical rock property database is compiled defining average density and susceptibility values for key map units for integration into subsequent modelling iterations. Forward and inverse potential field modelling using these petrophysical with geological controls define the structure and geometry of the Shultz Lake intrusive complex and northeast Amer Belt, both of which are present below the Thelon sedimentary cover. Implementation of a new source edge detection technique estimates fault development and location within the basin. This provides a quantitative analysis of fault timing, identifying potentially reactivated faults which have an increased likelihood to serve as conduits to transport uranium-rich fluids and focus deposition. -
The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al. -
U.S.-Canada Cross- Border Petroleum Trade
U.S.-Canada Cross- Border Petroleum Trade: An Assessment of Energy Security and Economic Benefits March 2021 Submitted to: American Petroleum Institute 200 Massachusetts Ave NW Suite 1100, Washington, DC 20001 Submitted by: Kevin DeCorla-Souza ICF Resources L.L.C. 9300 Lee Hwy Fairfax, VA 22031 U.S.-Canada Cross-Border Petroleum Trade: An Assessment of Energy Security and Economic Benefits This report was commissioned by the American Petroleum Institute (API) 2 U.S.-Canada Cross-Border Petroleum Trade: An Assessment of Energy Security and Economic Benefits Table of Contents I. Executive Summary ...................................................................................................... 4 II. Introduction ................................................................................................................... 6 III. Overview of U.S.-Canada Petroleum Trade ................................................................. 7 U.S.-Canada Petroleum Trade Volumes Have Surged ........................................................... 7 Petroleum Is a Major Component of Total U.S.-Canada Bilateral Trade ................................. 8 IV. North American Oil Production and Refining Markets Integration ...........................10 U.S.-Canada Oil Trade Reduces North American Dependence on Overseas Crude Oil Imports ..................................................................................................................................10 Cross-Border Pipelines Facilitate U.S.-Canada Oil Market Integration...................................14 -
Crop Production in a Northern Climate Pirjo Peltonen-Sainio, MTT Agrifood Research Finland, Plant Production, Jokioinen, Finland
Crop production in a northern climate Pirjo Peltonen-Sainio, MTT Agrifood Research Finland, Plant Production, Jokioinen, Finland CONCEPTS AND ABBREVIATIONS USED IN THIS THEMATIC STUDY In this thematic study northern growing conditions represent the northernmost high latitude European countries (also referred to as the northern Baltic Sea region, Fennoscandia and Boreal regions) characterized mainly as the Boreal Environmental Zone (Metzger et al., 2005). Using this classification, Finland, Sweden, Norway and Estonia are well covered. In Norway, the Alpine North is, however, the dominant Environmental Zone, while in Sweden the Nemoral Zone is represented by the south of the country as for the western parts of Estonia (Metzger et al., 2005). According to the Köppen-Trewartha climate classification, these northern regions include the subarctic continental (taiga), subarctic oceanic (needle- leaf forest) and temperate continental (needle-leaf and deciduous tall broadleaf forest) zones and climates (de Castro et al., 2007). Northern growing conditions are generally considered to be less favourable areas (LFAs) in the European Union (EU) with regional cropland areas typically ranging from 0 to 25 percent of total land area (Rounsevell et al., 2005). Adaptation is the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities (IPCC, 2012). Adaptive capacity is shaped by the interaction of environmental and social forces, which determine exposures and sensitivities, and by various social, cultural, political and economic forces. Adaptations are manifestations of adaptive capacity. Adaptive capacity is closely linked or synonymous with, for example, adaptability, coping ability and management capacity (Smit and Wandel, 2006). -
Hydrological Extremes in the Canadian Prairies in the Last Decade Due to the ENSO Teleconnection—A Comparative Case Study Using WRF
water Article Hydrological Extremes in the Canadian Prairies in the Last Decade due to the ENSO Teleconnection—A Comparative Case Study Using WRF Soumik Basu * , David J. Sauchyn and Muhammad Rehan Anis Prairie Adaptation Research Collaborative, Regina, SK S4S 0A2, Canada; [email protected] (D.J.S.); [email protected] (M.R.A.) * Correspondence: [email protected] Received: 8 September 2020; Accepted: 21 October 2020; Published: 23 October 2020 Abstract: In the Prairie provinces of Alberta, Saskatchewan, and Manitoba, agricultural production depends on winter and spring precipitation. There is large interannual variability related to the teleconnection between the regional hydroclimate and El Niño and La Niña in the Tropical Pacific. A modeling experiment was conducted to simulate climatic and hydrological parameters in the Canadian Prairie region during strong El Niño and La Niña events of the last decade in 2015–2016 and 2010–2011, respectively. The National Center for Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) model was employed to perform two sets of sensitivity experiments with a nested domain at 10 km resolution using the European Centre for Medium-Range Weather Forecasts Reanalysis (ERA) interim data as the lateral boundary forcing. Analysis of the hourly model output provides a detailed simulation of the drier winter, with less soil moisture in the following spring, during the 2015–2016 El Niño and a wet winter during the La Niña of 2010–2011. The high-resolution WRF simulation of these recent weather events agrees well with observations from weather stations and water gauges. Therefore, we were able to take advantage of the WRF model to simulate recent weather with high spatial and temporal resolution and thus study the changes in hydrometeorological parameters across the Prairie during the two extreme hydrological events of the last decade. -
Fresh Water and Its Role in the Arctic Marine System
PUBLICATIONS Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Freshwater and its role in the Arctic Marine System: Sources, 10.1002/2015JG003140 disposition, storage, export, and physical and biogeochemical Special Section: consequences in the Arctic and global oceans Arctic Freshwater Synthesis E. C. Carmack1, M. Yamamoto-Kawai2, T. W. N. Haine3, S. Bacon4, B. A. Bluhm5, C. Lique6,7, H. Melling1, I. V. Polyakov8, F. Straneo9, M.-L. Timmermans10, and W. J. Williams1 Key Points: • The Arctic Ocean Freshwater System 1Fisheries and Oceans Canada, Sidney, British Columbia, Canada, 2Tokyo University of Marine Science and Technology, has major intra-Arctic and extra-Arctic 3 4 effects Tokyo, Japan, Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland, USA, National • The Arctic Ocean Freshwater System Oceanography Centre, Southampton, UK, 5Department of Marine and Arctic Biology, UiT The Arctic University of Norway, regulates and constrains physical and Tromsø, Norway, 6Department of Earth Sciences, University of Oxford, Oxford, UK, 7Now at Laboratoire de Physique des biogeochemical processes Océans, Ifremer, Plouzané, France, 8International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, • Changes in the Arctic Ocean 9 10 Freshwater System are expected in USA, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, Department of Geology and Geophysics, the future with substantial impacts Yale University, New Haven, Connecticut, USA Abstract The Arctic Ocean -
Western Canada Explorer Featuring Vancouver, Victoria and Whistler
Antioch Seniors AND TravelCenter Travel & Tours presents... 9 DAY HOLIDAY Western Canada Explorer featuring Vancouver, Victoria and Whistler July 24 - August 1, 2020 Tour Dates: Western Canada Explorer Unforgettable experiences await 9 Days • 15 Meals in Canada’s Golden Triangle featuring mountain gondolas, a First Nations cultural experience, a regional Foodie Tour and an incredible wildlife cruise. TOUR HIGHLIGHTS 4 15 Meals (8 breakfasts, 3 lunches and 4 dinners) 4 Round trip airport transfers 4 Spend 3 nights in cosmopolitan Vancouver 4 Take a panoramic tour of Vancouver to see its downtown core, spectacular North Shore and beautiful Stanley Park and visit Capilano Suspension Bridge 4 Travel the scenic “Sea to Sky Highway” to and enjoy the PEAK 2 PEAK experience, a 1.88-mile long gondola ride between Blackcomb and Whistler Mountains 4 Travel by BC Ferry to Vancouver Island and visit world-famous Butchart Gardens 4 Included city tour of Victoria with its delightful English flavor, red double-decker buses and Tudor-style buildings Cross the Capilano Suspension Bridge and enjoy views of the spectacular rainforest 4 Visit Victorian-era Craigdarroch Castle and take the walking Victoria Food Tour, a delicious culinary experience 4 Enjoy a First Nations Cultural Experience at the I-Hos Gallery DAY 1 – Arrive in Beautiful British Columbia featuring a weaving workshop and included lunch with traditional Welcome to Canada’s rugged Northwest in Vancouver and transfer Bannock bread to your hotel. Meet your Tour Manager in the hotel lobby at 6:00 4 Spend 2 nights at the illustrious Painter’s Lodge, located on the p.m. -
Gjoa Haven © Nunavut Tourism
NUNAVUT COASTAL RESOURCE INVENTORY ᐊᕙᑎᓕᕆᔨᒃᑯᑦ Department of Environment Avatiliqiyikkut Ministère de l’Environnement Gjoa Haven © Nunavut Tourism ᐊᕙᑎᓕᕆᔨᒃᑯᑦ Department of Environment Avatiliqiyikkut NUNAVUT COASTAL RESOURCE INVENTORY • Gjoa Haven INVENTORY RESOURCE COASTAL NUNAVUT Ministère de l’Environnement Nunavut Coastal Resource Inventory – Gjoa Haven 2011 Department of Environment Fisheries and Sealing Division Box 1000 Station 1310 Iqaluit, Nunavut, X0A 0H0 GJOA HAVEN Inventory deliverables include: EXECUTIVE SUMMARY • A final report summarizing all of the activities This report is derived from the Hamlet of Gjoa Haven undertaken as part of this project; and represents one component of the Nunavut Coastal Resource Inventory (NCRI). “Coastal inventory”, as used • Provision of the coastal resource inventory in a GIS here, refers to the collection of information on coastal database; resources and activities gained from community interviews, research, reports, maps, and other resources. This data is • Large-format resource inventory maps for the Hamlet presented in a series of maps. of Gjoa Haven, Nunavut; and Coastal resource inventories have been conducted in • Key recommendations on both the use of this study as many jurisdictions throughout Canada, notably along the well as future initiatives. Atlantic and Pacific coasts. These inventories have been used as a means of gathering reliable information on During the course of this project, Gjoa Haven was visited on coastal resources to facilitate their strategic assessment, two occasions: