Semester I Paper I: Animal Diversity I

Total Page:16

File Type:pdf, Size:1020Kb

Semester I Paper I: Animal Diversity I International College for Girls ( Autonomous) SEMESTER I PAPER I: ANIMAL DIVERSITY I Paper Code: ZOL 111 TOPICS Teaching UNITS Hours Principles of classification-Salient features and classification UNIT upto orders in non-chordates. I 15 Structural organization in different classes of non-chordates. Protozoa-Type study (Paramecium) and study of : UNIT 10 II • Locomotion • Osmoregulation • Nutrition • Reproduction UNIT Origin of metazoa-Metamerism and symmetry. III 5 Porifera and coelenterate UNIT Type study (Leucosolenia and obelia) 10 IV • Canal system • Corals and coral reefs • Polymorphism in hydrozoa. UNIT Ctenophora-affinities-Type study (Pleurobrachia). 5 V Total Teaching Hours 45 Department of Zoology International College for Girls ( Autonomous) PAPER II: ANIMAL DIVERSITY I Paper Code: ZOL 112 UNITS TOPICS Teaching Hours UNIT Platyhelminthes and Nemathelminthes I Type Study: Taenia solium, Ascaris • Reproduction 9 • Parasitic Adaptations UNIT Economic Importance of: II • Protozoa 9 • Corals and coral reefs • Helminths UNIT Annelida III Type Study : Earthworm and Leech 9 • Coeloem • Excretory Sytem UNIT Mollusca IV Type Study: Pila ,Unio and Sepia 10 Torsion And distorsion in Gastropods Economic Importance of Mollusca UNIT Onychophora 8 V Affinities and Type Study Peripatus Total Teaching Hours 45 Department of Zoology International College for Girls ( Autonomous) PAPER III : Cell Biology Paper Code: ZOL 113 UNITS TOPICS Teaching Hours UNIT Diversity of cell size and shape. I 7 Cell theory. Structure of prokaryotic and eukaryotic cells Cellular organelles-separation and characterization. UNIT Cellular energy transactions- II 10 Role of mitochondria and chloroplasts. Cell junctions. Cell adhesion, and the extracellular matrix. Membrane transport of small molecules and the ionic basis of membrane excitability UNIT Intracellular compartments and protein sorting. III • Vesicular traffic in the secretory and endocytic 10 pathways (GERL System) • Cell signaling with reference to c-AMP and IP 3 DAG system UNIT Cytoskeleton IV 6 Cell-division cycle. • The mechanics of cell division. UNIT Tissues V • Epithelial tissues: Structure functions and types - 12 (a) simple epithelia-squamous. cuboidal. columnar, ciliated, pseudostratified (b) compound-stratified and transitional • Connective Tissues: Structure, function and types- Department of Zoology International College for Girls ( Autonomous) (a) Connective tissue-proper-areolar. adipose, white,fibrous, yellow elastic, reticular.mucous (b) Skeletal- cartilage (hyaline, fibrous and calcified cartilage) and bones (dried, decalcified and mammalian) (c) Vascular tissue: Structure, function and types- Blood (plasma and corpuscles) and lymph • Nervous tissue: Structure, function and types -Myelinated and nonmyelinated • Muscular: Structure, function and types Visceral/smooth. Skeletal/ striated and cardiac Total Teaching Hours 45 Department of Zoology International College for Girls ( Autonomous) Paper IV: Biochemistry I Paper Code: ZOL 114 UNITS TOPICS Teaching Hours Biochemistry UNIT • Meaning, history, scope and significance 7 I Basic Chemical Concepts: • Bonds and functional groups UNIT Amino acids and peptides II • Properties and structure. 8 UNIT Carbohydrates III • Classification, structures and clinical significance 12 • Oxidation of glucose through glycolysis. Krebs cycle and oxidative phosphorylation; • Elementary knowledge of interconversion of glycogen and glucose in liver: • Role of insulin. UNIT Lipids IV • Classification, structures and clinical 10 significance. • Beta-oxidative pathways of fatty acids: • Brief account of biosynthesis of triglycerides. • Cholesterol and its metabolism UNIT Vitamins V • Discovery, structures and functions. 8 Total Teaching Hours 45 Department of Zoology International College for Girls ( Autonomous) Suggested readings: Conn et al : Outlines of Biochemistry (Wiley). Conn. Stumph RK. Bruening and Doc : Outlines of Biochemistry (Wiley). Davenport : An outline of animal development (Addison-Werley). De Robertis and DeRobertis : Cell and Molecular Biology (Saunders College) Edward Gasque : Manual of Laboratory L. Ed. In Cell Biology (W.C. Brown Publishers) Hyman. L.H : The Invertebrates. Vol.1 (McGraw Hill). Hyman. L.H : Th6 Invertebrates. Vol.11 (McGraw Hill). Lodish et al : Molecular Cell Biology (Scientific American Books.) Stryer. L : Biochemistry (Freeman). Invertebrate Zoology; Barns, R. D; W. B. Saunders Co. Textbook of Zoology; Shivpuri, Jacob, D. and Vyas. D.K.; Ramesh Book Depot. Text book of Invertebrate Zoology I; Sandhu, G.S; Campus Books. Text book of Invertebrate Zoology II; Sandhu, G.S ; Campus Books. Modern Textbook of Zoology Invertebrates; Kotpal; Rastogi Publications. Cell Biology and Genetics; Kohli, K.S;Ramesh Book Depot Genetics; Winchester, A.M; Oxford and IBH Publishing Co. Cell and Molecular Biology; De Robertis and De Robertis; Saunders College. Cell Biology; Powar, C.B; Himalayan publishing House. Department of Zoology International College for Girls ( Autonomous) PAPER-V : PRACTICALS Paper Code: ZOL 115 Animal Diversity- I Museum Specimens and Slides: • Protozoa: euglena; Trypanosoma; Giardia; Entamoeba; Elphodium; Foraminifeferan shell; Monocystis; Plasmodium; Paramecium; Paramecium showing binary fission and conjugation; Opalina; Nyctotherus; Balantidium; Vorticella. • Porifera: Leucosolenia; Euplectella; Spongilla.L.S. and T.S. of Sycon; Spongin fibres; Gemmules. • Coelenterata: Millipora; Physalia; Vallela; Aurelia; Alcyonium; Gorgonia; Pennatula; Sea Anemone; Stone coral; Obelia-Polyp& Medusa. • Ctenophora: Any one. Animal Diversity- II Museum Specimens and Slides: • Platyhelminthes: Taenia; Planaria; Fasciola.,T.S. of Taenia through mature proglottid; Cysticerous. • Aschelminthes: Ascaris • Annelida: Nereis; Heteronereis; Aphrodite: Chaetopterous; Arenicola; Glossiphona; Pontobdella; Polygordius.,T.S. body of Nereis. • Onychophora: Peripatus • Mollusca: Chiton; Aplysia; Cyprnea; Mytillus; Pearl oyster; Dentalium; Loligo; Octopus; Nautilus.,V.S. shell; T.S. Gill of Pila; Glochidium. Anatomy: • Earthworm : External features; General viscera; Alimentary canal; Nervous system; Reproductive system. • Pila: External features; Pillial organs; Nervous system. Permanent Preparations : Gill lamella, Radula and T.S. ospharidium of Pila. Microscopic Techniques: • Organization and working of optical microscopes: Dissecting and compound microscopes. • General methods of microscopically permanent preparations: Narcotization; Fixing and Preservation; Washing; Staining and Destaining, Dehydrations, Cearing and Decolourization; Mounting, General idea of composition, preparation and use of- 1. Fixatives: Formalin and Bouin's fluid 2. Stains: Borax carmine; Acetocarmine; Acetoorcein; Haematoxylin and Eosin. Department of Zoology International College for Girls ( Autonomous) Collection and Culture methods: • Collection of animals from their natural habitat during field trip e.g. Amoeba, Paramecium; Euglena; Planaria; Earthworm; Daphnia; Cyclops etc. • Culture of Paramecium in the laboratory and study of its structure, life processes and behaviour, collection and study of invertebrate parasites: Rectal ciliates of frog. Cell Biology Exercises of Cell Biology : • Squash preparation of the study of Mitosis in Onion root tip. • Squash preparation of the study of Meiosis in Grasshopper/ Cockroach testis. • Study of giant chromosomes in salivary gland of Chironomous/ Drosophila larva. Biochemistry Exercises of Biochemistry • Detection of proteins, carbohydrates and lipids in animal tissues. • Identification of mono, di and polysaccharides in the given samples. • Demonstration of principle of paper chromatography. Department of Zoology International College for Girls ( Autonomous) SEMESTER II PAPER –I : BIOCHEMISTRY II Paper Code: ZOL 211 UNITS TOPICS Teaching Hours UNIT Proteins 12 I • Classification, structural properties. • Essential and non-essential amino acids • Transformation of amino acids:Deamination. transamination. decarboxylation. • Synthesis of enzymatic protein and urea, fate of ammonia (ornithine cycle) • Fate of carbon skeleton. UNIT II Nucleic acid and nucleotides • Structural properties and functions. 8 UNIT Nucleic Acid III • Catabolism and Biosynthesis 8 UNIT Nature of enzyme classification. IV • Co-enzymes.nd Co-factors. 10 • Inhibition (competitive, uncompetitive and noncompetitive). • Isoenzymes. • Factors contributing to catalytic efficiency. UNIT V Mineral Metabolism: • Iodine. 7 • Iron. • Calcium. • Zinc Total Teaching Hours 45 Department of Zoology International College for Girls ( Autonomous) PAPER II- ANIMAL DIVERSITY III Paper Code: ZOL 212 UNITS TOPICS Teaching Hours UNIT Arthropoda I 12 • Crustacean larval worms • Vision in Arthropods • Metamorphoses in insects • Social life, • Mouth parts • Economic importance of insects UNIT Comparative study of following in prawn, cockroach, II scorpion. Trilobites. 15 • Bloodvascular system • Reproductive system • Respiratory system • Excretion system UNIT Principles and Practices of: III • Sericulture 5 • Lac culture • Apiculture UNIT Economic Importance of Arthropoda : IV • Crustacea and larvae. 8 • Insect as parts ot human society and thier management UNIT Economic Importance of Mollusca including an outline 5 V idea of Pearl culture. Total Teaching Hours 45 Department of Zoology International College for Girls ( Autonomous) PAPER III– MOLECULAR BIOLOGY Paper Code: ZOL 213 UNITS TOPICS Teaching Hours UNIT Genes and chromosomes I • Nature of generic
Recommended publications
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Worms, Nematoda
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Progress Toward Global Eradication of Dracunculiasis — January 2012–June 2013
    Morbidity and Mortality Weekly Report Weekly / Vol. 62 / No. 42 October 25, 2013 Progress Toward Global Eradication of Dracunculiasis — January 2012–June 2013 Dracunculiasis (Guinea worm disease) is caused by water from bore-hole or hand-dug wells (6). Containment of Dracunculus medinensis, a parasitic worm. Approximately transmission,* achieved through 1) voluntary isolation of each 1 year after infection from contaminated drinking water, the patient to prevent contamination of drinking water sources, worm emerges through the skin of the infected person, usually 2) provision of first aid, 3) manual extraction of the worm, on the lower limb. Pain and secondary bacterial infection can and 4) application of occlusive bandages, complements the cause temporary or permanent disability that disrupts work four main interventions. and schooling. In 1986, the World Health Assembly (WHA) Countries enter the WHO precertification stage of eradica- called for dracunculiasis elimination (1), and the global tion after completing 1 full calendar year without reporting any Guinea Worm Eradication Program, supported by The Carter indigenous cases (i.e., one incubation period for D. medinensis). Center, World Health Organization (WHO), United Nations A case of dracunculiasis is defined as infection occurring in Children’s Fund (UNICEF), CDC, and other partners, began * Transmission from a patient with dracunculiasis is contained if all of the assisting ministries of health of dracunculiasis-endemic coun- following conditions are met: 1) the disease is detected <24 hours after worm tries in meeting this goal. At that time, an estimated 3.5 million emergence; 2) the patient has not entered any water source since the worm cases occurred each year in 20 countries in Africa and Asia emerged; 3) a volunteer has managed the patient properly, by cleaning and bandaging the lesion until the worm has been fully removed manually and by (1,2).
    [Show full text]
  • An Anatomical Description of a Miniaturized Acorn Worm (Hemichordata, Enteropneusta) with Asexual Reproduction by Paratomy
    An Anatomical Description of a Miniaturized Acorn Worm (Hemichordata, Enteropneusta) with Asexual Reproduction by Paratomy The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Worsaae, Katrine, Wolfgang Sterrer, Sabrina Kaul-Strehlow, Anders Hay-Schmidt, and Gonzalo Giribet. 2012. An anatomical description of a miniaturized acorn worm (hemichordata, enteropneusta) with asexual reproduction by paratomy. PLoS ONE 7(11): e48529. Published Version doi:10.1371/journal.pone.0048529 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11732117 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA An Anatomical Description of a Miniaturized Acorn Worm (Hemichordata, Enteropneusta) with Asexual Reproduction by Paratomy Katrine Worsaae1*, Wolfgang Sterrer2, Sabrina Kaul-Strehlow3, Anders Hay-Schmidt4, Gonzalo Giribet5 1 Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark, 2 Bermuda Natural History Museum, Flatts, Bermuda, 3 Department for Molecular Evolution and Development, University of Vienna, Vienna, Austria, 4 Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark, 5 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachussetts, United States of America Abstract The interstitial environment of marine sandy bottoms is a nutrient-rich, sheltered habitat whilst at the same time also often a turbulent, space-limited, and ecologically challenging environment dominated by meiofauna. The interstitial fauna is one of the most diverse on earth and accommodates miniaturized representatives from many macrofaunal groups as well as several exclusively meiofaunal phyla.
    [Show full text]
  • Hemichordate Phylogeny: a Molecular, and Genomic Approach By
    Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae.
    [Show full text]
  • Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean Paul Joseph Clerkin San Jose State University
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2017 Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean Paul Joseph Clerkin San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Clerkin, Paul Joseph, "Life History Aspects and Taxonomy of Deep-Sea Chondrichthyans in the Southwestern Indian Ocean" (2017). Master's Theses. 4869. DOI: https://doi.org/10.31979/etd.ms3e-x835 https://scholarworks.sjsu.edu/etd_theses/4869 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. LIFE HISTORY ASPECTS AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN A Thesis Presented to the Faculty of Moss Landing Marine Laboratories and San José State University In Partial Fulfilment of the Requirements for the Degree Master of Science by Paul J. Clerkin December 2017 © 2017 Paul J. Clerkin ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled LIFE HISTORY ASPECTS AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN by Paul J. Clerkin APPROVED FOR THE DEPARTMENT OF MARINE SCIENCE SAN JOSÉ STATE UNIVERSITY December 2017 Dr. David A. Ebert Moss Landing Marine Laboratories Dr. Scott Hamilton Moss Landing Marine Laboratories Dr. Kenneth H. Coale Moss Landing Marine Laboratories ABSTRACT ASPECTS OF THE LIFE HISTORY AND TAXONOMY OF DEEP-SEA CHONDRICHTHYANS IN THE SOUTHWESTERN INDIAN OCEAN by Paul J.
    [Show full text]
  • Bio 209 Course Title: Chordates
    BIO 209 CHORDATES NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 209 COURSE TITLE: CHORDATES 136 BIO 209 MODULE 4 MAIN COURSE CONTENTS PAGE MODULE 1 INTRODUCTION TO CHORDATES…. 1 Unit 1 General Characteristics of Chordates………… 1 Unit 2 Classification of Chordates…………………... 6 Unit 3 Hemichordata………………………………… 12 Unit 4 Urochordata………………………………….. 18 Unit 5 Cephalochordata……………………………... 26 MODULE 2 VERTEBRATE CHORDATES (I)……... 31 Unit 1 Vertebrata…………………………………….. 31 Unit 2 Gnathostomata……………………………….. 39 Unit 3 Amphibia…………………………………….. 45 Unit 4 Reptilia……………………………………….. 53 Unit 5 Aves (I)………………………………………. 66 Unit 6 Aves (II)……………………………………… 76 MODULE 3 VERTEBRATE CHORDATES (II)……. 90 Unit 1 Mammalia……………………………………. 90 Unit 2 Eutherians: Proboscidea, Sirenia, Carnivora… 100 Unit 3 Eutherians: Edentata, Artiodactyla, Cetacea… 108 Unit 4 Eutherians: Perissodactyla, Chiroptera, Insectivora…………………………………… 116 Unit 5 Eutherians: Rodentia, Lagomorpha, Primata… 124 MODULE 4 EVOLUTION, ADAPTIVE RADIATION AND ZOOGEOGRAPHY………………. 136 Unit 1 Evolution of Chordates……………………… 136 Unit 2 Adaptive Radiation of Chordates……………. 144 Unit 3 Zoogeography of the Nearctic and Neotropical Regions………………………………………. 149 Unit 4 Zoogeography of the Palaearctic and Afrotropical Regions………………………………………. 155 Unit 5 Zoogeography of the Oriental and Australasian Regions………………………………………. 160 137 BIO 209 CHORDATES COURSE GUIDE BIO 209 CHORDATES Course Team Prof. Ishaya H. Nock (Course Developer/Writer) - ABU, Zaria Prof. T. O. L. Aken’Ova (Course
    [Show full text]
  • Tunicata 4 Alberto Stolfi and Federico D
    Tunicata 4 Alberto Stolfi and Federico D. Brown Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger. A. Stolfi Department of Biology , Center for Developmental Genetics, New York University , New York , NY , USA F. D. Brown (*) EvoDevo Laboratory, Departamento de Zoologia , Instituto de Biociências, Universidade de São Paulo , São Paulo , SP , Brazil Evolutionary Developmental Biology Laboratory, Department of Biological Sciences , Universidad de los Andes , Bogotá , Colombia Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM) , Escuela Superior Politécnica del Litoral (ESPOL) , San Pedro , Santa Elena , Ecuador e-mail: [email protected] A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia 135 DOI 10.1007/978-3-7091-1856-6_4, © Springer-Verlag Wien 2015 [email protected] 136 A. Stolfi and F.D. Brown Above all , perhaps , I am indebted to a decidedly the phylogenetic relationships between the three vegetative , often beautiful , and generally obscure classes and many orders and families have yet to group of marine animals , both for their intrinsic interest and for the enjoyment I have had in search- be satisfactorily settled. Appendicularia, ing for them . N. J. Berrill (1955) Thaliacea, and Ascidiacea remain broadly used in textbooks and scientifi c literature as the three classes of tunicates; however, recent molecular INTRODUCTION phylogenies have provided support for the mono- phyly of only Appendicularia and Thaliacea, but Tunicates are a group of marine fi lter-feeding not of Ascidiacea (Swalla et al. 2000 ; animals1 that have been traditionally divided into Tsagkogeorga et al. 2009 ; Wada 1998 ). A para- three classes: (1) Appendicularia, also known as phyletic Ascidiacea calls for a reevaluation of larvaceans because their free-swimming and tunicate relationships.
    [Show full text]
  • Sharks, Skates, Rays, and Chimaeras
    SHARKS, SKATES, RAYS, AND CHIMAERAS UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 228 TABLE 1. -- tiximum sizes of camnon species of sharks Species Traditional Mucimum length Muimum length maximum size (measure<l--U. S. coa.ts) (recorde<l--world) Scientific na.rr;e from literature SixgL. st.ark .... 1 Hexanchus sp. .•..•••••••. 15 feet 5 inches 26 feet 5 inches nd hary... ..... Carcharias taurus... 10 feet 5 inches 12 feet 3 inches 15 feet 11 inches Porbeagle •....... 1 LamTUl TUlSUS........... ... 10 feet 12 feet 12 feet Sall10n shark. .... LamTUl ditropis . 8 feet 6 inches 8 feet 6 inches 12 feet L 0 .•.••.•.•.... Isurus oxyrinchus ...... ... 10 feet 6 inches 12 feet 12 feet - 13 feet 'hi te sr.ark. ..... Carcharodan carcharias. 18 feet 2 inches 21 feet 36 feet 6 inches Basking shar".... Cetorhinus maximus . 32 feet 2 inches 45 feet 40 feet - 50 feet Thresher shark... Alopias vulpinus . 18 feet 18 feet 20 feet rse shark...... Ginglymostoma cirraturn.. 9 feet 3 inches 14 feet Whale shark. ..... Rhincodan typus........ .•. 38 feet 45 feet 45 feet - 50 feet Olain dogfish.... Scyliorhinus retifer. ... .. 1 foot 5 inches 2 feet 6 inches Leopard shark.... Triakis semifasciata... 5 feet 5 feet Smooth dogfish ... Alustelus canis ......... ... 4 feet 9 inches 5 feet rieer shark...... Galeocerdo cuvieri..... ... 13 feet 10 inches 18 feet 30 feet Soupfin shark.... Galeorhinus zyopterus . .. 6 feet 5 inches 6 feet 5 inches 6 feet 5 inches Blue shark. ...... Prionace glauca ....... 11 feet 12 feet 7 inches 25 feet Bul .. shark. ...... Carcharhinus leucas. .. 9 feet 10 inches 10 feet Whi tetip shark.
    [Show full text]
  • Classification and Nomenclature of Human Parasites Lynne S
    C H A P T E R 2 0 8 Classification and Nomenclature of Human Parasites Lynne S. Garcia Although common names frequently are used to describe morphologic forms according to age, host, or nutrition, parasitic organisms, these names may represent different which often results in several names being given to the parasites in different parts of the world. To eliminate same organism. An additional problem involves alterna- these problems, a binomial system of nomenclature in tion of parasitic and free-living phases in the life cycle. which the scientific name consists of the genus and These organisms may be very different and difficult to species is used.1-3,8,12,14,17 These names generally are of recognize as belonging to the same species. Despite these Greek or Latin origin. In certain publications, the scien- difficulties, newer, more sophisticated molecular methods tific name often is followed by the name of the individual of grouping organisms often have confirmed taxonomic who originally named the parasite. The date of naming conclusions reached hundreds of years earlier by experi- also may be provided. If the name of the individual is in enced taxonomists. parentheses, it means that the person used a generic name As investigations continue in parasitic genetics, immu- no longer considered to be correct. nology, and biochemistry, the species designation will be On the basis of life histories and morphologic charac- defined more clearly. Originally, these species designa- teristics, systems of classification have been developed to tions were determined primarily by morphologic dif- indicate the relationship among the various parasite ferences, resulting in a phenotypic approach.
    [Show full text]