68 GS13 Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

68 GS13 Abstracts 68 GS13 Abstracts IP1 IP4 Approximation of Transport Processes Using Junior Scientist Award Lecture: Interpreting Geo- Eulerian-Lagrangian Techniques logical Observations Through the Analysis of Non- linear Waves Transport processes are common in geoscience applica- tions, and find their way into models of, e.g., the atmo- Geological and environmental systems are rich in examples sphere, oceans, shallow water, subsurface, seismic inver- of self-organization and pattern formation. These patterns sion, and deep earth. Our objective is to simulate transport contain information about processes as diverse as seawa- processes over very long time periods, as needed in, e.g., ter intrusion into coastal aquifers, the long-term safety of the simulation of geologic carbon sequestration. A good geological CO2 storage, and the formation of the oceanic numerical method would be locally mass conservative, pro- crust. I will discuss how important observations in these duce no or minimal over/under-shoots, produce minimal three areas can be explained by non-linear waves. This numerical diffusion, and require no CFL time-step limit for illustrates the potential of the mathematical analysis of stability. The latter would allow better use of parallel com- non-linear waves to contribute to our understanding of fun- puters, since time-stepping is essentially a serial process. damental geological phenomena and applied environmental Moreover, it would be good for the methods to be of high problems. order accuracy. Our approach is to develop locally conser- vative Eulerian-Lagrangian (or semi-Lagrangian) methods Marc A. Hesse combined with ideas from Eulerian WENO schemes, since University of Texas they have the potential to attain the desired properties. Department of Geological Sciences [email protected] Todd Arbogast Dept of Math; C1200 University of Texas, Austin IP5 [email protected] An Unstructured Grid Model Suitable for Flooding Studies with Applications to Mega-tsunamis IP2 Mega-thrust earthquakes and tsunamis cause untold de- The Spatiotemporal Dynamics of Waterborne Dis- struction. In this talk a new finite volume unstructured eases grid tsunami model is presented. The model is a finite volume analogue of the P1nc-P1 finite element, in which Dynamics of waterborne diseases in space and time is stud- mass conservation is guaranteed not only in a global sense, ied via multi-layer network models, consisting of coupled but within each cell. The model conserves momentum, and ODEs. They account for the interplay between epidemio- accurately handles flooding and drying problems. Results logical dynamics, hydrological transport and long-distance from the Indian Ocean and Japanese Tsunami compare dissemination of pathogens due to human mobility, de- well with flooding and run-up data. scribed by gravity models. Conditions for the outbreak of an epidemic are given in terms of the dominant eigen- Julie Pietrzak value of an appropriate reproduction matrix, while the ini- Faculty of Civil Engineering and Geosciences tial disease distribution is linked to the dominant eigen- Delft University of Technology vector. The theory is tested against epidemiological data [email protected] of the extensive cholera outbreaks occurred in KwaZulu- Natal (South Africa) during 2000-2001 and in Haiti during Haiyang Cui, Guus Stelling 2010-2012. Delft University of Technology [email protected], [email protected] Marino Gatto Politecnico di Milano [email protected] IP6 Data Assimilation in Global Mantle Flow Mod- els:Theory, Modelling and Uncertainties to Recon- IP3 struct Earth Structure Back in Time Career Award Lecture: Some Successes and Chal- lenges in Coastal Ocean Modeling The ability to extract the history of motion associated with large-scale geologic structures that are now imaged seismi- The coastal ocean is rich with physical and biological pro- cally in the Earth’s interior, such as plumes and subducting cesses, often occurring at vastly different scales. In this slabs, is crucial to constrain the fundamental deformation talk, we will outline some of these processes and their math- processes of mantle convection. Here we show how fluid ematical description. We will then discuss the current state dynamic inverse theory, based on a variational approach, of numerical methods for coastal ocean modeling and re- can be applied in a global circulation model of the mantle cent research into improvements to these models, focusing to project Earth structure back in time. We present the on accuracy and efficiency for high performance comput- basic theory of the forward and inverse problem, review ing. We will also highlight some of the successes of these geologic constraints, provide computational considerations models in simulating complex events, such as hurricane relevant to the global flow problem with about 1 billion storm surges. Finally, we will outline several interesting finite elements, and discuss uncertainties. The latter re- challenges which are ripe for future research. strict the problem in practice, as our knowledge of deep Earth structure and its interpretation in terms of dynam- Clint Dawson ically relevant buoyancy anomalies is necessarily limited. Institute for Computational Engineering and Sciences University of Texas at Austin [email protected] Hans-Peter Bunge Department of Earth and Environmental Sciences, LMU GS13 Abstracts 69 Munich DMMMSA [email protected] University of Padova [email protected] IP7 Carlo Janna, Massimiliano Ferronato Data Assimilation and Inverse Modeling in Earth Dept. ICEA - University of Padova System Sciences [email protected], [email protected] Physical theories in the Earth System sciences are designed to explain and possibly predict natural phenomena. Both, CP1 the explanation and prediction necessarily include a quan- Coupled Geomechanics and Flow for Unstructured titative representation of the natural system state. Quan- Naturally Fractured Reservoir Models titative assessment of the actual, true, state is fundamen- tally achievable only by measurements. The theories and We consider unstructured reservoir models composed of models based on them are consequently designed to ex- a deformable saturated matrix and a network of natural plain and predict the measurements. A synergy of the fractures. A finite-volume method is used for the flow. models and measurements is necessary for achieving such Galerkin finite elements are used to discretize the poro- goal. Methodology of data assimilation and inverse model- elasto-plasticity equations. We account for normal and ing provides objective means for that purpose. An overview shear stresses on the fracture surfaces. The correspond- of the currently used methodology will be presented, in- ing nonlinear coupled equations are solved using either cluding examples of application in atmospheric sciences in the sequential-implicit fixed-stress approach, or the fully- domain of cloud analysis and modeling and tropical cyclone implicit method. The framework is demonstrated using modeling and prediction. several test cases with discrete fracture models. Tomislava Vukicevic Timur T. Garipov NOAA Department of Energy Resources Engineering, AOML Hurricane Research Division, Miami Stanford University [email protected] [email protected] IP8 Hamdi Tchelepi Stanford University Efficient Numerical Numerical Computation of Energy Resources Engineering Department Multi-Phase Flow in Porous Media [email protected] Appropriate models, accurate discretization schemes and efficient solvers for the arising linear systems are the ba- CP1 sis for any numerical simulation. In this talk I will address these aspects by first considering a model for compositional Mechanics of Fluid Injection into Deformable two-phase flow with equilibrium phase exchange that is Porous Materials able to handle phase appearance/disapperance properly. Poroelasticity, where the mechanical deformation of a Then a new fully-coupled discontinuous Galerkin scheme porous solid is coupled to internal fluid flow, has been for two-phase flow with heterogeneous capillary pressure studied intensely in geophysics in the context of pressure will be presented. The third part of the talk is devoted to buildup during fluid injection, such as in carbon seques- the efficient solution of the arising linear systems by means tration or enhanced oil recovery. Here, we develop a novel of algebraic multigrid methods. All numerical schemes experimental system that allows us to visualize and quan- have been implemented in the Distributed and Unified Nu- tify the dynamic, flow-driven deformation of a quasi-two- merics Environment and have been scaled up to 300000 dimensional poroelastic material. We use it to study the cores. This is joint work with Olaf Ippisch and Rebecca coupling between fluid injection and mechanical deforma- Neumann. tion patterns. Peter Bastian Christopher W. MacMinn Interdisciplinary Center for Scientific Computing MIT University of Heidelberg Mechanical Engineering [email protected] [email protected] CP1 Eric Dufresne A Mixed and Galerkin Finite Element Formulation Yale University for Coupled Poroelasticity New Haven, CT, USA [email protected] The numerical treatment of coupled poroelasticity is a de- manding task because of the instabilities affecting the pore John S. Wettlaufer pressure solution. A combination of Mixed and Galerkin Yale University Finite Element methods is employed to obtain stable nu- [email protected] merical
Recommended publications
  • The Kingdom of Tonga Devastated by a Megatsunami in the Mid-15Th Century
    EGU21-5317, updated on 25 Sep 2021 https://doi.org/10.5194/egusphere-egu21-5317 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The kingdom of Tonga devastated by a megatsunami in the mid-15th century Franck Lavigne1,2,3, Julie Morin4, Wassmer Patrick2, Weller Olivier5, Kula Taaniela6, Ana V. Maea6, Karim Kelfoun7, Fatima Mokadem2, Raphael Paris7, Mukhamad N. Malawani1,2,8, Faral Audrey1,2, Mhammed Benbakkar7, Ségolène Saulnier-Copard2, Céline M. Vidal4, Tu’I’ahai Tu’I’afitu6, Gomez Christopher9, and Fuka Kitekei’aho10 1Paris 1 Pantheon-Sorbonne University, ([email protected]) 2Laboratory of Physical Geography, UMR 8591 CNRS, Meudon, France 3Institut Universitaire de France, Paris, France 4Department of Geography, University of Cambridge, Cambridge, UK 5Trajectoires, UMR 8215 CNRS, Paris, France 6Ministry of Land and Natural Resources, Natural Resources Division, Nuku'alofa, Kingdom of Tonga 7Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, France 8Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia 9Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Japan 10Geocare & Petroleum Consult Ltd, Nuku'alofa, Kingdom of Tonga The pre-colonial history of Tonga and West Polynesia still suffers from major gaps because its reconstruction is essentially based on legends left by oral tradition, and by archaeological evidence somehow difficult to interpret. By the fourteenth century, the powerful Tu'i Tonga kingdom united the islands of the Tongan archipelago under a centralised authority and, according to tradition, extended its influence to neighbouring island groups in the Central Pacific. However, some periods of deep crisis were identified, e.g.
    [Show full text]
  • Literature Review of Tsunami Sources Affecting Tsunami Hazard Along the US East Coast
    Literature review of tsunami sources affecting tsunami hazard along the US East Coast Department of Ocean Engineering, University of Rhode Island Narragansett, USA Feb. 21, 2011 1 TABLE OF CONTENTS 1. BACKGROUND ...................................................................................................................... 3 2. LITERATURE REVIEW OF RELEVANT TSUNAMI SOURCES .................................... 5 2.1 Submarine Mass Failures ........................................................................................................ 5 2.2 Co-seismic tsunamis .................................................................................................................. 8 2.2.1 Review of literature on Caribbean subduction zone ............................................................. 8 2.2.2 NOAA Forecast Source Database for Caribbean subduction zone ............................... 16 2.2.3 Azores-Gibraltar convergence zone .......................................................................................... 17 2.3 Cumbre Vieja Volcano flanK collapse ............................................................................... 21 3. INITIAL SOURCE DEFINITIONS AND TSUNAMI SIMULATIONS .......................... 24 3.1 Modeling methodology .......................................................................................................... 24 3.1.1 Initial conditions for model .......................................................................................................... 24 3.1.2 Co-seismic sources
    [Show full text]
  • Bildnachweis
    Bildnachweis Im Bildnachweis verwendete Abkürzungen: With permission from the Geological Society of Ame- rica l – links; m – Mitte; o – oben; r – rechts; u – unten 4.65; 6.52; 6.183; 8.7 Bilder ohne Nachweisangaben stammen vom Autor. Die Autoren der Bildquellen werden in den Bildunterschriften With permission from the Society for Sedimentary genannt; die bibliographischen Angaben sind in der Literaturlis- Geology (SEPM) te aufgeführt. Viele Autoren/Autorinnen und Verlage/Institutio- 6.2ul; 6.14; 6.16 nen haben ihre Einwilligung zur Reproduktion von Abbildungen gegeben. Dafür sei hier herzlich gedankt. Für die nachfolgend With permission from the American Association for aufgeführten Abbildungen haben ihre Zustimmung gegeben: the Advancement of Science (AAAS) Box Eisbohrkerne Dr; 2.8l; 2.8r; 2.13u; 2.29; 2.38l; Box Die With permission from Elsevier Hockey-Stick-Diskussion B; 4.65l; 4.53; 4.88mr; Box Tuning 2.64; 3.5; 4.6; 4.9; 4.16l; 4.22ol; 4.23; 4.40o; 4.40u; 4.50; E; 5.21l; 5.49; 5.57; 5.58u; 5.61; 5.64l; 5.64r; 5.68; 5.86; 4.70ul; 4.70ur; 4.86; 4.88ul; Box Tuning A; 4.95; 4.96; 4.97; 5.99; 5.100l; 5.100r; 5.118; 5.119; 5.123; 5.125; 5.141; 5.158r; 4.98; 5.12; 5.14r; 5.23ol; 5.24l; 5.24r; 5.25; 5.54r; 5.55; 5.56; 5.167l; 5.167r; 5.177m; 5.177u; 5.180; 6.43r; 6.86; 6.99l; 6.99r; 5.65; 5.67; 5.70; 5.71o; 5.71ul; 5.71um; 5.72; 5.73; 5.77l; 5.79o; 6.144; 6.145; 6.148; 6.149; 6.160; 6.162; 7.18; 7.19u; 7.38; 5.80; 5.82; 5.88; 5.94; 5.94ul; 5.95; 5.108l; 5.111l; 5.116; 5.117; 7.40ur; 8.19; 9.9; 9.16; 9.17; 10.8 5.126; 5.128u; 5.147o; 5.147u;
    [Show full text]
  • Storm, Rogue Wave, Or Tsunami Origin for Megaclast Deposits in Western
    Storm, rogue wave, or tsunami origin for megaclast PNAS PLUS deposits in western Ireland and North Island, New Zealand? John F. Deweya,1 and Paul D. Ryanb,1 aUniversity College, University of Oxford, Oxford OX1 4BH, United Kingdom; and bSchool of Natural Science, Earth and Ocean Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland Contributed by John F. Dewey, October 15, 2017 (sent for review July 26, 2017; reviewed by Sarah Boulton and James Goff) The origins of boulderite deposits are investigated with reference wavelength (100–200 m), traveling from 10 kph to 90 kph, with to the present-day foreshore of Annagh Head, NW Ireland, and the multiple back and forth actions in a short space and brief timeframe. Lower Miocene Matheson Formation, New Zealand, to resolve Momentum of laterally displaced water masses may be a contributing disputes on their origin and to contrast and compare the deposits factor in increasing speed, plucking power, and run-up for tsunamis of tsunamis and storms. Field data indicate that the Matheson generated by earthquakes with a horizontal component of displace- Formation, which contains boulders in excess of 140 tonnes, was ment (5), for lateral volcanic megablasts, or by the lateral movement produced by a 12- to 13-m-high tsunami with a period in the order of submarine slide sheets. In storm waves, momentum is always im- of 1 h. The origin of the boulders at Annagh Head, which exceed portant(1cubicmeterofseawaterweighsjustover1tonne)in 50 tonnes, is disputed. We combine oceanographic, historical, throwing walls of water continually at a coastline.
    [Show full text]
  • Review of Fluid Structure Interaction Methods Application to Floating Wave Energy Converter
    International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/IJFMS.2018.11.1.063 Vol. 11, No. 1, January-March 2018 ISSN (Online): 1882-9554 Original Paper Review of Fluid Structure Interaction Methods Application to Floating Wave Energy Converter Mohammed Asid Zullah1, Young-Ho Lee2 1Geoscience, Energy and Maritime Division, Pacific Community, Private Mail Bag, Suva, Fiji, [email protected] 2Division of Mechanical Engineering, College of Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, South Korea, [email protected] Abstract Computational fluid dynamics (CFD) is a highly efficient paradigm that is used extensively in marine renewable energy research studies and commercial applications. The CFD paradigm is ideal for simulating the complex dynamics of Fluid-Structure Interactions (FSI) and can capture all kinds of nonlinear fluid motions. While nonlinear simulations are considered more expensive and resource intensive compared to the frequency domain approaches, they are much more accurate and ideal for commercial applications. This review study presents a comprehensive overview of the computation fluid dynamics paradigm in context of wave energy converter (WEC) and highlights different CFD tools that are available today for commercial and research applications. State-of-the-art CFD codes such as ANSYS CFX that are highly ideal for WEC simulation problems are highlighted and aspects such as time and frequency domains are also thoroughly discussed along with efficacy of the nonlinear simulations compared to the linear models. The paper presents a comparative evaluation of different WEC modelling codes available today and illustrates the code framework of different CFD simulation software suites.
    [Show full text]
  • PRACE Scientific and Industrial Conference 2015 I Enable Science Foster Industry TABLE of CONTENTS
    PRACE Scientific and Industrial Conference 2015 I Enable Science Foster Industry TABLE OF CONTENTS Welcome 02 Committees 04 General Information 05 Useful Information 06 Maps & Hotels 07 Keynotes Tuesday 26 May 2015 09 Keynotes Wednesday 27 May 2015 02 Parallel Session Wednesday 27 May 2015 16 ERC Projects 16 Computational Dynamics 19 Hot Lattice Chromodynamics 22 Molecular Dynamics 24 HPC in Industry in Ireland 27 HPC in Industry 29 Programme 31 PRACE User Forum 34 Keynotes Thursday 28 May 2015 35 Posters 39 Satellite Events 55 Women in HPC 55 Exascale 57 EESI2 61 Notes 62 PRACE Scientific and Industrial Conference 2015 I Enable Science Foster Industry WELCOME Dear Participant, It is a great pleasure for us to welcome you to the PRACE Scientific and Industrial Conference 2015 - the second edition of PRACEdays – which is hosted by PRACE and the Irish Centre for High-End Computing (ICHEC) under the motto: Enable Science Foster Industry What better country than Ireland, the thriving digital hub of Europe and the academic home to the father of computing, George Boole, to host the PRACE Scientific and Industrial conference! The Irish Centre for High-End Computing (ICHEC) is proud to welcome this high-level scientific and industrial conference at Dublin’s world- renowned Aviva Stadium. Participants at PRACEdays15 will enjoy the unique combination of Dublin’s legendary ‘céad mile fáilte’, as well as world-class science and research. With two satellite events focussing on Exascale European projects and on Women in HPC, an open session of the PRACE User Forum, the bi-annual meetings of the PRACE Industrial Advisory Committee and the PRACE Scientific Steering Committee, and the EESI2 conference held back to back with the conference, PRACEdays15 has grown already beyond the expectations set in 2014.
    [Show full text]
  • An Open Source Engineering Platform
    CAELinux : an open source engineering platform Joël Cugnoni, www.caelinux.com Joël Cugnoni, www.caelinux.com 19.02.2015 1 What is CAELinux ? A CAE workstation on a disk CAELinux in brief CAELinux is a « Live» Linux distribution pre-packaged with the main open source Computer Aided Engineering software available today. CAELinux is free and open source, for all usage, even commercial (*) It is based on Ubuntu LTS (12.04 64bit for CAELinux 2013) It covers all phases of product development: from mathematics, CAD, stress / thermal / fluid analysis, electronics to CAM and 3D printing How to use CAELinux: Boot : Installation Complete Live Trial, on your workstation satisfied? computer ready for use ! Or CAELinux virtual Machine Running a server in Amazon EC2 installation in OSX, Windows cloud computing (on demand, charge or other Linux per hour) Joël Cugnoni, www.caelinux.com (* except for Tetgen mesher) CAELinux: History and present Past and present: CAELinux started in 2005 as a personal project for my own use Motivation was to promote the use of scientific open source software in engineering by avoiding the complexities of code compilation and configuration. And also, I wanted to have a reference installation of Code- Aster and Salome that I could install for my own use. Until now, 11 versions have been released in ~9 years. One release per year (except 2014). Today, the latest version, CAELinux 2013, has reached 63’000 downloads in 1 year on sourceforge.net. CAELinux is used for teaching in universities, in SME’s for analysis and by many occasional users, hobbyists, hackers and Linux enthusiasts.
    [Show full text]
  • Advances in the Study of Mega-Tsunamis in the Geological Record Raphael Paris, Kazuhisa Goto, James Goff, Hideaki Yanagisawa
    Advances in the study of mega-tsunamis in the geological record Raphael Paris, Kazuhisa Goto, James Goff, Hideaki Yanagisawa To cite this version: Raphael Paris, Kazuhisa Goto, James Goff, Hideaki Yanagisawa. Advances in the study of mega-tsunamis in the geological record. Earth-Science Reviews, Elsevier, 2020, 210, pp.103381. 10.1016/j.earscirev.2020.103381. hal-02964184 HAL Id: hal-02964184 https://hal.uca.fr/hal-02964184 Submitted on 12 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Advances in the study of mega-tsunamis in the geological record 2 3 Raphaël Paris1, Kazuhisa Goto2, James Goff3, Hideaki Yanagisawa4 4 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont- 5 Ferrand, France. 6 2 Department of Earth and Planetary Science, The University of Tokyo, Hongo 7-3-1, Tokyo, Japan. 7 3 PANGEA Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia. 8 4 Department of Regional Management, Tohoku Gakuin University, Tenjinsawa 2‑ 1‑ 1, Sendai, Japan. 9 10 Abstract 11 Extreme geophysical events such as asteroid impacts and giant landslides can generate mega- 12 tsunamis with wave heights considerably higher than those observed for other forms of 13 tsunamis.
    [Show full text]
  • Creation Matters Volume 21 Number 1
    Creation Matters Volume 21 Number 1 A publication of the Creation Research Society January / February 2016 (See page 2 for a report from the conference committee.) Scenes from the Now Available in the CRS Bookstore Earth’s Mysterious Magnetism and that of other celestial orbs by Russell Humphreys and Mark De Spain 2015, CRS Books (e-book, 177 pages estimated) Regular price $4.99 r. Humphreys has published widely on the subject of the D magnetism of the Earth and other solar system bodies. Now, all that information has been gathered together into one, generally easy-to-follow, color e-book. The authors have included basic information on magnetism, as well as the decreasing magnetic field of the Earth. Humphreys’ early predictions concerning the magnetic fields of other solar system bodies are summarized as well. Because the decaying field suggests a young Earth, secular scientists have invented the dynamo theory, which is supposed to have powered its magnetic field for billions of years. However, Humphreys has demonstrated this model to be untenable. This book also shows that magnetic field reversals, which have been inferred from the paleomagnetism of the rocks, can be explained by the dynamics of Noah’s Flood. With more than 55 illustrations and a helpful glossary, the book is colorfully and generously illustrated, having been written to the level of the college student and educated layman. The topic is masterfully covered without the use of mathematical equations! Available in Mobi (Kindle), Epub, and PDF formats. Note: A paperback edition is expected to be available in 2016. by the Conference Committee* humans have one less chro- n August, the Creation Research mosome pair than do chimpanzees, evo- Society held a well-attended science lutionists have suggested that, as humans conference, the fifth such gathering evolved from their primate ancestors, hu- I Plenary sessions man chromosome 2 was formed by the the Society has organized since 2009.
    [Show full text]
  • The Scientific and Societal Case for the Integration of Environmental Sensors Into New Submarine Telecommunication Cables I
    Previous reports in the series include Using submarine cables for climate monitoring and disaster warning - Engineering feasibility study Using submarine cables for climate monitoring and disaster warning - Strategy and roadmap The scientific and societal Using submarine cables for climate monitoring and disaster warning - Opportunities and legal challenges case for the integration of environmental sensors into new submarine telecommunication cables ISBN: 978-92-61-15201-7 October 2014 9 7 8 9 2 6 1 1 5 2 0 1 7 Price: 42 CHF About ITU/UNESCO-IOC/WMO Joint Task Force on Green Cables: itu.int/go/ITU-T/greencable/ Printed in Switzerland Geneva, 2014 E-mail: [email protected] Photo credits: Shutterstock® Acknowledgments This report was developed by the Science and Society Committee of the ITU/UNESCO-IOC/WMO Joint Task Force on Green Cables (JTF), under the leadership of Rhett Butler (Chair). This report was researched and written by Rhett Butler (USA), Elizabeth Cochran (USA), John Collins (USA), Marie Eblé (USA), John Evans (USA), Paolo Favali (Italy), Doug Given (USA), Ken Gledhill (New Zealand), Begoña Pérez Gómez (Spain), Kenji Hirata (Japan), Bruce Howe (USA), Doug Luther (USA), Christian Meinig (USA), David Meldrum (UK), John Orcutt (USA), Wahyu Pandoe (Indonesia), Johan Robertsson (Switzerland), Hanne Sagen (Norway), Tom Sanford (USA), Uri ten Brink (USA), Richard Thomson (Canada), Stefano Tinti (Italy), Vasily Titov (USA) and John Yuzhu You (Australia). The authors also wish to extend their gratitude to Thorkild Aarup (UNESCO/IOC), Jérôme Aucan (New Caledonia), Christopher Barnes (Canada), Laura Beranzoli (Italy), Kent Bressie (USA), Nigel Bayliff (UK), Francesco Chierici (Italy), Michael Costin (Australia), Antoine Lecroart (France), Yoshiki Yamazaki (USA) and Nevio Zitellini (Italy) for their contributions.
    [Show full text]
  • 1. Wind Driven 2. Rogue 3. Tsunami 4.Tidal 5. Underwater Or Undersea
    WAVES We will discuss 5 different kinds of waves: 1. Wind driven 2. Rogue 3. Tsunami 4.Tidal 5. Underwater or undersea Waves are important to people since the have an impact on life in the ocean, travel on the ocean and land near the ocean. So we need to look at some of the different types of waves and how they have an impact on things. WIND DRIVEN WAVES While there are many kinds of motions in the ocean, probably the most obvious are the waves. We need a way to discuss waves, so first we need to see how they are measured Waves are measured in specific ways There are many kinds of waves as well. Most of the waves are called “wind driven waves”. These waves are caused by two fluids of different densities moving across one another. In this case one is air the other is water. (You can notice this on a small scale if you blow across a cup of water, or coffee. When you try to cool the liquid and blow across the surface you will notice small “ripples” forming. It is the same principle.) As the wind blows across the water, it sets small “capillary” waves in motion. These are often called “ripples”. (The surface tension of the water, works to end them) These ripples give greater surface area for the wind to blow against and the waves become larger. (These are called “gravity waves” because the force of gravity works to pull them back down to a level ocean.) The area where wind driven waves are created are called “seas”.
    [Show full text]
  • Chapter 3. GEOLOGIC EFFECTS and RECORDS of TSUNAMIS
    Published in: Robinson, A.R. and Bernard, E.N., eds., The Sea, Volume 15: Tsunamis Harvard University Press, 2009, p. 53-91 Chapter 3. GEOLOGIC EFFECTS AND RECORDS OF TSUNAMIS JOANNE BOURGEOIS Department of Earth & Space Sciences University of Washington 5 March 2008 edition Contents 1. Introduction 2. Historical Review 3. Tsunami Deposits 4. Other Themes in Tsunami Geology 5. Recent Directions in Tsunami Geology and Sedimentology 1. Introduction Nor should we omit to mention the havoc committed on low coasts, during earthquakes, by waves of the sea which roll in upon the land, bearing everything before them, for many miles into the interior throwing down upon the surface great heaps of sand and rock, by which the remains of drowned animals may be overwhelmed. Charles Lyell, 1832 Those of us working on tsunami traces in the 1980s were commonly doubted because some tsunami scientists argued that tsunamis did not leave deposits, and many geologists were skeptical. However, it is clear from the reports of several pre-1980s surveys that tsunamis eroded and deposited not only sand, but also large boulders and coral debris. Moreover, photographs of tsunamis in progress show turbidity--for example, in a well-known 1957 photo series from Oahu, turbidity clearly develops in the nearshore as the tsunami arrives from the Aleutians. Since the 1990s, and certainly since 2004, there is no doubt that tsunamis erode and deposit sediment (Figure 3.1). Relative to other aspects of tsunami science, the study of the geologic record of tsunamis is immature. Only since the mid- to late 1980s has extensive work been done, and 1992 is the first year when there were more than 10 papers published (Figure 3.2).
    [Show full text]