Erosional Response of Granular Material in Landscape Models Riccardo Reitano1, Claudio Faccenna1,2, Francesca Funiciello1, Fabio Corbi1,3,4, Sean D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tectonic Control on 10Be-Derived Erosion Rates in the Garhwal Himalaya, India Dirk Scherler,1,2 Bodo Bookhagen,3 and Manfred R
JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE, VOL. 119, 1–23, doi:10.1002/2013JF002955, 2014 Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India Dirk Scherler,1,2 Bodo Bookhagen,3 and Manfred R. Strecker 1 Received 28 August 2013; revised 13 November 2013; accepted 26 November 2013. [1] Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 10Be-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, 1 northern India. Tributary erosion rates range between ~0.1 and 0.5 mm yrÀ in the Lesser 1 Himalaya and ~1 and 2 mm yrÀ in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. -
Channel Morphology and Bedrock River Incision: Theory, Experiments, and Application to the Eastern Himalaya
Channel morphology and bedrock river incision: Theory, experiments, and application to the eastern Himalaya Noah J. Finnegan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2007 Program Authorized to Offer Degree: Department of Earth and Space Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Noah J. Finnegan and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of the Supervisory Committee: ___________________________________________________________ Bernard Hallet ___________________________________________________________ David R. Montgomery Reading Committee: ____________________________________________________________ Bernard Hallet ____________________________________________________________ David R. Montgomery ____________________________________________________________ Gerard Roe Date:________________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred -
Taters Versus Sliders: Evidence for A
Member Recognition Issue VOL. 31, NO. 7 | J U LY 2 021 ’Taters versus Sliders: Evidence for a Long-Lived History of Strike-Slip Displacement along the Canadian Arctic Transform System (CATS) EXPAND YOUR LIBRARY with GSA E-books The GSA Store offers hundreds of e-books, most of which are only $9.99. These include: • popular field guides and maps; Special Paper 413 • out-of-print books on prominent topics; and Earth and • discontinued series, such as Engineering How GeologistsMind: Think Geology Case Histories, Reviews in and Learn about the Earth Engineering Geology, and the Decade of North American Geology. Each book is available as a PDF, including plates and supplemental material. Popular topics include ophiolites, the Hell Creek Formation, mass extinctions, and plates and plumes. edited by Cathryn A. Manduca and David W. Mogk Shop now at https://rock.geosociety.org/store/. JULY 2021 | VOLUME 31, NUMBER 7 SCIENCE 4 ’Taters versus Sliders: Evidence for a Long- Lived History of Strike Slip Displacement along the Canadian Arctic Transform System (CATS) GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 22,000 GSA member readers William C. McClelland et al. and subscribing libraries, with 11 monthly issues (March- April is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at Cover: Geologists studying structures along the Petersen Bay 3300 Penrose Place, Boulder, Colorado, USA, and a mail- fault, a segment of the Canadian Arctic transform system (CATS), ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. -
Climate, Tectonics, and the Morphology of the Andes
Climate, tectonics, and the morphology of the Andes David R. Montgomery Greg Balco Sean D. Willett Department of Geological Sciences, University of Washington, Seattle 98195-1310, USA ABSTRACT Large-scale topographic analyses show that hemisphere-scale climate variations are a ®rst-order control on the morphology of the Andes. Zonal atmospheric circulation in the Southern Hemisphere creates strong latitudinal precipitation gradients that, when incor- porated in a generalized index of erosion intensity, predict strong gradients in erosion rates both along and across the Andes. Cross-range asymmetry, width, hypsometry, and maximum elevation re¯ect gradients in both the erosion index and the relative dominance of ¯uvial, glacial, and tectonic processes, and show that major morphologic features cor- relate with climatic regimes. Latitudinal gradients in inferred crustal thickening and struc- tural shortening correspond to variations in predicted erosion potential, indicating that, like tectonics, nonuniform erosion due to large-scale climate patterns is a ®rst-order con- trol on the topographic evolution of the Andes. Keywords: geomorphology, erosion, tectonics, climate, Andes. INTRODUCTION we argue for the ®rst-order importance of earthquake cycle. Some studies have attribut- The presence or absence of mountain rang- large-scale climate zonations and resulting dif- ed local variations in structural, metamorphic, es at the global scale is determined by the lo- ferences in geomorphic processes to the mor- and geomorphic characteristics of the central cation and type of plate boundaries. Other fac- phology of mountain ranges. Andes to erosion (Gephart, 1994; Masek et al., tors become important in the evolution of 1994; Horton, 1999), but none has considered individual mountain systems. -
Extension Rates Impact on Endorheic Drainage Longevity and Regional Sediment Discharge
Extension rates impact on endorheic drainage longevity and regional sediment discharge Michael A. Berry1 Jolante van Wijk1, Daniel García-Castellanos2, Daniel Cadol1, Erica Emry1 1- New Mexico Tech; Socorro, NM 2- Instituto de Ciencias de la Tierra Jaume Almera (ICTJA-CSIC), Barcelona, Spain Tectonic and climate drivers exert co-equal forces on the evolution of tectonic sedimen- tary basins. The Rio Grande rift and its drainages provide a backdrop for discussing which drivers drive the transition from endorheic or closed drainage basins to exorheic or open, through-going drainage basins, with both climatic and tectonic drivers being pro- posed by researchers. With a dearth of regional scale extensional landscape modeling studies to draw from, we explore the impact of tectonic extension on endorheic-exorheic transitions and regional sediment and water discharge in both a “dry” and “wet” runoff regimes. We show that holding climate-induced runoff constant, that greater extensional rates correspond to a longer period of sedimentation capture, tectonically induced gradi- ents significantly increases sedimentation long after tectonic activity has terminated, and that developing an endorheic basin is very difficult in high runoff regimes. Implementation of FastScape into reusable software components Benoît Bovy (1) and Jean Braun (1) (1) GFZ Potsdam, Germany We present ongoing work on the development of open-source software around FastScape, a name used to designate a set of efficient algorithms for solving common problems in landscape evolution modelling. The software suite is divided into components that can be reused in many different contexts including experi- mentation, model coupling and direct integration within various scientific software ecosystems. -
Deep Groundwater and Potential Subsurface Habitats Beneath an Antarctic Dry Valley
ARTICLE Received 21 May 2014 | Accepted 2 Mar 2015 | Published 28 Apr 2015 DOI: 10.1038/ncomms7831 OPEN Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley J.A. Mikucki1, E. Auken2, S. Tulaczyk3, R.A. Virginia4, C. Schamper5, K.I. Sørensen2, P.T. Doran6, H. Dugan7 & N. Foley3 The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional- scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (B350 m). 1 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA. 2 Department of Geosciences, Aarhus University, Aarhus 8000, Denmark. 3 Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064, USA. 4 Environmental Studies Program, Dartmouth College, Hanover, New Hampshire 03755, USA. 5 Sorbonne Universite´s, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, Paris 75252, France. -
Tectonics and Seismicity of the Southern Washington Cascade Range
Bulletin of the Seismological Society of America, Vol. 86, No. 1A, pp. 1-18, February 1996 Tectonics and Seismicity of the Southern Washington Cascade Range by W. D. Stanley, S. Y. Johnson, A. I. Qamar, C. S. Weaver, and J. M. Williams Abstract Geophysical, geological, and seismicity data are combined to develop a transpressional strain model for the southern Washington Cascades region. We use this model to explain oblique fold and fault systems, transverse faults, and a linear seismic zone just west of Mt. Rainier known as the western Rainier zone. We also attempt to explain a concentration of earthquakes that connects the northwest-trend- ing Mount St. Helens seismic zone to the north-trending western Rainier zone. Our tectonic model illustrates the pervasive effects of accretionary processes, combined with subsequent transpressive forces generated by oblique subduction, on Eocene to present crustal processes, such as seismicity and volcanism. Introduction The southern Washington Cascades contains Mt. Rain- Geology of Western Washington ier, the most massive of the volcanoes in the Cascade Range magmatic arc (Fig. 1). Mr. Rainier is part of the triangle of The Puget Sound region and the western flank of the large stratovolcanoes in southem Washington that includes Cascade Range in southwestern Washington occupy a com- Mount St. Helens and Mt. Adams. Mount St. Helens expe- plex tectonic setting along the margin of two distinct crustal rienced a cataclysmic eruption in 1980 and is apparently blocks. Crust in the eastern block beneath the southwest younger than Mt. Rainier and Mt. Adams, both of which Washington Cascades is composed of Mesozoic and older exhibit more rounded profiles than the pointed, pre-1980 accreted terranes, volcanic arcs, and underplated magmatic Mount St. -
DEPARTMENT of ENVIRONMENTAL ENGINEERING and EARTH SCIENCES Department of Environmental Engineering and Earth Sciences Chairperson: Dr
DEPARTMENT OF ENVIRONMENTAL ENGINEERING AND EARTH SCIENCES Department of Environmental Engineering and Earth Sciences Chairperson: Dr. Marleen Troy Faculty Professors: Murthy, Troy, Whitman Associate Professors: Frederick Assistant Professor: Finkenbinder, Karimi, Karnae Lecturers: Kaster, McMonagle Laboratory Manager: McMonagle Office Assistant: Garrison The Department of Environmental Engineering and Earth Sciences (EEES) offers the following degree programs: the B.S. in Civil Engineering, the B.S. in Environmental Engineering; the B.S. in Environmental Science; the B.S. in Geology; and the B.A. in Earth and Environmental Science. EEES envisions future accreditation of the Civil Engineering program by EAC-ABET. The Environmental Engineering program is accredited by the EAC-ABET. The engineering programs incorporate a strong background in the fundamentals of engineering with a blend of science and advanced engineering courses. The Environmental Science program combines a foundation in the related sciences and primary earth reservoirs (water, land, air, and life) with concentrations in either Earth Science or Biology. The Geology program provides a comprehensive curriculum that includes the fundamentals of geology with courses responsive to the needs of industrial employment sectors. The Geology program meets the academic requirements for Pennsylvania State professional licensure. All EEES programs emphasize the value of integrative learning in the classroom, laboratory and field. Modern laboratories are well-equipped to support a wide range of courses and research experiences. Easy access to exceptional off-campus sites provides training in field methods that augment the curricula. A dedicated computer laboratory for geospatial technology (Geographic Information System, Global Positioning System, Remote Sensing) supports all EEES programs and research/project activities in the science and engineering fields. -
September Gsat 03
AL SOCIET IC Y G O O F L A O M E E G R I E C H A T GROUNDWORK Furthering the Influence of Earth Science The state of interactions among tectonics, erosion, and climate: A polemic Peter Molnar, Dept. of Geological Sciences, Cooperative what “controlled” the change in those quantities, or what Institute for Research in Environmental Sciences (CIRES), “drove” them. The occurrence of change, external to “equation University of Colorado, Boulder, Colorado 80309-0399, (1),” transforms questions that concern drivers or controls from USA; [email protected] being ill posed to well posed. In the earth sciences, perhaps no concept illustrates better a state of quasi-equilibrium than isostasy. Isostasy is not a pro- Since Dahlen and Suppe (1988) showed that erosion can cess; it exists. On short time scales (thousands of years), vis- affect the tectonics of the region undergoing that erosion, cous deformation can retard the inexorable trend toward geodynamicists, tectonic geologists, and geomorphologists isostatic equilibrium, as is illustrated well by the rebound fol- have joined in an effort to unravel the interrelationships lowing the melting of Pleistocene ice sheets. Thus, on such among not only erosion and tectonics but also climate, which time scales, one might understand pressure differences in the affects erosion and is affected by tectonics. The fruits of this asthenosphere as “driving” the overlying lithosphere and sur- effort grow continually, as shown in part by the attraction that faces of Canada or Fennoscandia upward. On longer geologic this subject has for students and young scientists. Yet, it seems time scales, however, isostasy is maintained as a state of equi- to me that progress has been limited by a misconception that librium; like the perfect gas law, “isostasy,” therefore, does not has stimulated this polemic. -
Growth and Erosion of Fold-And-Thrust Belts with an Application to the Aconcagua Fold-And-Thrust Belt, Argentina G
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B01410, doi:10.1029/2002JB002282, 2004 Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina G. E. Hilley1 and M. R. Strecker Institut fu¨r Geowissenschaften, Universita¨t Potsdam, Potsdam, Germany V. A. Ramos Department de Geologia, Universidad de Buenos Aires, Buenos Aires, Argentina Received 1 November 2002; revised 26 August 2003; accepted 11 September 2003; published 23 January 2004. [1] The development of topography within and erosional removal of material from an orogen exerts a primary control on its structure. We develop a model that describes the temporal development of a frontally accreting, critically growing Coulomb wedge whose topography is largely limited by bedrock fluvial incision. We present general results for arbitrary initial critical wedge geometries and investigate the temporal development of a critical wedge with no initial topography. Increasing rock erodibility and/or precipitation, decreasing mass flux accreting to the wedge front, increasing wedge sole-out depth, decreasing wedge and basal decollement overpressure, and increasing basal decollement friction lead to narrow wedges. Large power law exponent values cause the wedge geometry to quickly reach a condition in which all material accreted to the front of the wedge is removed by erosion. We apply our model to the Aconcagua fold-and-thrust belt in the central Andes of Argentina where wedge development over time is well constrained. We solve for the erosional coefficient K that is required to recreate the field-constrained wedge growth history, and these values are within the range of independently determined values in analogous rock types. -
Future Volcanism at Yellowstone Caldera: Insights from Geochemistry of Young Volcanic Units and Monitoring of Volcanic Unrest
2012 Annual Meeting & Exposition Issue! SEPTEMBER 2012 | VOL. 22, NO. 9 A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® Future volcanism at Yellowstone caldera: Insights from geochemistry of young volcanic units and monitoring of volcanic unrest Inside: Preliminary Announcement and Call for Papers: 2013 GSA Northeastern Section Meeting, p. 38 Preliminary Announcement and Call for Papers: 2013 GSA Southeastern Section Meeting, p. 41 VOLUME 22, NUMBER 9 | 2012 SEPTEMBER SCIENCE ARTICLE GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 25,000 GSA member read- ers and subscribing libraries, with 11 monthly issues (April/ May is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. 4 Future volcanism at Yellowstone GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, caldera: Insights from geochemistry regardless of race, citizenship, gender, sexual orientation, of young volcanic units and religion, or political viewpoint. Opinions presented in this monitoring of volcanic unrest publication do not reflect official positions of the Society. Guillaume Girard and John Stix © 2012 The Geological Society of America Inc. All rights reserved. Copyright not claimed on content prepared Cover: View looking west into the Midway geyser wholly by U.S. government employees within the scope of basin of Yellowstone caldera (foreground) and the West their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single Yellowstone rhyolite lava flow (background). -
Geology, Geochemistry, and Geochronology of the Marigold Mine, Battle Mountain-Eureka Trend, Nevada
GEOLOGY, GEOCHEMISTRY, AND GEOCHRONOLOGY OF THE MARIGOLD MINE, BATTLE MOUNTAIN-EUREKA TREND, NEVADA by Matthew T. Fithian ! A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date ____________________ Signed: _______________________ Matthew T. Fithian Signed: _______________________ Dr. Elizabeth A. Holley Thesis Advisor Signed: _______________________ Dr. Nigel M. Kelly Thesis Co-Advisor Golden, Colorado Date ____________________ Signed: _______________________ Dr. Paul Santi Department Head Department of Geology and Geological Engineering ! ii! ABSTRACT The Marigold mine is located on the northern end of Nevada’s Battle Mountain-Eureka trend, approximately 55 km east-southeast of Winnemucca, Nevada in the Battle Mountain mining district. Marigold defines a N-S trending cluster of economic gold anomalies approximately 7 km long. Marigold has been historically described as a porphyry-related distal disseminated deposit based on the presence of porphyritic intrusions, proximity to known porphyry systems (e.g. Phoenix, Converse, Elder Creek), inferred high Ag:Au ratio, and limited understanding of sulfide mineralogy related to gold mineralization. The aim of this research was to examine the genesis of the gold mineralizing system at Marigold by determining the age of felsic porphyritic intrusions throughout the Marigold mine and the genetic relationship between these intrusions and gold mineralization. Geochronologic data were supplemented by geochemical sampling to understand the effect of the intrusions on the host rock, the effect of alteration on the intrusions, and the geochemical signature of gold ores. In addition to geochronologic and geochemical data, a secondary goal of the project was to determine the ore mineralogy below the redox boundary.