The State Geological Surveys of the United States

Total Page:16

File Type:pdf, Size:1020Kb

The State Geological Surveys of the United States DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 465 THE STATE GEOLOGICAL SURVEYS OF THE UNITED STATES COMPILED UNDER THE DIRECTION OF C. W. HAYES WASHINGTON GOVERNMENT PRINTING OFFICE 1911 CONTENTS. Page. Introduction.___________________._____________________ 5 Alabama___________________.__________________ 9 Arizona______________-._______________________ 10 Arkansas_______________________ _________.__________ 17 California___________________ ____________________ 20 Colorado__________'__..________________________ 24 Connecticut________________. ___________________ 29 Florida_____.._______ __ _________:.._____!_ 34 Georgia.._______ - 30 Illinois.-.-^-______________.-______________________ 42 Indiana______ _ _^=rr».- _--^ _ 51 Iowa__________________-____________________ 53 Kansas_____________ _ - _ _-__ 59 Maine__________________.- ___ __i_ __________ 63 Maryland______ _ ._-__ _ _ _____________ 69 Michigan_____ _ ___ _ 76 Minnesota__.._____________-____--- _ _______ SO Mississippi______..__ _--_ - __ 82 Missouri--________ _____ _- __ __ _ 86 Nebraska________ _ ,- __ 89 New Jersey_______ __ ___..- _ ..____ 90 New York____.__________-. ____________________:_ 98 North Carolina____________-__ _ __ __ ____ 101 North Dakota___-_._____J_.-___ -__ _ __ _________ 306 Ohio_____________________--__ ______________ 108 Oklahoma___________...--__- ___ _ ~- _ _ 116 Pennsylvania_______ _____________ _____ .__-__ ___ 122 Rhode Island___________________ __ _ __ 130 South Carolina__ -___ _______ _ 135 Tennessee-___ _______ ____ ___________ 138 Vermont____.._______._____. _ ..: __ 142 Virginia.- __ _ :__- 144 Washington_______ . - 149 West Virginia.. 153 Wisconsin___ -_ - 159 Appendix- 167 Internal Improvement Commission of Illinois__ ______________ 167 Territorial engineer of New Mexico __________ ___. 169 New York State Water Supply Commissiou 171 3 THE STATE GEOLOGICAL SURVEYS OF THE UNITED STATES. Compiled under the direction of C. W. HATES. INTRODUCTION. Information concerning State geological surveys is difficult or impossible to obtain. Much of it is scattered through many publica­ tions, and many facts regarding organization and methods are not published. Such information is in constant demand by cooperating State and Federal organizations, by persons interested in the organi­ zation of new State surveys, and by the State geologists themselves. It is the last named to whom the information is of greatest value, for many common problems of administration are met by all State geologists, and a statement of the successful solution of a problem by one will help others to solve the same problem. This need of accurate information was urgently expressed by the geologists and engineers in attendance at a conference held in Washington in the spring of 1910, and as a result of rather full discussion a committee was appointed to take charge of the matter. It seemed to the com­ mittee that the end in view could be best attained by requesting the heads of the several surveys to prepare statements regarding their organizations. Accordingly the following circular letter and out­ line were submitted to all State geologists and to all State engineers and other officials having cooperative relations with the Federal Survey. TRENTON, N. J., July 15, 1910. DEAR SIR: At the conference of the officials of the United States Geological Survey and the State geologists and heads of other cooperating bureaus held in Washington May 31-June 1, a committee was appointed to collect and com­ pile information regarding the organization and work of the various surveys with a view to its early publication as a handbook of geological and hydro- graphic surveys in the United States. As all present at the conference seemed to wish the plan carried out, it is hoped that those absent will also find it attractive and will assist in its preparation. In order that the statements may be accurate and comprehensive, it is desired that they be carefully prepared for publication by some official of the respective surveys, and that the subsequent work of compiling and editing be reduced to a minimum. To this end please follow as closely as possible the following out- 5 6 STATE GEOLOGICAL SURVEYS OF THE UNITED STATES. line, giving in narrative form explicit information on as many of the points mentioned as are applicable to your survey or bureau. In order that the bulletin may be issued with reasonable promptness, please prepare and forward the data without delay to Dr. C. W. Hayes, United States Geological Survey, Washington, D. C. Yours truly, H. B. KUMMEL, New Jersey, .0. W. HAYES, United States Geological Survey, F. W. DE WOLF, Illinois, W. McGoLLOH, New York, Committee. OUTLINE. 1. Give a brief resume (600 to 800 words) of previous geological surveys or of antecedent scientific bureaus in your State, of which your bureau is the outgrowth, giving specifically the name of each, date, scope of work and accom­ plishments, and causes of discontinuance. 2. Give the exact name of the present survey or bureau and date of its organization. 3. Give a summary of the laws governing your survey which are now operative. 4. If not already given under 3, outline the organization of your survey under the following heads: (a) Governing board. Name, number of persons, method of appointment, terms of office, compensation (if any) as members of this board (not salaries if they serve ex offlcio). (b) Executive officer. Title, name of individual, method of appointment, date of appointment of present incumbent, term of office. If an ex officio appoint­ ment or other State or educational position is held, please state; give propor­ tion of time spent on survey work. Indicate whether compensation is per diem or by regular monthly or annual salary; how fixed, whether by law or by rule of governing board. (c) Subordinates. Group your subordinates into three classes (1) clerical; (2) geologic, including chemical and technologic; (3) topographic, including engineering and hydrographic. For each of these classes give the approximate number of each class employed, their method of appointment (by the managing board, executive head, with or without intervention of civil-service commission, etc.), term of service, per diem or permanent, range of pay for different classes. It is particularly desired to know to what extent advanced college students or college professors are employed on surveys. 5. Appropriations. A. Please state how your appropriations are made, whether continuing, annual, biennial, or for any stated period. Are any con­ tingent upon cooperation? B. Do unexpended balances carry to a new fiscal year or do they lapse to the treasury? If the latter, how soon after the close of the year? C. Give your annual appropriation, specifying objects, if so fixed by law. D. Estimate in percentages the average' expenditure under the following heads: (a) Administrative and routine clerical; include only such part of the salary of the head of the survey and of others as may be charged to administrative work. (&) Topographic, including field work and office work (not administrative). INTRODUCTION. 7 (c) Economic, stratigraphic, and areal geology, including office work in preparation of reports. (d) Statistical geology. (e) Paleoutologic geology as distinct from stratigraphic. (/) Chemical work. (g) Underground water resources. (h) Drainage surveys. (i) Stream flow and reservoir surveys. (j) Testing road materials or other highway work, not including construc­ tion. (7c) Highway construction. (I) Other technologic work. (???) Other lines of work or combinations which can not be included under above heads, specifying nature of work. 6. Publications. A. Enumerate the various series of reports, bulletins, mono­ graphs, and maps published, giving the (a) number of volumes of each series so far issued, (ft) size of editions, (c) method of distribution (if sold, give average annual income and its disposition whether paid to State treasury, etc.). B. Average annual cost of printing reports and accompanying maps for last five years or by volumes. Does this come from your Survey appropriation or from some other fund? C. Do you have full control over printing your maps and reports, as to choice of printer, style of report, paper, illustrations, etc., contents of report? If not, state explicitly the nature of the limitations. D. Do you have full control over distribution of your reports? What classes of persons and institutions are on your mailing list and how is it kept alive? 7. Present main lines of work, (1) by your bureau independently; (2) in co­ operation (state nature and extent of cooperative work) : (a) With the United States Geological Survey, (6) with geological surveys of other States, (c) with other bureaus of the National Government, (d) with other scientific bureaus of your own State. It' was hoped that by means of the above outline a fair degree of uniformity of treatment would be secured, and this hope has been in a measure realized. Necessarily some editing has been required, but this has been confined so far as possible to matters of form, arrange­ ment, headings, etc. The delay in transmitting the material to press has been due to delay of the authors in furnishing it, although a number'of requests of increasing urgency were sent to several of the delinquents. It was originally intended that the bulletin should include all State organizations which cooperated with the United States Geolog­ ical Survey in geology, topography, or hydrography, but only a few of
Recommended publications
  • 1350-5 Geologist
    POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d.
    [Show full text]
  • Proceedings Op the Twenty-Third Annual Meeting Op the Geological Society Op America, Held at Pittsburgh, Pennsylvania, December 21, 28, and 29, 1910
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 22, PP. 1-84, PLS. 1-6 M/SRCH 31, 1911 PROCEEDINGS OP THE TWENTY-THIRD ANNUAL MEETING OP THE GEOLOGICAL SOCIETY OP AMERICA, HELD AT PITTSBURGH, PENNSYLVANIA, DECEMBER 21, 28, AND 29, 1910. Edmund Otis Hovey, Secretary CONTENTS Page Session of Tuesday, December 27............................................................................. 2 Election of Auditing Committee....................................................................... 2 Election of officers................................................................................................ 2 Election of Fellows................................................................................................ 3 Election of Correspondents................................................................................. 3 Memoir of J. C. Ii. Laflamme (with bibliography) ; by John M. Clarke. 4 Memoir of William Harmon Niles; by George H. Barton....................... 8 Memoir of David Pearce Penhallow (with bibliography) ; by Alfred E. Barlow..................................................................................................................... 15 Memoir of William George Tight (with bibliography) ; by J. A. Bownocker.............................................................................................................. 19 Memoir of Robert Parr Whitfield (with bibliography by L. Hussa- kof) ; by John M. Clarke............................................................................... 22 Memoir of Thomas
    [Show full text]
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • Related Skills, Values, and Qualities Common Interests of Geology
    Bachelor of Science: Geology Minor: Geology Geology is a broad interdisciplinary science that involves the study of Earth and its history. Geologists gather and interpret data about the Earth for the purpose of increasing our knowledge about natural resources and Earth processes. They provide basic information required for establishing policy for resource management and environmental protection. Geologists may explore for new mineral or oil resources, work on environmental problems, do research, or teach and often divide their time between work in the field, the laboratory, and the office. The Bachelor of Science in Geology program at KU was designed to prepare students with enough fundamental understanding of geology to succeed in graduate school, and to provide the practical field experience needed to succeed as career geologists. Course requirements parallel the subjects on the Professional Geologist licensing exam. Employers recommend one or more internships to be successful and competitive when entering this field. Career types associated with Geology Common interests of Geology majors (Is this a good fit for you? Are you…) • Visiting science museums, nature centers, or zoos Investigative - “Thinker” • Developing hobbies and collections related to soils, Realistic - “Doer” rocks, coins, or other artifacts Social - “Helper” • Hiking, mountain climbing, camping, backpacking and other outdoors activities • Exploring and traveling Related skills, values, and qualities • Playing games of strategy or putting together or • Proficiency in
    [Show full text]
  • WHY I HATE HYDROGEOLOGY Keynote Address to GRA Fifth Annual Meeting 1996 (Slightly Expurgated for Public Consumption) by Joseph H
    Untitled WHY I HATE HYDROGEOLOGY Keynote Address to GRA Fifth Annual Meeting 1996 (Slightly Expurgated for Public Consumption) by Joseph H. Birman, President Geothermal Surveys, Inc. (dba GSi/water) INTRODUCTION Thank you, Ladies and Gentlemen. I am especially honored to have been invited to give a keynote address to this highly respected organization. In return, by the time this talk is finished, I will probably have insulted everybody in this room. I will try to do this fairly, with no regard to religion, race, or technical persuasion. I consider myself an equal-opportunity offender. I will start by insulting myself. I am a hypocrite, as I will explain to you later. This conference is titled Multidisciplinary Solutions for California Ground Water Issues. In that context, I would like to identify that discipline that I consider to be the most important, the most powerful, and the most crucial for investigating ground water and providing solutions to California's ground water issues. Boy, have I got a discipline for you! For many years, the discipline has been in operational limbo. The hydrogeological profession provides it little shrift, often treats it with disdain, and sometimes ignores it completely. Yet, the discipline is fundamental to the proper use and integration of all the other disciplines that you will examine in this conference. When that discipline is properly used, it gets us ninety percent of what we need to know in understanding ground water and what controls it. And it does this at far less than the costs of the other disciplines those that get us a part of that last ten percent.
    [Show full text]
  • Utah's Geologic Timeline Utah Seed Standard 7.2.6: Make an Argument from Evidence for How the Geologic Time Scale Shows the Ag
    Utah’s Geologic Timeline Utah SEEd Standard 7.2.6: Make an argument from evidence for how the geologic time scale shows the age and history of Earth. Emphasize scientific evidence from rock strata, the fossil record, and the principles of relative dating, such as superposition, uniformitarianism, and recognizing unconformities. (ESS1.C) Activity Details: The students begin with a blank calendar and a list of events in the Earth’s, and additionally Utah’s, history. These events span billions of years, but such numbers are too large to visualize and compare. In order to help the mind understand such enormous lengths of time, the year of the event is scaled to what it would Be proportionate to a calendar year (numBers are from The Utah Geological Survey and Kentucky Geological Survey). The students go through the list and fill out their calendar to visualize the geologic timeline of the Earth and Utah, and then answer some analysis questions to help solidify their understanding. Students will need four differently-colored colored pencils or crayons to complete the activity. Background: The following information is taken from The Utah Geological Survey, written by Mark Milligan. It may Be helpful to define some of the terms with the students so they understand where and how ages come from. Geologists generally know the age of a rock By determining the age of the group of rocks, or formation, that it is found in. The age of formations is marked on a geologic calendar known as the geologic time scale. Development of the geologic time scale and dating of formations and rocks relies upon two fundamentally different ways of telling time: relative and absolute.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Geological Survey
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY ISTo. 162 WASHINGTON GOVERNMENT PRINTING OFFICE 1899 UNITED STATES GEOLOGICAL SUEVEY CHAKLES D. WALCOTT, DIRECTOR Olf NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1898 BY FRED BOUG-HTOISr WEEKS WASHINGTON GOVERNMENT PRINTING OFFICE 1899 CONTENTS, Page. Letter of transmittal.......................................... ........... 7 Introduction................................................................ 9 List of publications examined............................................... 11 Bibliography............................................................... 15 Classified key to the index .................................................. 107 Indiex....................................................................... 113 LETTER OF TRANSMITTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY. Washington, D. C., June 30,1899. SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index o'f North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1898, and to request that it be published as a bulletin of the Survey. Very respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, Director United States Geological Survey. 1 I .... v : BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1898. ' By FEED BOUGHTON WEEKS. INTRODUCTION. The method of preparing and arranging the material of the Bibli­ ography and Index for 1898 is similar to that adopted for the previous publications 011 this subject (Bulletins Nos. 130,135,146,149, and 156). Several papers that should have been entered in the previous bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, classified by authors, an abbreviated reference to the publica­ tion in which the paper is printed, and a brief summary of the con­ tents, each paper being numbered for index reference.
    [Show full text]
  • Deep Groundwater and Potential Subsurface Habitats Beneath an Antarctic Dry Valley
    ARTICLE Received 21 May 2014 | Accepted 2 Mar 2015 | Published 28 Apr 2015 DOI: 10.1038/ncomms7831 OPEN Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley J.A. Mikucki1, E. Auken2, S. Tulaczyk3, R.A. Virginia4, C. Schamper5, K.I. Sørensen2, P.T. Doran6, H. Dugan7 & N. Foley3 The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional- scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (B350 m). 1 Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA. 2 Department of Geosciences, Aarhus University, Aarhus 8000, Denmark. 3 Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064, USA. 4 Environmental Studies Program, Dartmouth College, Hanover, New Hampshire 03755, USA. 5 Sorbonne Universite´s, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, Paris 75252, France.
    [Show full text]
  • Bibliography and Index
    Bulletin No. 203. Series G, Miscellaneous, 23 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES .1). YVALCOTT, DIRECTOR BIBLIOGRAPHY AND INDEX FOR T I-I E Y E A. R 1 9 O 1 BY FRED BOUGHTON "WEEKS WASHINGTON - GOVERNMENT PRINTING OFFICE 1902 CONTENTS, Page. Letter of transmittal....................................................... 5 Introduction ......... 4 ................................................... 7 List of publications examined ............................................. 9 Bibliography ............................................................ 13 Addenda to bibliographies for previous years............................... 95 Classified key to the index ...........'.......... ............................ 97 Index ..................................................................... 103 LETTER OF TRANSM1TTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, Washington, D. 0., July % SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1901, and to request that it be published as a Bulletin of the Survey. Yours respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, director United State* Geological Survey. BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1901. By FRED BOUGHTON WEEKS. INTRODUCTION. The preparation and arrangement of the material of the Bibliog­ raphy and Index for 1901 is similar to that adopted for the previous publications.(Bulletins Nos. 130, 135, 146, 149, 156, 162, 172, 188, and 189). Several papers that should have been entered in the pre­ vious bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, arranged alphabetically by authors' names, an abbreviated reference to the publication in which the paper is printed, and a brief description of the contents, each paper being numbered for index reference.
    [Show full text]
  • Tectonics and Seismicity of the Southern Washington Cascade Range
    Bulletin of the Seismological Society of America, Vol. 86, No. 1A, pp. 1-18, February 1996 Tectonics and Seismicity of the Southern Washington Cascade Range by W. D. Stanley, S. Y. Johnson, A. I. Qamar, C. S. Weaver, and J. M. Williams Abstract Geophysical, geological, and seismicity data are combined to develop a transpressional strain model for the southern Washington Cascades region. We use this model to explain oblique fold and fault systems, transverse faults, and a linear seismic zone just west of Mt. Rainier known as the western Rainier zone. We also attempt to explain a concentration of earthquakes that connects the northwest-trend- ing Mount St. Helens seismic zone to the north-trending western Rainier zone. Our tectonic model illustrates the pervasive effects of accretionary processes, combined with subsequent transpressive forces generated by oblique subduction, on Eocene to present crustal processes, such as seismicity and volcanism. Introduction The southern Washington Cascades contains Mt. Rain- Geology of Western Washington ier, the most massive of the volcanoes in the Cascade Range magmatic arc (Fig. 1). Mr. Rainier is part of the triangle of The Puget Sound region and the western flank of the large stratovolcanoes in southem Washington that includes Cascade Range in southwestern Washington occupy a com- Mount St. Helens and Mt. Adams. Mount St. Helens expe- plex tectonic setting along the margin of two distinct crustal rienced a cataclysmic eruption in 1980 and is apparently blocks. Crust in the eastern block beneath the southwest younger than Mt. Rainier and Mt. Adams, both of which Washington Cascades is composed of Mesozoic and older exhibit more rounded profiles than the pointed, pre-1980 accreted terranes, volcanic arcs, and underplated magmatic Mount St.
    [Show full text]
  • DEPARTMENT of ENVIRONMENTAL ENGINEERING and EARTH SCIENCES Department of Environmental Engineering and Earth Sciences Chairperson: Dr
    DEPARTMENT OF ENVIRONMENTAL ENGINEERING AND EARTH SCIENCES Department of Environmental Engineering and Earth Sciences Chairperson: Dr. Marleen Troy Faculty Professors: Murthy, Troy, Whitman Associate Professors: Frederick Assistant Professor: Finkenbinder, Karimi, Karnae Lecturers: Kaster, McMonagle Laboratory Manager: McMonagle Office Assistant: Garrison The Department of Environmental Engineering and Earth Sciences (EEES) offers the following degree programs: the B.S. in Civil Engineering, the B.S. in Environmental Engineering; the B.S. in Environmental Science; the B.S. in Geology; and the B.A. in Earth and Environmental Science. EEES envisions future accreditation of the Civil Engineering program by EAC-ABET. The Environmental Engineering program is accredited by the EAC-ABET. The engineering programs incorporate a strong background in the fundamentals of engineering with a blend of science and advanced engineering courses. The Environmental Science program combines a foundation in the related sciences and primary earth reservoirs (water, land, air, and life) with concentrations in either Earth Science or Biology. The Geology program provides a comprehensive curriculum that includes the fundamentals of geology with courses responsive to the needs of industrial employment sectors. The Geology program meets the academic requirements for Pennsylvania State professional licensure. All EEES programs emphasize the value of integrative learning in the classroom, laboratory and field. Modern laboratories are well-equipped to support a wide range of courses and research experiences. Easy access to exceptional off-campus sites provides training in field methods that augment the curricula. A dedicated computer laboratory for geospatial technology (Geographic Information System, Global Positioning System, Remote Sensing) supports all EEES programs and research/project activities in the science and engineering fields.
    [Show full text]