State Geological and Natural History Survey of Connecticut

Total Page:16

File Type:pdf, Size:1020Kb

State Geological and Natural History Survey of Connecticut STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT NATURAL RESOURCES CENTER DEPARTMENT OF ENVIRONMENTAL PROTECI’ION A HISTORY OF THE STATE GEOLOGICAL AND NATURAL HISTORY SURVEY OF CONNECTICUT By ROBERT J. ALTAMURA Reprint from THE STATE GEOLOGICAL SURVEYS - A HISTORY Published by the Association of American State Geologists 1988, p.48-69 1989 Reprinted from THE STATE GEOLOGICAL SURVEYS - A HI~IX)RY 1 1988 Directors of the State Geological and Natural Histo~, Survey of Connecticut (-established in 1903) William North Rice, Superintendent, 1903-1916 A HISTORY OF THE STATE GEOLOGICAL Herbert Ernest Gregory, Superintendent, 1916-1921 Henry Hollister Robinson, Superintendent, 1921-1925 AND NATURAL HISTORY SURVEY Wilton Everett Britton, Superintendent, 1925-1939 Edward Leffinwell Troxell, Director, 1939-1954 John Becker Lucke, Director, 1954-1960 Joe Webb Peoples, Director, 1960-1974 BY ROBERT J. ALTAMURA Hugo Frederick Thomas, State Geologist, 1974- Connecticut Geological & Natural History Survey 165 Capitol Avenue Hartford, CT 06106 Early Official Geological Surveys of the State of Science. The early volumes of James Gates Percival (Geological survey of Connecticut with map) 1835-1842 FOUNDATIONS OF THE SURVEY Charles Upham Sbepard (Mineralogical survey of Connecticut) 1835-1837 Silliman’s Journal, as it was then There was a growing interest in known, contained a number of papers on geology in the early part of the 19th Connecticut mineralogy and geology, century, not only in Connecticut, but many by Silliman himself. elsewhere. By that time, James Hutton, Silliman’s students carried their the founder of modern geology, had knowledge to other parts of the country. presented his epoch-making Theory of In 1824, Denison Olmsted went to head the Earth to the Royal Society of the North Carolina Survey. Edward Edinburgh in 1785. Europeans, who had Hitchcock went to Amherst College in studied the natural sciences for some Massachusetts and conducted the geo- time, continued to pursue the subject of logical survey of that state beginning in geology. Here in the United States, 1830, which ~nspired and stimulated foreign literature stimulated interest in other states to get surveys under way. natural science, including geology and Amos Eaton went to Williams College in biology, and people were becoming Massachusetts and later to Rensselaer increasingly aware of the natural world. Polytechnic Institute in Troy, New York, In 1802, the President of Yale where he worked on a geological survey College in New Haven, Connecticut, in eastern New York, and James Gates hired Benjamin Silliman, who just had Percival stayed in Connecticut to lead completed his training in law, to head a the state’s first systematic geological department and offer courses in science. survey. Before he began teaching, Silliman In the United States, the period from attended lectures in chemistry at a 1830-80 has been referred to as the "Era NOTE FOR THE READER medical school in Philadelphia and had of the State Surveys" (Merrill, 1924}. This history of the State Geological and Natural History Survey of Connecticut is a studied natural science in Europe. By William W. Mather, who taught at reprint of an article that was prepared for a volume containing the history of each of the 1806, Silliman had published a sketch of Wesleyan University in Middletown, fifty state geological surveys. Space limitations for this volume necessitated that this the mineralogy of New Haven and in Connecticut from 1833-34, was one of history of the Connecticut Survey be somewhat abbreviated, and greater detail is provided on geologic topics than on natural history (biology) topics. 1818 he founded The American Journal four state geologists who mapped New 1This paper was written for inclusion in The Stale Geological Surveys - A History. a 500-page volume including papers on the histoties of state geological surveys of the fifly states. ~’his project ~,as edited by Arthur A. Socolow and published by the Association of American State Geologisis (AAS G) in 1988. The Connecticut chapter is reproduced here with the permission of the AASG as a Connecticut Geological & Natural History Survey reprint~ 49 5O York State from 1836-42, and in 1841 Drinkwater Cope of the Academy of preparation for analysis that a gas was Edward Hitchcock completed the Natural Sciences in Philadelphia. Also being emitted. Several years later, geological survey of Massachusetts: at this time, geological instruction and helium was isolated as a stable decay The first systematic study of the investigations were under way by John product of uranium. In 1904, Ernest geology of Connecticut was made when a Rutherford of McGill University pre- Johnston and William North Rice at survey of the state was authorized by the Wesleyan. Rice had received a Ph.D. sented ideas on how progressive accumu- Legislature on June 15, 18~35. James lation of daughter products might be from Yale in 1867. This was the first Gates Percival was placed in charge of used to measure geologic time. Those the geology and Charles Upham Ph.D. in geology given by an American university. The title of his dissertation ideas were put to use by Bertram B. Shepard, the mineralogy. A passage Boltwood of Yale, who, in 1906, from the Annual Message of 1835 from was The Darwinian Theory of the Origin of Species. Rice, a graduate of Wesleyan following a suggestion made by Governor Henry Edwards may provide Rutherford, looked at analyses of urani- in 1865, returned to become professor of insight into the thinking of the times, um minerals, including Hillebrand’s geology and in 1903 became the first which led to the birth of that first uraninite analyses, and made the first geological survey of the state. Superintendent of the State Geological and Natural History Survey of radiometric age determinations. Radio- metric age dating indicated that the The mineralogical treasures which have been Connecticut. Rice was also an ordained developed within a few years and which are expanse of geologic time was much constantly coming to light in different parts minister. Charles Upham Shepard greatdr than geologists previously of our country, give us reason to believe, that taught and conducted numerous thought. we have not as yet availed ourselves to the investigations at Washington College Around the turn of the century, extent that we might of this source of wealth, (later to become Trinity College) in and suggests the expediency of a move Hartford during this time. Key William H. Hobbs of the USGS con- systematic examination than has hitherto ducted pioneering lineament studies in taken place.. ~ (from Shepard, 1837). contributions to Connecticut geology and Connecticut, a field that today receives a mineralogy appeared in The American Shepard’s A Report of the Geological significant amount of attention. Survey of Connecticut was published in Journal of Science. During the 19th century, people in 1837, but it wasn’t until 1842 that Figure 1.--James Gates Percival--student of Shortly after its formation in 1879, Benjamin Silliman and author of the first the U.S. Geological Survey (USGS) Connecticut also turned their attention Percival published his Report on the geological map of Connecticut, which was to biology. For example, around the time Geology of the State of Connecticut, published in 1842. began work in Connecticut. William of Percival and Shepard, Eli Ives of Yale, Morris Davis, who was a professor at which was a comprehensive geological a professor of botany and medicine, investigation. By 1841, Percival (fig. 1) Harvard and also worked for the USGS, published three papers on plants in studied and mapped the Mesozoic rocks had surveyed the entire state in E-W the value of Percival’s observations, in Silliman’s Journal. Ives later made a list of Connecticut. Davis accomplished part traverses at 2-mile intervals, which preparing the 1985 Bedrock Geological that included the names of more than a means that he touched every square mile Map of Connecticut, John Rodgers of of this work by leading the Harvard thousand plants growing near New of the state. By the time Percival Yale used Percival’s map to help resolve College summer geology school to the Haven (Troxell, unpub, ms.). Troxell also accomplished this task, the Legislature conflicts. Meriden area for geological mapping. re~orts that Amos Eaton and John and new governor William Ellsworth From 1842 to 1903, the State Later, Davis worked with S. Ward Loper, Pierce Brace pursued similar interests. became impatient for a final report. initiated no new geological investiga- a farmer who later became curator of the Brace later studied plant life in the Requests for further appropriations were tions. However, studies were conducted geology museum at Wesleyan. Loper Litchfield, Connecticut, region, and his helped confirm Davis’ structural models denied, and Percival was forced to report by various university and federal herbarium was donated to Williams for block faulting in the Connecticut his work in "a hasty outline" of 495 geologists. In the last half of the 19th College. pages with a map (the first state century, instruction and investigations valley b~ locating specific fossil fish and About 1856, professor Daniel Cady geological map, scale 1:250,000). in geology were conducted primarily at fossil plant marker horizons. Eaton and other members of the Percival’s report on the geology of three Connecticut universities. At Yale, One of Davis’ geological assistants was William North Rice (fig. 2). Another Sheffield Scientific School of Yale Connecticut delineates all the major Benjamin Silliman, James Dwight produced a catalog of the higher plants rock types with particular attention to Dana, his son Edward S. Dana, and was Lewis Gardner Westgate, also a found in the vicinity of New Haven, detail. His observations are descriptive George Brush, made early contributions graduate of Wesleyan, who did listing about 1,230 species (Troxell, with little interpretative bias.
Recommended publications
  • 2009 Medals & Awards Mary C. Rabbitt History of Geology
    2009 MEDALS & AWARDS MARY C. RABBITT emeritus since 2004. During his time at But there is more. As he is credited Calvin he was for a year a Fellow at the to be in several web sites, he is a noted HISTORY OF Calvin Center for Christian Scholarship. conservative evangelical Christian who is GEOLOGY AWARD He is a member of GSA, the Mineralogical also a geologist—and is a fine example of Society of America, the American Scientific both. As such, he has access to venues that Presented to Davis A. Young Affiliation, the Affiliation of Christian few of us can address, and is a spokesman Geologists, of which he has been president, for our science with a unique authority. His and the International Commission on the reviews of important books in the history of History of the Geological Sciences. geology speak to a wider audience than many In his long teaching career, I’m sure of us can reach. Dave will tell us more of his Dave has steered many a young person to journey. The Rabbitt Award is most fitting geology, and his department has just instituted recognition of Davis Young. a student Summer Research Fellowship in his name. He co-led a course on Hawaiian geology in the best of places, Hawaii itself. Response by Davis A. Young Reading the program for that, I envy the My profoundest gratitude to the History students who were able to take part in it. With of Geology Division for bestowing this student help, he has also assisted with the honor on me.
    [Show full text]
  • 1350-5 Geologist
    POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d.
    [Show full text]
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • Related Skills, Values, and Qualities Common Interests of Geology
    Bachelor of Science: Geology Minor: Geology Geology is a broad interdisciplinary science that involves the study of Earth and its history. Geologists gather and interpret data about the Earth for the purpose of increasing our knowledge about natural resources and Earth processes. They provide basic information required for establishing policy for resource management and environmental protection. Geologists may explore for new mineral or oil resources, work on environmental problems, do research, or teach and often divide their time between work in the field, the laboratory, and the office. The Bachelor of Science in Geology program at KU was designed to prepare students with enough fundamental understanding of geology to succeed in graduate school, and to provide the practical field experience needed to succeed as career geologists. Course requirements parallel the subjects on the Professional Geologist licensing exam. Employers recommend one or more internships to be successful and competitive when entering this field. Career types associated with Geology Common interests of Geology majors (Is this a good fit for you? Are you…) • Visiting science museums, nature centers, or zoos Investigative - “Thinker” • Developing hobbies and collections related to soils, Realistic - “Doer” rocks, coins, or other artifacts Social - “Helper” • Hiking, mountain climbing, camping, backpacking and other outdoors activities • Exploring and traveling Related skills, values, and qualities • Playing games of strategy or putting together or • Proficiency in
    [Show full text]
  • WHY I HATE HYDROGEOLOGY Keynote Address to GRA Fifth Annual Meeting 1996 (Slightly Expurgated for Public Consumption) by Joseph H
    Untitled WHY I HATE HYDROGEOLOGY Keynote Address to GRA Fifth Annual Meeting 1996 (Slightly Expurgated for Public Consumption) by Joseph H. Birman, President Geothermal Surveys, Inc. (dba GSi/water) INTRODUCTION Thank you, Ladies and Gentlemen. I am especially honored to have been invited to give a keynote address to this highly respected organization. In return, by the time this talk is finished, I will probably have insulted everybody in this room. I will try to do this fairly, with no regard to religion, race, or technical persuasion. I consider myself an equal-opportunity offender. I will start by insulting myself. I am a hypocrite, as I will explain to you later. This conference is titled Multidisciplinary Solutions for California Ground Water Issues. In that context, I would like to identify that discipline that I consider to be the most important, the most powerful, and the most crucial for investigating ground water and providing solutions to California's ground water issues. Boy, have I got a discipline for you! For many years, the discipline has been in operational limbo. The hydrogeological profession provides it little shrift, often treats it with disdain, and sometimes ignores it completely. Yet, the discipline is fundamental to the proper use and integration of all the other disciplines that you will examine in this conference. When that discipline is properly used, it gets us ninety percent of what we need to know in understanding ground water and what controls it. And it does this at far less than the costs of the other disciplines those that get us a part of that last ten percent.
    [Show full text]
  • Petrology, Mineralogy, and Geochemistry Northern California
    Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Di.stribution of Platinum-Group Elements Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Distribution of Platinum-Group Elements By NORMAN J PAGE, FLOYD GRAY, and ANDREW GRISCOM U.S. GEOLOGICAL SURVEY BULLETIN 2014 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Text edited by George Havach Illustrations edited by Carol L. Ostergren UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Page, Norman J Petrology, mineralogy, and geochemistry of the Lower Coon Mountain pluton, northern California, with respect to the distribution of platinum-group elements I by Norman J Page, Floyd Gray, and Andrew Griscom. p. em.- (U.S. Geological Survey bulletin ; 2014) Includes bibliographical references. 1. Rocks, Igneous-California-Del Norte County. 2. Geochemistry­ California-Del Norte County. I. Gray, Floyd. II. Griscom, Andrew. Ill. Title. IV. Series. QE75.89 no. 2014 [QE461] 557.3 s-dc20 92-27975 [552'.3'0979411] CIP CONTENTS Abstract 1 Introduction 2 Regional geologic setting 2 Geology 2 Shape, size,
    [Show full text]
  • Syllabus: Petrology of Igneous and Metmorphic
    Course Syllabus GEOL 333 PETROLOGY OF IGNEOUS AND METAMORPHIC ROCKS Course Description: Study of the properties and genesis of two major rock groups. Megascopic and microscopic techniques in rock classification. Environments of formation. Case studies from the Maryland Piedmont. Field trips required. Six contact hours (three lecture hours and three laboratory hours), four credits. Prerequisite: GEOL 331. Schedule of lecture and laboratory topics: subject to change with notice: WEEK MONDAY: Laboratory Topic WEDNESDAY: Lecture/Lab Topic TEXT Types of Intrusions; Composition, Introduction to Course; Igneous 1/30-2/1 Textures & Structures of Igneous 1–3 Rocks in Hand Sample Rocks; Classification Volcanism; Formation of Magma; 2/6-8 Igneous Textures in Thin Section 4–6 Crystallization of Magma Igneous Rocks of the Oceanic 2/13-15 Felsic Extrusive Rocks 8 Lithosphere Intermediate and Mafic Extrusive Igneous Rocks of Convergent 2/20-22 9,10 Rocks Margins; Layered Mafic Intrusions 2/27-29 Felsic Intrusive Rocks Mafic Intrusive Rocks 3/5-7 Work on Igneous Case Study Ellicott City Field Trip 3/12-14 Work on Igneous Case Study Igneous Case Study due 3/19-21 SPRING BREAK Metamorphic Isograds, Facies, P-T 3/26-28 Quartz Microstructures Evolution; Metamorphic Textures and 17,18 Classification Metamorphic Assemblages, 4/2-4 Metamorphic Index Minerals 19-20 Reactions, and Equilibrium Metamorphism of Mafic & 4/9-11 Foliated Metamorphic Rocks 21 Ultramafic Rocks Metamorphism of Aluminous Clastic 4/16-18 Non-foliated Metamorphic Rocks 22 Rocks 4/23-26 Determining P-T-t Histories Maryland Piedmont: Lang articles 4/30-5/2 Work on Piedmont Project Hunt Valley Field Trip 5/7-9 Work on Piedmont Project Work on Piedmont Project 5/14 Present Piedmont Project Piedmont Project due Friday, May 18th, 8:00 – 10:00 a.m.
    [Show full text]
  • Utah's Geologic Timeline Utah Seed Standard 7.2.6: Make an Argument from Evidence for How the Geologic Time Scale Shows the Ag
    Utah’s Geologic Timeline Utah SEEd Standard 7.2.6: Make an argument from evidence for how the geologic time scale shows the age and history of Earth. Emphasize scientific evidence from rock strata, the fossil record, and the principles of relative dating, such as superposition, uniformitarianism, and recognizing unconformities. (ESS1.C) Activity Details: The students begin with a blank calendar and a list of events in the Earth’s, and additionally Utah’s, history. These events span billions of years, but such numbers are too large to visualize and compare. In order to help the mind understand such enormous lengths of time, the year of the event is scaled to what it would Be proportionate to a calendar year (numBers are from The Utah Geological Survey and Kentucky Geological Survey). The students go through the list and fill out their calendar to visualize the geologic timeline of the Earth and Utah, and then answer some analysis questions to help solidify their understanding. Students will need four differently-colored colored pencils or crayons to complete the activity. Background: The following information is taken from The Utah Geological Survey, written by Mark Milligan. It may Be helpful to define some of the terms with the students so they understand where and how ages come from. Geologists generally know the age of a rock By determining the age of the group of rocks, or formation, that it is found in. The age of formations is marked on a geologic calendar known as the geologic time scale. Development of the geologic time scale and dating of formations and rocks relies upon two fundamentally different ways of telling time: relative and absolute.
    [Show full text]
  • GUIDE to the HITCHCOCK FAMILY PAPERS Scope and Content Note the Hitchcock Family Papers Have Been Received As Gifts by the Pocum
    GUIDE TO THE HITCHCOCK FAMILY PAPERS Scope and Content Note The Hitchcock Family Papers have been received as gifts by the Pocumtuck Valley Memorial Association from several sources over many years. The collection numbers just over 400 items, and date between 1731 and 1979. The papers are those of and relating to the descendants of Luke [d. 1659] and Elizabeth (Gibbons) Hitchcock [d. 1696] of Wethersfield, Connecticut, through their sons John and Luke. The number that accompanies names in the notes below refers to the number assigned to the individual by George Sheldon in genealogical notes on the Hitchcock family in the second volume of his History of Deerfield [1895]. Many of the following biographical notes were selected from that source and from The Genealogy of the Hitchcock Family, compiled and published by Mrs. Edward Hitchcock, Jr. [Amherst, Mass., 1894]. Biographical Notes and Description of Series John Hitchcock4, son of Deacon John2 and Hannah (Chapin) Hitchcock, was born in Springfield, Mass., on April 13, 1670. On September 24, 1691 he married Mary Ball of Springfield and the couple had 11 children, one of whom is mentioned below. He received two shares of the township granted to survivors of the Falls Fight [Turners Falls, Mass.,1676] and their descendants and bequeathed them to his son John. He died in 1751, his widow in 1760. He is represented by four items: deeds to land in Brookfield and Springfield, Mass., dated 1731, a copy of his will, dated December 12, 1750, an account relating to the sale of his estate. Samuel Hitchcock7, son of Ensign John4 and Mary (Ball) Hitchcock, was born in Springfield, Mass., on June 9, 1717.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • 2. Petrology and Mineralogy
    2. Petrology and Mineralogy In the period from 1999 to 2002, many studies on petrology and mineralogy have been made by Japanese earth scientists as well as the previous period. Significant progress has been made at the Japanese-USA cooperative studies on Hawaiian volcanoes (Naka et al., 2000; see section VII of this report), including deep-sea survey with the submersible "Shinkai 6500", the world's most advanced deep-sea probe. Major part of the outcome was published as a monograph (Takahashi, E. et al., 2002), including petrological and geochemical studies on products collected by the deep-sea survey (Kaneoka et al., 2002; Sherman et al., 2002; Shinozaki et al., 2002; Tanaka et al., 2002) and melting experiments on basalt+peridotite (Takahashi, E. and Nakajima, 2002). Other studies on the Hawaii project were appeared as individual papers (e.g., Lipman et al., 2000). Research on Unzen volcano also progressed significantly after its eruption of 1990-1995 (Chen, C. H. et al., 1999; Kusakabe et al., 1999; Nakada and Motomura, 1999; Sato et al., 1999; Tateyama et al., 2002; Watanabe, Ko. et al., 1999). At the volcano, international scientific drilling project (Unzen volcano Scientific Drilling Project) is going on (Sakuma and Nakada, 2002; Sakuma and Saito, 2000; Uto et al., 2000; see section VII of this report) and many publications will be appeared in the next period. Research on subduction-zone magmatism around Japan was made energetically. As for Northeast Japan, spatial distribution of volcanoes was noticed (Umeda et al., 1999), and a new concept of "hot fingers" in the mantle wedge was proposed (Tamura, Y.
    [Show full text]
  • Stratigraphy, Structure, and Petrology of the Mt. Cube Area, New Hampshire by Jarvis B
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA STRATIGRAPHY, STRUCTURE, AND PETROLOGY OF THE MT. CUBE AREA, NEW HAMPSHIRE BY JARVIS B. HADLEY CONTENTS Page Abstract.................................................................................................................................. 115 Introduction.......................................................................................................................... 115 Acknowledgments................................................................................................................. 117 Stratified rocks....................................................................................................................... 117 General statement........................................................................................................ 117 Orfordville formation................................................................................................... 119 General statement................................................................................................ 119 Post Pond volcanic member............................................................................... 119 Black schist............................................................................................................ 121 Hardy Hill qu&rtzite............................................................................................ 122 Sunday Mountain volcanic member................................................................. 123 Low-grade rocks of the Orfordville
    [Show full text]