A Study of Selenium Uptake in Parasite- Infected Rainbow Trout (Oncorhynchus Mykiss)

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Selenium Uptake in Parasite- Infected Rainbow Trout (Oncorhynchus Mykiss) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Saskatchewan's Research Archive PARASITES AND POLLUTION: A STUDY OF SELENIUM UPTAKE IN PARASITE- INFECTED RAINBOW TROUT (ONCORHYNCHUS MYKISS) A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Masters of Science in the Toxicology Graduate Program University of Saskatchewan Saskatoon, SK, Canada Olesya Hursky ©Copyright Olesya Hursky, June, 2012. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervise my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Chair of the Toxicology Program Toxicology Centre University of Saskatchewan Saskatoon, Saskatchewan, S7N 5B3 i ABSTRACT Given that parasites demonstrate different sensitivity to contaminants and environmental stressors, there is an increasing interest in the use of parasites as biological or ecological indicators of their fish host life conditions as well as bioindicators of heavy metal pollution of aquatic ecosystems. In order to obtain insight into host-parasite relationships in selenium (Se) polluted environments, a study on nematode parasitism of rainbow trout exposed to subchronic dietary selenomethionine (Se-Met) was initiated. Se-Met is the major dietary form of selenium, and exposure to elevated dietary Se has been associated with detrimental effects on fish health and survival. In the current study, rainbow trout (Oncorhynchus mykiss) were experimentally infected with larval stages (L3) of the intestinal nematode Raphidascaris acus and subsequently exposed to an environmentally relevant concentraton of dietary Se-Met (4.54 mg/kg wet weight (WW)) for 70 days. The specific research objectives were to determine to what extent R. acus and its host accumulate Se from Se-Met fortified diet. In addition, non-specific biomarkers such as condition factor (K), hepatosomatic index (HSI), and gross energy (GE) were calculated to demonstrate the general effects of Se-Met exposure and parasitic infection on trout health. To further investigate joint effects of parasitism and Se-Met exposure on oxidative stress in rainbow trout, levels of superoxide dismutase (SOD) and gluthathione s-transferase (GST) were assessed in the liver and in the head kidney, as these enzymes are involved in the antioxidant response. Fish health variables, muscle Se concentration, and enzyme activity levels were compared between infected trout and uninfected fish exposed to same dietary Se-Met concentration for 56 days, as well as control fish. ii Subchronic exposure of uninfected rainbow trout to dietary Se-Met lead to an initial increase in muscle Se concentration reaching a plateau concentration at 5.27 mg Se/kg dry weight (DW), while a continuous increase in muscle Se was observed in infected trout exposed to Se-Met, reaching 7.52 mg Se/kg DW on day 70. Results suggest that continuous Se accumulation by parasitized fish could be due to increased susceptibility of rainbow trout to metal exposure as a result of infection with parasites. Furthermore, depletion in GE stores in infected rainbow trout exposed to Se-Met was observed (p<0.05), while no changes in K and HSI were detected between treatments, suggesting that challenging parasitic infection can significantly deplete energy reserves of the fish. In addition, in fish exposed to Se-Met an increase (p<0.05) in GST activity was recorded for the initial 7 days of Se exposure, whereas SOD activity was elevated (p<0.05) for the duration of the study. In contrast, fish exposed to both parasites and Se-Met showed a decrease (p<0.05) in antioxidant enzyme levels when compared to trout exposed to Se- Met alone, suggesting an important role of parasitic infection in suppressing oxidative stress response of the host. In summary, parasites such as R. acus can upregulate absorption of Se in the final host, leading to increased deposition of Se into the muscle tissue. In contrast to its host, R. acus did not accumulate large concentrations of Se (1.91 mg Se/ kg DW), and therefore may not be very useful as a biomarker of Se pollution. In addition, parasites negatively influenced expression of general oxidative stress biomarkers (SOD, GST) and therefore should be considered in ecotoxicological studies. To our knowledge, this is the first study to demonstrate effects of combined Se-Met exposure and parasitic infection on rainbow trout health and the oxidative stress response. iii ACKNOWLEDGEMENTS I would like to thank my supervisor Dr. Michael Pietrock for his patience, continual guidance and support, and for always being available when I needed help. Thank you to my advisory committee, Dr. Barry Blakley and Dr. Dave Janz along with my external examiner Dr. Emily Jenkins, for the time they contributed to my degree and thesis. A special thank you to Dr. Xiaofeng Wang, Dr. Lynn Weber, Dr. Som Niyogi, and Dr. Jason Raine for their assistance in the completion of my lab work and with the technical aspects of my research. I would also like to thank Michael Kautzman, Bryan Sarauer, Jith Thomas, Raymond Kwong, Larisa Matwee, JJ Kim, and Gary Sun for their help in the laboratory, and the Toxicology Centre’s staff and students for the support they have given as a student in the Toxicology Program. I would also like to acknowledge Noland Henderson and Montreal Lake Cree Nation for proving whitefish from the Montreal Lake, SK. I would not have been able to complete this journey through my degree in a balanced way without the support and patience from my family and friends. To my husband, Rostyk Hursky, thank you for listening and helping with all the little things that add up to a lot - without your love, patience, and support this would have been a very difficult journey. To my Mom, step-Dad, and sister, Ulyana and parents-in-law- thank you for your kind words and guidance and for always being there when I needed you- I hope I have made you proud. Last but definitely not least, thanks to all my wonderful friends from Saskatoon and Toronto for continual support and comical relief. iv TABLE OF CONTENTS PERMISSION TO USE ................................................................................................................. i ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................ iv TABLE OF CONTENTS ............................................................................................................. v LIST OF TABLES ..................................................................................................................... viii LIST OF FIGURES ..................................................................................................................... ix LIST OF ABBREVIATIONS ...................................................................................................... x PREFACE .................................................................................................................................... xii 1.0 GENERAL INTRODUCTION ..................................................................................... 1 1.1 Selenium .......................................................................................................................... 1 1.1.1 Properties and sources ............................................................................................. 1 1.1.2 Toxicokinetics ........................................................................................................... 2 1.1.3 Deficiency ................................................................................................................. 4 1.1.4 Toxicity ...................................................................................................................... 5 1.1.5 Interactions with other metals .................................................................................. 9 1.1.6 Mechanisms of action and resistance ....................................................................... 9 1.2 Fish health parameters ................................................................................................ 13 1.2.1 Fulton’s condition factor ........................................................................................ 13 1.2.2 Hepatosomatic index ............................................................................................... 14 1.2.3 Gross energy ..........................................................................................................
Recommended publications
  • Twenty Thousand Parasites Under The
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Seasonal Changes in Host Phenotype Manipulation by an Acanthocephalan: Time to Be Transmitted?
    219 Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted? D. P. BENESH1*, T. HASU2,O.SEPPA¨ LA¨ 3 and E. T. VALTONEN2 1 Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plo¨n, Germany 2 Department of Biological and Environmental Science, POB 35, FI-40014 University of Jyva¨skyla¨, Finland 3 EAWAG, Swiss Federal Institute of Aquatic Science and Technology, and ETH-Zu¨rich, Institute of Integrative Biology (IBZ), U¨ berlandstrasse 133, PO Box 611, CH-8600, Du¨bendorf, Switzerland (Received 23 July 2008; revised 25 September and 7 October 2008; accepted 7 October 2008; first published online 18 December 2008) SUMMARY Many complex life cycle parasites exhibit seasonal transmission between hosts. Expression of parasite traits related to transmission, such as the manipulation of host phenotype, may peak in seasons when transmission is optimal. The acanthocephalan Acanthocephalus lucii is primarily transmitted to its fish definitive host in spring. We assessed whether the parasitic alteration of 2 traits (hiding behaviour and coloration) in the isopod intermediate host was more pronounced at this time of year. Refuge use by infected isopods was lower, relative to uninfected isopods, in spring than in summer or fall. Infected isopods had darker abdomens than uninfected isopods, but this difference did not vary between seasons. The level of host alteration was unaffected by exposing isopods to different light and temperature regimes. In a group of infected isopods kept at 4 xC, refuge use decreased from November to May, indicating that reduced hiding in spring develops during winter.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Anxiété Et Manipulation Parasitaire Chez Un Invertébré Aquatique : Approches Évolutive Et Mécanistique Marion Fayard
    Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique Marion Fayard To cite this version: Marion Fayard. Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique. Biodiversité et Ecologie. Université Bourgogne Franche-Comté, 2020. Français. NNT : 2020UBFCI006. tel-02940949v1 HAL Id: tel-02940949 https://tel.archives-ouvertes.fr/tel-02940949v1 Submitted on 16 Sep 2020 (v1), last revised 17 Sep 2020 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE PREPAREE A L’UNITE MIXTE DE RECHERCHE CNRS 6282 BIOGEOSCIENCES Ecole doctorale n°554 Environnement, Santé Doctorat des Sciences de la Vie Spécialité Ecologie Evolutive Par Fayard Marion _______________________________________________________________________________________ ANXIETE ET MANIPULATION PARASITAIRE CHEZ UN INVERTEBRE AQUATIQUE : APPROCHES EVOLUTIVE ET MECANISTIQUE Thèse présentée et soutenue à Dijon, le 28 Août 2020 Composition
    [Show full text]
  • Acanthocephalus Lucii
    Sayyaf Dezfuli et al. Parasites & Vectors (2018) 11:424 https://doi.org/10.1186/s13071-018-3002-6 RESEARCH Open Access Pike intestinal reaction to Acanthocephalus lucii (Acanthocephala): immunohistochemical and ultrastructural surveys Bahram Sayyaf Dezfuli1*, Luisa Giari1, Massimo Lorenzoni2, Antonella Carosi2, Maurizio Manera3 and Giampaolo Bosi4 Abstract Background: The Northern pike, Esox lucius, is a large, long-lived, top-predator fish species and occupies a broad range of aquatic environments. This species is on its way to becoming an important model organism and has the potential to contribute new knowledge and a better understanding of ecology and evolutionary biology. Very few studies have been done on the intestinal pathology of pike infected with helminths. The present study details the first Italian record of adult Acanthocephalus lucii reported in the intestine of E. lucius. Results: A total of 22 pike from Lake Piediluco (Central Italy) were examined, of which 16 (72.7%) were infected with A. lucii. The most affected areas of gastrointestinal tract were the medium and distal intestine. The intensity of infection ranged from 1 to 18 parasites per host. Acanthocephalus lucii penetrated mucosal and submucosal layers which had a high number of mast cells (MCs) with an intense degranulation. The cellular elements involved in the immune response within the intestine of pike were assessed by ultrastructural techniques and immunohistochemistry using antibodies against met-enkephalin, immunoglobulin E (IgE)-like receptor (FCεRIγ), histamine, interleukin-6, interleukin-1β, substance P, lysozyme, serotonin, inducible-nitric oxide synthase (i-NOS), tumor necrosis factor-α (TNF-α) and the antimicrobial peptide piscidin 3 (P3).
    [Show full text]
  • Parasite Responses to Pollution: What We Know and Where We Go in ‘Environmental Parasitology’ Bernd Sures1,2, Milen Nachev1*, Christian Selbach3 and David J
    Sures et al. Parasites & Vectors (2017) 10:65 DOI 10.1186/s13071-017-2001-3 REVIEW Open Access Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’ Bernd Sures1,2, Milen Nachev1*, Christian Selbach3 and David J. Marcogliese4,5 Abstract Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem
    [Show full text]
  • Approches Evolutive Et Mecanistique
    THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE PREPAREE A L’UNITE MIXTE DE RECHERCHE CNRS 6282 BIOGEOSCIENCES Ecole doctorale n°554 Environnement, Santé Doctorat des Sciences de la Vie Spécialité Ecologie Evolutive Par Fayard Marion _______________________________________________________________________________________ ANXIETE ET MANIPULATION PARASITAIRE CHEZ UN INVERTEBRE AQUATIQUE : APPROCHES EVOLUTIVE ET MECANISTIQUE Thèse présentée et soutenue à Dijon, le 28 Août 2020 Composition du Jury : Jean-Nicolas Beisel, Professeur, ENGEES, Université de Strasbourg Rapporteur Anne-Sophie Darmaillacq, Maître de Conférences, Université de Caen Rapporteure Jean-François Ferveur, Directeur de recherches CNRS, Université de Bourgogne Franche-Comté Examinateur Vincent Médoc, Maître de Conférences, Université de Saint-Etienne Examinateur Marie-Jeanne Perrot-Minnot, Maître de Conférences, Université de Bourgogne Franche-Comté Directrice Thierry Rigaud, Directeur de recherches CNRS, Université de Bourgogne Franche-Comté Examinateur - Président Titre : Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistque Mots clés : acanthocéphale, amphipode, comportement, état émotionnel, manipulation parasitaire, prédation Les parasites à transmission trophique sont connus pour les de transmission, est faible. Chez les individus sains, nous avons mis changements phénotypiques qu’ils induisent chez leurs hôtes. Ces en évidence, par une approche corrélationnelle, une variabilité changements sont
    [Show full text]
  • Effects of the Acanthocephalan Polymorphus Minutus And
    EVects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum Hui-Yu Chen1,2, ∗, Daniel S. Grabner2,∗, Milen Nachev2, Hsiu-Hui Shih1 and Bernd Sures2,3 1 Department of Life Science, National Taiwan University, Taipei, Taiwan 2 Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg–Essen, Essen, Germany 3 Department of Zoology, University of Johannesburg, Johannesburg, South Africa ∗ These authors contributed equally to this work. ABSTRACT Amphipods are commonly parasitized by acanthocephalans and microsporidians and co-infections are found frequently. Both groups of parasites are known to have severe eVects on their host. For example, microsporidians can modify host sex ratio and acanthocephalans can manipulate the behavior of the amphipod to promote transmission to the final host. TheseV e ects influence host metabolism in general and will also aVect the ability of amphipods to cope with additional stressors such as environmental pollution, e.g., by toxic metals. Here we tested the eVects of sub-lethal concentrations of cadmium on glycogen and lipid levels, as well as on the 70kDa heat shock protein (hsp70) response of field collected Gammarus fossarum, which were naturally infected with microsporidians and the acanthocephalan Polymorphus minutus. Infected and uninfected G. fossarum were exposed to a Submitted 13 August 2015 nominal Cd concentration of 4 µg/L, which resembled measured aqueous Cd ◦ Accepted 6 October 2015 concentration of 2.9 µg/L in reconstituted water for 7 d at 15 C in parallel to an Published 29 October 2015 unexposed control.
    [Show full text]
  • The Impact of Ponto Caspian Invaders on the Parasite Communities of Multiple Hosts Within West and Central European River Systems
    The impact of Ponto Caspian invaders on the parasite communities of multiple hosts within West and Central European river systems Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Biologie an der Universität Duisburg-Essen vorgelegt von Michael Andreas Alfred Hohenadler geboren in Troisdorf 3.10.2018 I am a firm believer, that without speculation there is no good and original observation. Charles Darwin Angaben zur Prüfung Die der vorliegenden Arbeit zugrundeliegenden Experimente wurden in der Abteilung für Aquatische Ökologie der Universität Duisburg-Essen durchgeführt. 1. Gutachter: Prof. Dr. Bernd Sures 2. Gutachter: PD Dr. Franz Jirsa 3. Gutachter: Vorsitzender des Prüfungsausschusses: Prof. Dr. Florian Leese Tag der mündlichen Prüfung: 20.12.2018 Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/47799 URN: urn:nbn:de:hbz:464-20191209-125038-9 Alle Rechte vorbehalten. Acknowledgements Foremost, I would like to express my sincere thanks to my advisor Bernd Sures for providing me with the opportunity to complete my PhD thesis at the University of Duisburg Essen, thanks for your continuous support, patience, motivation, immense knowledge, as well as for the many inspiring and humorous conversations. I could not have imagined a better mentor for my PhD study. Special thanks to Franz Jirsa who shared his knowledge, lab and house with me. Furthermore, I want to pronounce my gratitude to Milen Nachev who was very dedicated to his role as my secondary supervisor. Thanks for being there for me to exchange ideas and for the numerous motivating discussions.
    [Show full text]
  • Egg Morphology, Dispersal, and Transmission in Acanthocephalan Parasites: Integrating Phylogenetic and Ecological Approaches
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 8-20-2017 Egg morphology, dispersal, and transmission in acanthocephalan parasites: integrating phylogenetic and ecological approaches Alana C. Pfenning DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Pfenning, Alana C., "Egg morphology, dispersal, and transmission in acanthocephalan parasites: integrating phylogenetic and ecological approaches" (2017). College of Science and Health Theses and Dissertations. 272. https://via.library.depaul.edu/csh_etd/272 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Egg morphology, dispersal, and transmission in acanthocephalan parasites: integrating phylogenetic and ecological approaches A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science By: Alaina C. Pfenning June 2017 Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois ACKNOWLEDGEMENTS I feel an overwhelming amount of gratitude for the people I have met and worked with during my time at DePaul University. I would like to first thank DePaul University and the Biological Sciences Department for supporting my education and research. Next I would like to extend a large thank you to my cohort for their constant support over the last two years through classes, oral exams, interviews, and teaching adventures.
    [Show full text]
  • A Checklist of Alien and Cryptogenic Aquatic Species in Ireland
    Aquatic Invasions (2007) Volume 2, Issue 4: 341-366 DOI 10.3391/ai.2007.2.4.4 © 2007 The Author(s) Journal compilation © 2007 REABIC (http://www.reabic.net) This is an Open Access article Special issue “Alien species in European coastal waters” Geoff Boxshall, Ferdinando Boero and Sergej Olenin (Guest Editors) Research article A checklist of alien and cryptogenic aquatic species in Ireland Dan Minchin Marine Organism Investigations, Ballina, Killaloe, Co Clare, Ireland E-mail: [email protected] Received 14 May 2007; accepted in revised form 27 October 2007 Abstract One-hundred-and-twelve alien species are recorded for marine, brackish and freshwater environments in Ireland, of these sixty- eight are thought to be established. Their arrival has been mainly due to shipping, aquaculture and the ornamental industries. There are almost thirty species considered to be invasive and some that have arrived recently may have significant future impact. The majority of recorded alien species will have arrived since 1950. Usually these species appear in Britain or Northern Europe before occurring in Ireland. The majority of the marine species will have originated from the North Pacific Ocean whilst most of the freshwater species will have originally been sourced from North America. The sixty-three cryptogenic species arise out of the uncertainty of their origin or as to how they will have arrived. Ireland being a recently deglaciated island and separated from the continental land mass will have acquired the majority of its biota since the last glacial retreat making distinction between native and alien species more difficult. Key words: Ireland, Celtic Sea, aquatic species, introductions, alien, freshwater, marine, invasive, population status (Minchin 1996, 2004).
    [Show full text]