Effects of the Acanthocephalan Polymorphus Minutus And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Twenty Thousand Parasites Under The
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departament de Biologia Animal, Biologia Vegetal i Ecologia Tesis Doctoral Twenty thousand parasites under the sea: a multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean) Tesis doctoral presentada por Sara Maria Dallarés Villar para optar al título de Doctora en Acuicultura bajo la dirección de la Dra. Maite Carrassón López de Letona, del Dr. Francesc Padrós Bover y de la Dra. Montserrat Solé Rovira. La presente tesis se ha inscrito en el programa de doctorado en Acuicultura, con mención de calidad, de la Universitat Autònoma de Barcelona. Los directores Maite Carrassón Francesc Padrós Montserrat Solé López de Letona Bover Rovira Universitat Autònoma de Universitat Autònoma de Institut de Ciències Barcelona Barcelona del Mar (CSIC) La tutora La doctoranda Maite Carrassón Sara Maria López de Letona Dallarés Villar Universitat Autònoma de Barcelona Bellaterra, diciembre de 2016 ACKNOWLEDGEMENTS Cuando miro atrás, al comienzo de esta tesis, me doy cuenta de cuán enriquecedora e importante ha sido para mí esta etapa, a todos los niveles. -
Improving the Utilization of Data for Environmental Risk Assessment
STATISTICALECO(-TOXICO)LOGY IMPROVINGTHEUTILISATIONOFDATAFOR ENVIRONMENTALRISKASSESSMENT by eduard szöcs from zarneˇ ¸sti / romania Accepted Dissertation thesis for the partial fulfillment of the requirements for a Doctor of Natural Sciences Fachbereich 7: Natur- und Umweltwissenschaften Universität Koblenz-Landau Thesis examiners: Prof. Dr. Ralf B. Schäfer, University Koblenz-Landau Prof. Dr. Ralf Schulz, University Koblenz-Landau Assoc. Prof. Dr. Christian Ritz, University of Copenhagen Date of the oral examination: 25th January 2017 Galileo Few may hear Galileo’s song (calling) A tribulation Adversities Fuel for a living, feeds us all Spirit is fire Uncompromising Hidden hand, protect us from The dead and dying Echo his madness His heresy feeds us all Spirit is fire Uncompromising Hidden hand, protect us from The dead and dying Few may Spirit is fire Feed on the senseless ending Spirit is fire Feed on the senseless ending - Song by Maynard James Keenan ACKNOWLEDGMENTS I thank all the persons that supported me during my studies and this dissertation. My special thanks to my supervisor Prof. Dr. Ralf B. Schäfer for his support throughout the last six years. I am thankful for his openness to my ideas and the opportunities given to follow them, for organising funding throughout this dissertation, for pushing me to sound scientific writing and critical reading, for challenging discussions, not only on statistical eco(-toxico)logy but also outside of the subject area. Many thanks to Prof. Dr. Ralf Schulz for examining this thesis and his influence on me during my undergrad studies. Moreover, I thank Prof. Dr. Engelbert Niehaus for chairing the dissertation committee. Without the continuous support of my parents, Anca and Helmut, this thesis would not have been possible - Thank you! I am grateful to my colleagues, students and other people for asking me tough statistical questions. -
Freshwater Gammarus Species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda)
FRESHWATER GAMMARUS SPECIES FROM EUROPE, NORTH AFRICA AND ADJACENT REGIONS OF ASIA (CRUSTACEA-AMPHIPODA) PART II. GAMMARUS ROESELI-GROUP AND RELATED SPECIES by GORDAN S. KARAMAN Biological Institute, Titograd, Yugoslavia & SJOUK PINKSTER Institute of Taxonomic Zoology, University of Amsterdam, The Netherlands FRESHWATER GAMMARUS SPECIES FROM EUROPE, NORTH AFRICA AND ADJACENT REGIONS OF ASIA (CRUSTACEA-AMPHIPODA) PART II. GAMMARUS ROESELI-GROUP AND RELATED SPECIES by GORDAN S. KARAMAN Biological Institute, Tito grad, Yugoslavia 8Z SJOUK PINKSTER Institute of Taxonomic Zoology, University of Amsterdam, The Netherlands ABSTRACT 9) For all species complete lists of all studied localities 1) This part of the revision of the freshwater Gammarus are given (except for G. roeseli, for economical reasons), species deals with the G. roeseli-group. Members of this together with two maps in which the distribution is illus- artificial group are characterized by the presence of dorsal trated. processes (carinae) on the metasome segments. RESUME 2) A historical review is given from the first description of G. roeseli and the taxonomic confusion that followed, to 1) Cette deuxieme partie de la revision traite des Gam- the start of this study when 3 species and at least 15 sub- marus d'eau douce du groupe roeseli. Les membres de ce species were known. groupe artificiel sont caracterises par la presence de carenes 3) Where possible, the type material of all these taxa is dorsales sur les segments du metasome. re-examined and compared with hundreds of newly collected 2) Un apercu historique est donne des la premiere samples and material from all major museums in Europe. -
Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv, -
Crustacea-Arthropoda) Fauna of Sinop and Samsun and Their Ecology
J. Black Sea/Mediterranean Environment Vol. 15: 47- 60 (2009) Freshwater and brackish water Malacostraca (Crustacea-Arthropoda) fauna of Sinop and Samsun and their ecology Sinop ve Samsun illeri tatlısu ve acısu Malacostraca (Crustacea-Arthropoda) faunası ve ekolojileri Mehmet Akbulut1*, M. Ruşen Ustaoğlu2, Ekrem Şanver Çelik1 1 Çanakkale Onsekiz Mart University, Fisheries Faculty, Çanakkale-Turkey 2 Ege University, Fisheries Faculty, Izmir-Turkey Abstract Malacostraca fauna collected from freshwater and brackishwater in Sinop and Samsun were studied from 181 stations between February 1999 and September 2000. 19 species and 4 subspecies belonging to 15 genuses were found in 134 stations. In total, 23 taxon were found: 11 Amphipoda, 6 Decapoda, 4 Isopoda, and 2 Mysidacea. Limnomysis benedeni is the first time in Turkish Mysidacea fauna. In this work at the first time recorded group are Gammarus pulex pulex, Gammarus aequicauda, Gammarus uludagi, Gammarus komareki, Gammarus longipedis, Gammarus balcanicus, Echinogammarus ischnus, Orchestia stephenseni Paramysis kosswigi, Idotea baltica basteri, Idotea hectica, Sphaeroma serratum, Palaemon adspersus, Crangon crangon, Potamon ibericum tauricum and Carcinus aestuarii in the studied area. Potamon ibericum tauricum is the most encountered and widespread species. Key words: Freshwater, brackish water, Malacostraca, Sinop, Samsun, Turkey Introduction The Malacostraca is the largest subgroup of crustaceans and includes the decapods such as crabs, mole crabs, lobsters, true shrimps and the stomatopods or mantis shrimps. There are more than 22,000 taxa in this group representing two third of all crustacean species and contains all the larger forms. *Corresponding author: [email protected] 47 Malacostracans play an important role in aquatic ecosystems and therefore their conservation is important. -
Seasonal Changes in Host Phenotype Manipulation by an Acanthocephalan: Time to Be Transmitted?
219 Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted? D. P. BENESH1*, T. HASU2,O.SEPPA¨ LA¨ 3 and E. T. VALTONEN2 1 Department of Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plo¨n, Germany 2 Department of Biological and Environmental Science, POB 35, FI-40014 University of Jyva¨skyla¨, Finland 3 EAWAG, Swiss Federal Institute of Aquatic Science and Technology, and ETH-Zu¨rich, Institute of Integrative Biology (IBZ), U¨ berlandstrasse 133, PO Box 611, CH-8600, Du¨bendorf, Switzerland (Received 23 July 2008; revised 25 September and 7 October 2008; accepted 7 October 2008; first published online 18 December 2008) SUMMARY Many complex life cycle parasites exhibit seasonal transmission between hosts. Expression of parasite traits related to transmission, such as the manipulation of host phenotype, may peak in seasons when transmission is optimal. The acanthocephalan Acanthocephalus lucii is primarily transmitted to its fish definitive host in spring. We assessed whether the parasitic alteration of 2 traits (hiding behaviour and coloration) in the isopod intermediate host was more pronounced at this time of year. Refuge use by infected isopods was lower, relative to uninfected isopods, in spring than in summer or fall. Infected isopods had darker abdomens than uninfected isopods, but this difference did not vary between seasons. The level of host alteration was unaffected by exposing isopods to different light and temperature regimes. In a group of infected isopods kept at 4 xC, refuge use decreased from November to May, indicating that reduced hiding in spring develops during winter. -
Esox Lucius) Ecological Risk Screening Summary
Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri). -
Anxiété Et Manipulation Parasitaire Chez Un Invertébré Aquatique : Approches Évolutive Et Mécanistique Marion Fayard
Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique Marion Fayard To cite this version: Marion Fayard. Anxiété et manipulation parasitaire chez un invertébré aquatique : approches évolutive et mécanistique. Biodiversité et Ecologie. Université Bourgogne Franche-Comté, 2020. Français. NNT : 2020UBFCI006. tel-02940949v1 HAL Id: tel-02940949 https://tel.archives-ouvertes.fr/tel-02940949v1 Submitted on 16 Sep 2020 (v1), last revised 17 Sep 2020 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE PREPAREE A L’UNITE MIXTE DE RECHERCHE CNRS 6282 BIOGEOSCIENCES Ecole doctorale n°554 Environnement, Santé Doctorat des Sciences de la Vie Spécialité Ecologie Evolutive Par Fayard Marion _______________________________________________________________________________________ ANXIETE ET MANIPULATION PARASITAIRE CHEZ UN INVERTEBRE AQUATIQUE : APPROCHES EVOLUTIVE ET MECANISTIQUE Thèse présentée et soutenue à Dijon, le 28 Août 2020 Composition -
Molecular Data Suggest Multiple Origins and Diversification Times Of
www.nature.com/scientificreports OPEN Molecular data suggest multiple origins and diversifcation times of freshwater gammarids on the Aegean archipelago Kamil Hupało1,3*, Ioannis Karaouzas2, Tomasz Mamos1,4 & Michał Grabowski1 Our main aim was to investigate the diversity, origin and biogeographical afliations of freshwater gammarids inhabiting the Aegean Islands by analysing their mtDNA and nDNA polymorphism, thereby providing the frst insight into the phylogeography of the Aegean freshwater gammarid fauna. The study material was collected from Samothraki, Lesbos, Skyros, Evia, Andros, Tinos and Serifos islands as well as from mainland Greece. The DNA extracted was used for amplifcation of two mitochondrial (COI and 16S) and two nuclear markers (28S and EF1-alpha). The multimarker time- calibrated phylogeny supports multiple origins and diferent diversifcation times for the studied taxa. Three of the sampled insular populations most probably represent new, distinct species as supported by all the delimitation methods used in our study. Our results show that the evolution of freshwater taxa is associated with the geological history of the Aegean Basin. The biogeographic afliations of the studied insular taxa indicate its continental origin, as well as the importance of the land fragmentation and the historical land connections of the islands. Based on the fndings, we highlight the importance of studying insular freshwater biota to better understand diversifcation mechanisms in fresh waters as well as the origin of studied Aegean freshwater taxa. Te Mediterranean islands are considered natural laboratories of evolution, exhibiting high levels of diversity and endemism, making them a vital part of one of the globally most precious biodiversity hotspots and a model system for studies of biogeography and evolution1–4. -
Acanthocephalus Lucii
Sayyaf Dezfuli et al. Parasites & Vectors (2018) 11:424 https://doi.org/10.1186/s13071-018-3002-6 RESEARCH Open Access Pike intestinal reaction to Acanthocephalus lucii (Acanthocephala): immunohistochemical and ultrastructural surveys Bahram Sayyaf Dezfuli1*, Luisa Giari1, Massimo Lorenzoni2, Antonella Carosi2, Maurizio Manera3 and Giampaolo Bosi4 Abstract Background: The Northern pike, Esox lucius, is a large, long-lived, top-predator fish species and occupies a broad range of aquatic environments. This species is on its way to becoming an important model organism and has the potential to contribute new knowledge and a better understanding of ecology and evolutionary biology. Very few studies have been done on the intestinal pathology of pike infected with helminths. The present study details the first Italian record of adult Acanthocephalus lucii reported in the intestine of E. lucius. Results: A total of 22 pike from Lake Piediluco (Central Italy) were examined, of which 16 (72.7%) were infected with A. lucii. The most affected areas of gastrointestinal tract were the medium and distal intestine. The intensity of infection ranged from 1 to 18 parasites per host. Acanthocephalus lucii penetrated mucosal and submucosal layers which had a high number of mast cells (MCs) with an intense degranulation. The cellular elements involved in the immune response within the intestine of pike were assessed by ultrastructural techniques and immunohistochemistry using antibodies against met-enkephalin, immunoglobulin E (IgE)-like receptor (FCεRIγ), histamine, interleukin-6, interleukin-1β, substance P, lysozyme, serotonin, inducible-nitric oxide synthase (i-NOS), tumor necrosis factor-α (TNF-α) and the antimicrobial peptide piscidin 3 (P3). -
Establishing Realistic Test Settings in Aquatic Ecotoxicological Risk Assessments Mona Katharina Feiner
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Aquatische Systembiologie Establishing realistic test settings in aquatic ecotoxicological risk assessments Mona Katharina Feiner Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Johannes Kollmann Prüfer der Dissertation: 1. Prof. Dr. Jürgen Geist 2. Prof. Dr. Christian Laforsch Die Dissertation wurde am 23.03.2017 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 28.09.2017 angenommen. Table of Content LIST OF TABLES ................................................................................................................................... 5 LIST OF FIGURES .................................................................................................................................. 6 PREFACE ................................................................................................................................................ 8 ABSTRACT ............................................................................................................................................. 9 ZUSAMMENFASSUNG .......................................................................................................................... 11 1. GENERAL INTRODUCTION ....................................................................................... -
Parasite Responses to Pollution: What We Know and Where We Go in ‘Environmental Parasitology’ Bernd Sures1,2, Milen Nachev1*, Christian Selbach3 and David J
Sures et al. Parasites & Vectors (2017) 10:65 DOI 10.1186/s13071-017-2001-3 REVIEW Open Access Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’ Bernd Sures1,2, Milen Nachev1*, Christian Selbach3 and David J. Marcogliese4,5 Abstract Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem