Council-Certified Fire and Smoke Damage (Cfsx) Certification Program

Total Page:16

File Type:pdf, Size:1020Kb

Council-Certified Fire and Smoke Damage (Cfsx) Certification Program Council-certified Fire and Smoke Damage (CFSx) Certification Program Exam Study/Review Guide Rev. 4-2017 © 2016 American Council for Accredited Certification PO Box 1000 Yarnell AZ 85362 (888) 808-8381 www.acac.org ACAC would like to thank the following industry peers who have volunteered their expertise to ensure that this document reflects the domains of knowledge relevant to fire and smoke damage consulting and addressed by the CFSx examination. Brad Kovar Chair, CFSx Steering Committee Joseph McCann Chair, CFSx Study Review Guide Committee Servpro of Glendora/San Dimas Safeguard EnviroGroup, Inc. California California Eugenia Mirica, Ph.D. Daniel M. Baxter EMSL Analytical, Inc. Environmental Analysis Associates, Inc. New Jersey California & Michigan Patrick J. Moffett Dr. P. Chakravarty Blue Sky Environmental Consulting, Inc. Pasteur Laboratory California California Monica M. Oscarson Ernest R. Crutcher III MPH, CIH Microlab NW Premiere Environmental Consultants, Inc. Washington California Michael S. Dunlap Dr. Anton Shufutinsky Enterprise Restoration Services Merck & Co. Pennsylvania California Brian Noel Spiegel Kurt Grosz CR, CIEC, CMRS, CEICC, CSDS, CMCC KGA, Inc. IICRC Certified Master Fire/Smoke California Spiegel Property Damage Consulting and Robert W. Hawley, Jr. Forensics CIEC, CEICC, CMC, CMCC, CSDS, California CMRS, CEOP Joe Spurgeon, Ph.D. Environmental AirTechs Bayshore Environmental Massachusetts Georgia Bryan W. Kovar, CIEC Bruce White Safeguard EnviroGroup, Inc. American Environmental Specialists, Inc. California California Michael D. Larrañaga, Ph.D. CIH, CSP, PE Ramboll Environ Texas CFSx Exam Study/Review Guide 2 A Note on Acronyms ACAC’s fire and smoke damage certification program encompasses three examinations: Council-certified Fire and Smoke Damage Consultant (CFSC) Council-certified Fire and Smoke Damage Technician (CFST) Council-certified Fire and Smoke Damage Assistant Technician (CFSAT) This guide describes the knowledge base for all three of these examinations; references to individual certifications will therefore appear as “CFSx,” and should be understood to refer to all three designations. 3 American Council for Accredited Certification Disclaimer This document is designed to aid candidates in preparation for the Council-certified Fire and Smoke Damage (CFSx) certification examination. To this end, the document provides discussion of the domains of knowledge addressed by the exam and the exam topics identified by the CFSx certification board. These discussions are intended as guides to reading and study of the reference texts from which individual exam items are drawn. This document is neither a standard of care nor a field manual for Fire and Smoke Damage Consultants. ACAC disclaims all responsibility for actions taken by individuals based on statements contained herein. CFSx Exam Study/Review Guide 4 5 American Council for Accredited Certification CFSx EXAMINATION TOPICS General Knowledge ------------------------------------------------------------------------------ 8 Characteristics and Behavior of Fire 9 Structure Fires 10 Wildfires 11 Protein Fires (Cooking Activities) 12 Composition of Smoke --------------------------------------------------------------------------13 Particles 15 Char, Ash and Soot 15 Chemicals, Gases and Vapors 17 Distribution and Deposition of Particles --------------------------------------------------18 Temperature and Pressure 20 Rapid vs. Slow Combustion (Phase of Fire) 21 Exterior Particle Distribution Associated with Wildfire Exposure 22 Deposit Patterns -----------------------------------------------------------------------------------23 Smoke Webs and Smoke Chains 23 Ghosting 23 Nail Pop 24 Filtration Marks 24 Threshold Streaks 24 Selective Deposition 25 Site Characterization -----------------------------------------------------------------------------25 Information Gathering/Occupant Interviews 25 Interior and Exterior Surfaces 26 Visual Inspections 30 Smoke Odor 31 Olfactory perception 33 Occupant Exposures -----------------------------------------------------------------------------33 Sample Collection --------------------------------------------------------------------------------35 CFSx Exam Study/Review Guide 6 Sampling Strategies 35 Sampling Methods and Media 36 Tape Lifts 37 Wipes 38 Micro-Vacuuming 39 Sampling Airborne Particles 40 Sample Efficiencies 40 Background Sampling 41 Standards and Guidelines ----------------------------------------------------------------------42 Sample Analysis (Characterizing combustion sources) ------------------------------42 Polarized Light Microscopy (PLM) 43 Epi-Reflected Light Microscopy (RLM) 43 Electron Microscopy (TEM or SEM) 44 Energy-dispersive X-ray Spectrometry (EDX) 44 Other Laboratory Methods 44 pH Analysis 45 Particle Assemblage Analysis 45 Laboratory Terminology 46 Data Interpretation --------------------------------------------------------------------------------47 Elements of Investigator’s report ------------------------------------------------------------48 Remediation ---------------------------------------------------------------------------------------- 49 Initial Steps 50 Additional Procedures 50 Intense Cleaning 51 Ventilation Systems 51 Exterior Structures 52 Smoke Odor Restoration 52 Post-Remediation Verification ---------------------------------------------------------------53 Glossary of Fire and Smoke Damage Terms ---------------------------------------------54 7 American Council for Accredited Certification GENERAL KNOWLEDGE Fire is the rapid oxidation of a material in the exothermic chemical process of combustion, releasing heat, light and various reaction products. Fires start when a flammable or a combustible material, in combination with a sufficient quantity of an oxidizer such as oxygen gas or another oxygen-rich compound (though non- oxygen oxidizers exist), is exposed to a source of heat or ambient temperature above the flash point for the fuel/oxidizer mix. This process must be able to sustain a rate of rapid oxidation that produces a chain reaction. This is commonly called the fire tetrahedron. Fire cannot exist without all of these elements in place, and in the right proportions. For example, a flammable liquid will start burning only if the fuel and oxygen are in the right proportions. Some fuel- oxygen mixes may require a catalyst: a substance that is not consumed, when added, in any chemical reaction during combustion, and enables the reactants to combust more readily. Once ignited, a chain reaction must take place whereby fires can sustain their own heat by the further release of heat energy in the process. This combustion may propagate, provided there is a continuous supply of an oxidizer and fuel. If the oxidizer is oxygen from surrounding air, the presence of a force of gravity, or some similar force caused by acceleration, is necessary to produce convection. Convection removes combustion products and brings a supply of oxygen to the fire. Without gravity, a fire rapidly surrounds itself with its own combustion products and non-oxidizing gases from the air, which exclude oxygen and extinguish the fire. Of course, this does not apply if oxygen is supplied to the fire by some process other than thermal convection. CFSx Exam Study/Review Guide 8 Fire can be extinguished by removing any one of the elements of the fire tetrahedron. Consider a natural gas flame, such as from a stovetop burner. The fire can be extinguished by any of the following: • turning off the gas supply, which removes the fuel source • covering the flame completely, which smothers the flame as the combustion uses the available oxidizer (the oxygen in the air) and displaces it from the area around the flame with CO2 • application of water, which removes heat from the fire faster than the fire can produce it (similarly, blowing hard on a flame will displace the heat of the currently burning gas from its fuel source, to the same end) • application of a retardant chemical such as Halon to the flame, which retards the chemical reaction itself until the rate of combustion is too slow to maintain the chain reaction. Fire is intensified by increasing the overall rate of combustion. Methods to do this include: • balancing the input of fuel and oxidizer to stoichiometric proportions • increasing fuel and oxidizer input in this balanced mix • increasing the ambient temperature so the fire's own heat is better able to sustain combustion • providing a catalyst or; a non-reactant medium in which the fuel and oxidizer can more readily react. Characteristics and Behavior of Fires There are many types of fires and multitudes of causative factors. However, the CFSx study guide and exam will focus on structure fires, protein fires and wildfires. ACAC encourages CFSx candidates to familiarize themselves with additional fire types, their distinctive characteristics and behavior, and the proper investigative and analytical methods used to determine their impact and exposure risks. 9 American Council for Accredited Certification Structure Fires Overall, structure fires continue to account for the vast majority of civilian casualties in fire related events. National Fire Protection Association (NFPA) estimates show that while residential structure fires account for only 25 percent of fires nationwide, they account for a disproportionate share of losses: 83 percent of fire deaths, 77 percent of fire injuries and 64 percent of direct dollar losses. Structure fires can be caused by one or more complex chains of events, including
Recommended publications
  • Copyrighted Material
    1 Historical Milieu 1.1 Organophosphorus Nerve Agents 2 1.2 Blister Agents 5 1.3 Sternutator Agents 11 1.4 Chemical Weapons Convention (CWC) 13 1.4.1 Schedule of Chemicals 14 1.4.2 Destruction of Chemical Weapons 14 References 16 COPYRIGHTED MATERIAL Analysis of Chemical Warfare Degradation Products, First Edition. Karolin K. Kroening, Renee N. Easter, Douglas D. Richardson, Stuart A. Willison and Joseph A. Caruso. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. 2 ANALYSIS OF CHEMICAL WARFARE DEGRADATION PRODUCTS 1.1 ORGANOPHOSPHORUS NERVE AGENTS Organophosphorus (OP) type compounds, that is, deriva- tives containing the P=O moiety, were first discovered in the 1800s when researchers were investigating useful applica- tions for insecticides/rodenticides. There are many derivatives of organophosphorus compounds, however, the OP deriva- tives that are typically known as ‘nerve agents’ were discov- ered accidentally in Germany in 1936 by a research team led by Dr. Gerhard Schrader at IG Farben [1–4]. Schrader had noticed the effects and lethality of these organophosphorus compounds towards insects and began developing a new class of insecticides. While working towards the goal of an improved insecticide, Schrader experimented with numerous phosphorus-containing compounds, leading to the discovery of the first nerve agent, Tabun (or GA) (Figure 1.1). The potency of these insecticides towards humans was not realized until there was yet another accident, which involved a Tabun spill. Schrader and coworkers began experiencing symptoms, such as miosis (constriction of the pupils of the eyes), dizziness and severe shortness of breath, with numerous effects lasting several weeks [1, 4, 5].
    [Show full text]
  • A Toxicological Review of the Products of Combustion
    HPA-CHaPD-004 A Toxicological Review of the Products of Combustion J C Wakefield ABSTRACT The Chemical Hazards and Poisons Division (CHaPD) is frequently required to advise on the health effects arising from incidents due to fires. The purpose of this review is to consider the toxicity of combustion products. Following smoke inhalation, toxicity may result either from thermal injury, or from the toxic effects of substances present. This review considers only the latter, and not thermal injury, and aims to identify generalisations which may be made regarding the toxicity of common products present in fire smoke, with respect to the combustion conditions (temperature, oxygen availability, etc.), focusing largely on the adverse health effects to humans following acute exposure to these chemicals in smoke. The prediction of toxic combustion products is a complex area and there is the potential for generation of a huge range of pyrolysis products depending on the nature of the fire and the conditions of burning. Although each fire will have individual characteristics and will ultimately need to be considered on a case by case basis there are commonalities, particularly with regard to the most important components relating to toxicity. © Health Protection Agency Approval: February 2010 Centre for Radiation, Chemical and Environmental Hazards Publication: February 2010 Chemical Hazards and Poisons Division £15.00 Chilton, Didcot, Oxfordshire OX11 0RQ ISBN 978-0-85951- 663-1 This report from HPA Chemical Hazards and Poisons Division reflects understanding and evaluation of the current scientific evidence as presented and referenced in this document. EXECUTIVE SUMMARY The Chemical Hazards and Poisons Division (CHaPD) is frequently required to advise on the health effects arising from incidents due to fires.
    [Show full text]
  • Health Aspects of Biological and Chemical Weapons
    [cover] WHO guidance SECOND EDITION WORLD HEALTH ORGANIZATION GENEVA DRAFT MAY 2003 [inside cover] PUBLIC HEALTH RESPONSE TO BIOLOGICAL AND CHEMICAL WEAPONS DRAFT MAY 2003 [Title page] WHO guidance SECOND EDITION Second edition of Health aspects of chemical and biological weapons: report of a WHO Group of Consultants, Geneva, World Health Organization, 1970 WORLD HEALTH ORGANIZATION GENEVA 2003 DRAFT MAY 2003 [Copyright, CIP data and ISBN/verso] WHO Library Cataloguing-in-Publication Data ISBN xxxxx First edition, 1970 Second edition, 2003 © World Health Organization 1970, 2003 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]
  • Medical Aspects of Chemical Warfare
    Medical Diagnostics Chapter 22 MEDICAL DIAGNOSTICS † ‡ § BENEDICT R. CAPACIO, PHD*; J. RICHARD SMITH ; RICHARD K. GORDON, PHD ; JULIAN R. HAIGH, PHD ; JOHN ¥ ¶ R. BARR, PHD ; AND GENNADY E. PLATOFF JR, PHD INTRODUCTION NERVE AGENTS SULFUR MUSTARD LEWISITE CYANIDE PHOSGENE 3-QUINUCLIDINYL BENZILATE SAMPLE CONSIDERATIONS Summary * Chief, Medical Diagnostic and Chemical Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 3100 Rickets Point Road, Aberdeen Proving Ground, Maryland 21010-5400 † Chemist, Medical Diagnostic and Chemical Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 3100 Rickets Point Road, Aberdeen Proving Ground, Maryland 21010-5400 ‡ Chief, Department of Biochemical Pharmacology, Biochemistry Division, Walter Reed Army Institute of Research, 503 Robert Grant Road, Silver Spring, Maryland 20910-7500 § Research Scientist, Department of Biochemical Pharmacology, Biochemistry Division, Walter Reed Army Institute of Research, 503 Robert Grant Road, Silver Spring, Maryland 20910-7500 ¥ Lead Research Chemist, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop F47, Atlanta, Georgia 30341 ¶ Colonel, US Army (Retired); Scientific Advisor, Office of Biodefense Research, National Institute of Allergies and Infectious Disease, National Institutes of Health, 6610 Rockledge Drive, Room 4069, Bethesda, Maryland 20892-6612 691 Medical Aspects of Chemical Warfare INTRODUCTION In the past, issues associated with chemical war- an
    [Show full text]
  • FIREDOC Vocabulary List, 3Rd Edition
    FIREDOC Vocabulary List, 3rd Edition II^STT United states Department of Commerce XI I National Institute of Standards and Technology NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 DATE DUE Demco, inc. 38-293 NIST Special Publication 779 FIREDOC Vocabulary List, 3rd Edition Nora H. Jason Center for Fire Research National Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NBSIR 85-3231 and NBSIR 87-3545) February 1990 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1990 of Documents Special Publication 779 U.S. Government Printing Office (Supersedes NBSIR 85-3231 Washington, DC 20402 and NBSIR 87-3545) Natl. Inst. Stand. Technol. Spec. Publ. 779 104 pages (Feb. 1990) CODEN: NSPUE2 Contents Acknowledgments v Introduction 1 Symbol Notation 1 Terms Beginning with A 3 Terms Beginning with B 11 Terms Beginning with C 15 Terms Beginning with D 23 Terms Beginning with E 29 Terms Beginning with F 33 Terms Beginning with G 43 Terms Beginning with H 45 Terms Beginning with I 51 Terms Beginning with J 55 Terms Beginning with K 57 Terms Beginning with L 59 Terms Beginning with M 63 Terms Beginning with N 69 Terms Beginning with O 71 Terms Beginning with P 73 Terms Beginning with Q 81 Terms Beginning with R 83 Terms Beginning with S 87 iii Terms Beginning with T 95 Terms Beginning with U 101 Terms Beginning with V 103 Terms Beginning with W 105 Terms Beginning with X 107 Terms Beginning with Y 109 Terms Beginning with Z Ill iv Acknowledgments Richard D.
    [Show full text]
  • Literature and Model Study on Absorption Routes of Toxic Substances in Smoke Caused by Fire
    Literature and model study on absorption routes of toxic substances in smoke caused by fire Report date 10 May 2017 Project leader and contact Jolanda Willems MBA, certified toxicologist and occupational hygienist (Coöperatie PreventPartner), [email protected] Performance of research Jolanda Willems MBA, certified toxicologist and occupational hygienist (Coöperatie PreventPartner) Dr. Ellen Wissink, certified occupational hygienist (Coöperatie PreventPartner) Dr Remko Houba, occupational hygienist and researcher (IRAS, NKAL and Coöperatie PreventPartner) Dr. Frans Greven, registered toxicologist-researcher, GAGS, GGD Groningen Client This study was carried out by Coöperatie PreventPartner on behalf of the Institute for Physical Safety (IFV). Contact at the IFV: Ronald Heus 1 Summary The Institute for Physical Safety (IFV) has asked the centre of Expertise on Toxic Substances of PreventPartner to provide insight into the most common substances that are released in a fire, what effects these substances can cause in the body and which absorption routes are relevant. An underlying question from the fire service for this study to consider is whether the measures that are now being taken to minimise risks are effective. This study only focuses on the potential hazards of substances that occur in fire smoke. However, the potential dangers of substances in fire smoke in themselves have no bearing on the actual risk of these substances in fire situations. To answer the study questions, the following steps have been taken: 1. Selection of the most important (hazardous) substances that can occur in fire smoke. 2. Classification of substances by exposure route (through respiratory tract, skin and mouth) and single/repeated exposure. 3.
    [Show full text]
  • Utilization of Various Analogy of Synthetic Nanoporous Zeolites and Composite of Zeolites for Decontamination/Detoxification of CWA Simulants—An Updated Review
    International Journal of Nonferrous Metallurgy, 2019, 8, 35-71 https://www.scirp.org/journal/ijnm ISSN Online: 2168-2062 ISSN Print: 2168-2054 Utilization of Various Analogy of Synthetic Nanoporous Zeolites and Composite of Zeolites for Decontamination/Detoxification of CWA Simulants—An Updated Review Neeraj Kumar*, Kautily Rao Tiwari, Km. Meenu, Arti Sharma, Adya Jain, Shikha Singh, Radha Tomar School of Studies in Chemistry, Jiwaji University, Gwalior, India How to cite this paper: Kumar, N., Tiwari, Abstract K.R., Meenu, Km., Sharma, A., Jain, A., Singh, S. and Tomar, R. (2019) Utilization In this review, we summaries the past few year work on the chemistry of of Various Analogy of Synthetic Nanopor- CWA’s and their simulants on various heterogeneous surfaces of zeolites, ous Zeolites and Composite of Zeolites for composites of zeolites and doped zeolite with transition metal oxides. This Decontamination/Detoxification of CWA Simulants—An Updated Review. Interna- review elaborates an updated literature overview on the degradation of tional Journal of Nonferrous Metallurgy, 8, CWA’s and its simulants. The data written in this review were collected from 35-71. the peer-reviewed national and international literature. https://doi.org/10.4236/ijnm.2019.84004 Keywords Received: May 4, 2019 Accepted: October 27, 2019 Zeolite, Composites, Adsorption, Decontamination, Metal Oxide, CWA, Published: October 30, 2019 Simulants Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International 1. Introduction License (CC BY 4.0). 1.1. Zeolites http://creativecommons.org/licenses/by/4.0/ Open Access Zeolites were first of all observed in 1756 by a Swedish mineralogist, Fredish Cronstedt.
    [Show full text]
  • Perfluoroisobutylene Interim Document
    1 Interim: Sep-2010 2 3 4 5 ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) 6 FOR 7 PERFLUOROISOBUTYLENE (PFIB) 8 9 (CAS Reg. No. 382-21-8) 10 11 C4F8 12 13 14 15 16 INTERIM 17 18 PERFLUOROISOBUTYLENE(PFIB) InterimSep-2010/Page2of43 1 2 3 4 ACUTE EXPOSURE GUIDELINE LEVELS (AEGLs) 5 FOR 6 PERFLUOROISOBUTYLENE (PFIB) 7 (CAS Reg. No. 382-21-8) 8 9 10 11 12 PROPOSED 13 14 15 16 17 18 19 20 21 PERFLUOROISOBUTYLENE(PFIB) InterimSep-2010/Page3of43 1 2 3 4 PREFACE 5 6 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 7 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous 8 Substances (NAC/AEGL Committee) has been established to identify, review and interpret 9 relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic 10 chemicals. 11 12 AEGLs represent threshold exposure limits for the general public and are applicable to 13 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels – AEGL-1, 14AEGL-2 and AEGL-3 C are developed for each of five exposure periods (10 and 30 minutes, 1 15 hour, 4 hours, and 8 hours) and are distinguished by varying degrees of severity of toxic effects. 16 The three AEGLs are defined as follows: 17 18 AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per 19cubic meter [ppm or mg/m3]) of a substance above which it is predicted that the general 20 population, including susceptible individuals, could experience notable discomfort, irritation, or 21 certain asymptomatic, non-sensory effects.
    [Show full text]
  • WO 2015/200485 Al 30 December 2015 (30.12.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/200485 Al 30 December 2015 (30.12.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every G01N 1/22 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 15/037423 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 24 June 2015 (24.06.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/016,739 25 June 2014 (25.06.2014) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: BATTELLE MEMORIAL INSTITUTE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [US/US]; 505 King Avenue, Columbus, Ohio 43201-2696 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (US).
    [Show full text]
  • The Prophylactic and Therapeutic Effects of Cholinolytics on Perfluoroisobutylene Inhalation Induced Acute Lung Injury
    Journal of J Occup Health 2005; 47: 277–285 Occupational Health The Prophylactic and Therapeutic Effects of Cholinolytics on Perfluoroisobutylene Inhalation Induced Acute Lung Injury Tianhong ZHANG1, Xigang ZHANG2, Zhihua SHAO3, Rigao DING1, Shunjiang YANG3, Jinxiu RUAN1, Xiaohong SUN1, Jin XU3, Chunqian HUANG1, Zuliang HU3 and Xianchang ZHANG1 1Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 2307 Hospital and 3Quhua Hospital, Quhua Group Corporation, P. R. China Abstract: The Prophylactic and Therapeutic Effects cholinolytics might have prophylactic and therapeutic of Cholinolytics on Perfluoroisobutylene Inhalation roles in PFIB inhalation induced ALI. Induced Acute Lung Injury: Tianhong ZHANG, et al. (J Occup Health 2005; 47: 277–285) Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, P. R. China— Key words: Perfluoroisobutylene (PFIB), Acute lung Perfluoroisobutylene (PFIB) is a kind of fluoro-olefin injury (ALI), Cholinolytics, 3-Quinuclidinyl Benzilate that is ten times more toxic than phosgene. The (QNB), Anisodamine mechanisms of the acute lung injury (ALI) induced by PFIB inhalation remain unclear. To find possible Perfluoroisobutylene (PFIB), a colorless gas at normal pharmacological interventions, mice and rats were temperature, is a kind of fluoro-olefin that is ten times exposed to PFIB, and the prophylactic or therapeutic more toxic than phosgene1). It is usually generated as a effects of 3-quinuclidinyl benzilate (QNB) and by-product during the manufacture or the pyrolysis of anisodamine were studied and confirmed. It was polytetrafluoroethylene (PTFE), which is widely known observed that the wet lung/body weight and the dry lung/body weight ratios at 24 h after PFIB exposure by its trade name Teflon.
    [Show full text]
  • Chemical Warfare Agents
    Agent Reference Common Name Looks/State Dispersion Odour Symptoms GA TABUN Colourless or Brown Liquid Liquid/Gas Fruity Pinpoint pupils, runny nose, drooling, coughing, GB SARIN Colourless Liquid Liquid/Gas Odourless tightness in chest, muscle twitching, nausea GD SOMAN Colourless Liquid Liquid/Gas Camphor (Mothballs) convulsions, coma, death. V Series Nerve Agents GF CYCLOSARIN Colourless Liquid Liquid/Gas Sweet & Musty `Novichok Series´ Nerve Substance 33, A230, A232, VX VX Colourless Liquid Liquid/Gas Odourless A234 etc., agents that were designed NOT to be VE (VX) Colourless Liquid Liquid/Gas Odourless detected by conventional Detection, Identification VG AMITON or TETRAM Colourless Liquid Liquid/Gas Odourless and Monitoring (DIM) equipment. VM EDEMO Colourless Liquid Liquid/Gas Odourless CG PHOSGENE Colourless Gas Yellow Gas Strong smell of Wood/Hay Coughing, eye, nose, throat Liquid irritation shortness of breath, frothy secretions CHEMICAL DP DIPHOSGENE Colourless Liquid Vapour/Liquid Strong smell of Wood a feeling of suffocating or drowning, death CL CHLORINE Yellow/Green Gas Gas Bleach AMMONIA/AZANE Colourless Gas Liquid/Gas Strong Urine smell Choking WARFARE DISULPHUR DECAFLUORIDE Colourless Gas Liquid/Gas PERFLUOROISOBUTENE Colourless Gas Liquid/Gas ACROLEIN/PROPENAL Colourless Liquid Acrid smell of Burned Fat AGENTS DIPHENYLCYANOARSINE CX PHOSGENE OXIME Solid Aerosol Unpleasant Watery and itchy eyes, runny nose, hoarseness ED ETHYLDICLOROARSINE Liquid Liquid/Aerosol Fruity or hacking cough, initial redness of skin, followed The following descriptions include odour. HD DISTILLED MUSTARD Colourless or Yellow Liquid Liquid/Gas Mustard/Garlic by blisters. HL MUSTARD-LEWISITE Liquid Liquid Mustard/Garlic Mustard has NO immediate DO NOT and NEVER intentionally smell/sniff effect. unknown chemicals.
    [Show full text]
  • Supplementary Information Cocrystal Design by Network-Based Link Prediction
    Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Cocrystal design by network-based link prediction Jan-Joris Devogelaer, Sander J.T. Brugman, Hugo Meekes, Paul Tinnemans, Elias Vlieg, René de Gelder Table of Contents S1 Materials and syntheses page 1 S2 Single-crystal X-ray structure determinations, ORTEP plots and H-Bonding page 6 a) CCDC 1940959 = p1812d: 4,4’-bipyridine + resorcinol b) CCDC 1940950 = p1823c: 1,2-di(4-pyridyl)ethylene + 4-aminobenzoic acid c) CCDC 1940956 = p1823a: 1,2-di(4-pyridyl)ethylene + 4-aminobenzoic acid dihydrate d) CCDC 1940954 = p1907a: 1,2-di(4-pyridyl)ethylene + sebacic acid e) CCDC 1940949 = p1818a: 4,4’-bipyridine + suberic acid f) CCDC 1940953 = p1922b: 1,2-di(4-pyridyl)ethylene + oxalic acid g) CCDC 1940955 = p1914b: 1,2-di(4-pyridyl)ethylene + oxalic acid dihydrate i) CCDC 1940951 = p1908a: 1,2-bis(4-pyridyl)ethane + salicylic acid j) CCDC 1940958 = p1926b: 1,2-di(4-pyridyl)ethylene + 4-nitrobenzoic acid k) CCDC 1940952 = p1910a: 1,2-di(4-pyridyl)ethylene + phthalic acid l) CCDC 1940957 = p1913a: 1,2-di(4-pyridyl)ethylene + malonic acid S3 Top 100 predictions of the scoring method page 17 S4 Predefined lists of common solvents and gases page 21 S1 - Materials and syntheses We first present the materials in Table S1, after which we discuss the protocol used to obtain crystals suitable for single-crystal X-ray diffraction. Besides the two-component structures shown in Table 2, an additional cocrystal dihydrate (c) and salt dihydrate (g) were found.
    [Show full text]