Bioenergy and Water

Total Page:16

File Type:pdf, Size:1020Kb

Bioenergy and Water Bioenergy and Water Editors: J.F. Dallemand & P.W. Gerbens-Leenes 2013 Report EUR 26160 EN European Commission Joint Research Centre Institute for Energy & Transport Contact information J.F.Dallemand Address: Joint Research Centre, Via Enrico Fermi 2749, TP 450, 21027 Ispra (VA), Italy E-mail: [email protected] Tel.: +39 0332 789937 http://ec.europa.eu/dgs/jrc Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/. JRC84632 EUR 26160 EN ISBN 978-92-79-33188-6 (print) ISBN 978-92-79-33187-9 (pdf) ISSN 1018-5593 (print) ISSN 1831-9424 (online) doi:10.2790/94637 Luxembourg: Publications Office of the European Union, 2013 © European Union, 2013 Reproduction is authorised provided the source is acknowledged. Printed in Italy Bioenergy and water Table of contents - Foreword, JF Dallemand, European Commission, Joint Research Centre, W.Gerbens Leenes, Twente University, The Netherlands - The Biofuel and Bioenergy Roadmaps of the International Energy Agency, A.Eisentraut, International Energy Agency (IEA) Paris……………………………… page 3 - EU framework, Renewable Energy Directive and the quantitative targets from the NREAPs (National Renewable Energy Action Plans) of the 27 European Union Member States N.Scarlat, JF Dallemand, European Commission, Joint Research Centre …………. page 15 - Bioenergy & Water, Challenges & opportunities, G.Berndes, Chalmers University of Technology, Sweden……………………………... page 49 - Water footprint quantification of energy at global level, W.Gerbens Leenes, Twente University, The Netherlands……………………………… page 61 - Agrofuels and water in Argentina, A.Anschau, A.Acevedo, Centro de Investigación en Recursos Naturales, Argentina page 77 - Bioenergy & water: Brazilian sugar cane ethanol, F.Scarpare, Brazilian Bioethanol Science & Technology Laboratory, CTBE, Campinas, Brazil……………………………………………………………………………. page 89 - Hydrological consequences of jatropha on waste lands in developing countries, S.Wani, International Crops Research Institute for the Semi-Arid Tropics, ICRISAT, India ……………………………………………………………………………… page 103 -Water Impact of French biofuels development at the 2030 horizon, J.F.Bonnet, Université de Bordeaux D.Lorne IFP Energies Nouvelles, Rueil-Malmaison, France ………………………… page 117 - Bioenergy & water in Australia, B.George, University of New England and New South Wales, Australia …………… page 143 - Impact of land use change due to bioenergy on regional hydrology, C.Bernacchi, University of Illinois, Urbana Champaign/Energy Bioscience Institute, USA ……………………………………………………………………………….. page 159 - Mapping the potential water use of biofuel feedstock production in South Africa, R.Kunz, G.Jewitt, Centre for Water Resources Research, University of KwaZulu- Natal, Pietermaritzburg, South Africa …………………………………………………... page 173 - The water footprint of biofuels from microalgae, W.Gerbens Leenes, Twente University, The Netherlands …………………………….. page 191 - EU Legislative tools to protect water resources, F.Bouraoui, European Commission, Joint Research Centre ………………………… page 201 - U.S. Federal and State Water Laws’ Impact on Bioenergy Policy, J.Endres, University of Illinois, Urbana Champaign/Energy Bioscience Institute .. page 211 - Certification systems and other schemes for bioenergy-related water impacts, H.Fehrenbach, IFEU, Institute for Energy and Environment, Heidelberg, Germany …………………………………………………………………………………….. page 225 - Bioenergy & water: Doing the right thing ? A literature review, M.Banja, JF Dallemand, European Commission, Joint Research Centre …………. page 243 Foreword An important challenge in the twenty-first century is to supply the growing world population that requires more and more energy per person with sufficient energy. Today, this energy supply is mainly based on fossil energy carriers that have large drawbacks, like the impact on climate change and the depletion of the resources. Renewable energy, for example wind energy, solar energy or bioenergy, might be important energy sources in the future. Bioenergy is renewable energy from organic material. It corresponds to three main feedstock categories (agriculture, forestry & waste) for three main uses (transport, heat & electricity). The development of bioenergy is often considered as a positive option due to its contribution to the mitigation of climate change, agricultural and rural development, energy security and innovation policies. Nevertheless, concerns have been raised during the last few years about risks or bad practices, sometimes evolving into large scale controversy, especially in relation to greenhouse gas emissions. The need to ensure that bioenergy development will be based on sustainable water management is in our view essential, taking into account the need to increase food production and to simultaneously accommodate other uses of water resources, both for quantity & quality. This publication thus contains data and information related to methodologies of impact assessment, practical case studies, scenario analysis, discussion of sustainability certification schemes, all focusing on bioenergy & water. This publication has been prepared as a follow-up of the Session on Bioenergy & Water of the Sixth World Water Forum (Marseille, 2012). This document was prepared by the Joint Research Centre of the European Commission, with the support of the University of Twente (the Netherlands) and of the International Energy Agency Bioenergy Task 43 (Biomass Feedstock for Energy Markets). This Report is based on voluntary contributions and we wish to thank all the contributors from Argentina, Australia, Brazil, the European Commission, France, Germany, India, the International Energy Agency, the Netherlands, South Africa, Sweden, the United States, for their availability and their scientific input. We do hope this document will become a useful reference for those interested in the sustainability of bioenergy and will contribute to the diffusion of good practices of water management at global, national or local level. J.F. Dallemand (European Commission Joint Research Centre) P.W. Gerbens Leenes (University of Twente) The Biofuel and Bioenergy Roadmaps of the International Energy Agency A.Eisentraut International Energy Agency, Renewable Energy Division, 9 Rue de la Fédération, 75739, Paris Cedex 15, France Abstract Bioenergy is the largest source of renewable energy today and can provide heat, electricity, as well as transport fuels. The Technology Roadmaps Bioenergy for Heat and Power, and Biofuels for Transport highlight the importance of bioenergy in providing renewable electricity, heat in buildings and in industry, as well as low-carbon biofuels in the transport sector. The roadmaps envisage world total primary bioenergy supply increasing from 50 EJ today to 160 EJ in 2050, with 100 EJ of this for generation of heat and power. By 2050 bioenergy could provide 3 000 TWh of electricity, i.e. 7.5% of world electricity generation. In addition heat from bioenergy could provide 22 EJ (15% of total) of final energy consumption in industry and 24 EJ (20% of total) in the buildings sector in 2050. Biofuels could provide 32 EJ of low-carbon fuels, meeting 27% of world transport fuels demand in 2050. In total this could provide 3.6 Gt CO2-equivalent (CO2-eq.) emission savings per year in 2050 compared to a business-as-usual scenario, if the feedstock can be produced sustainably and used efficiently, with very low life-cycle GHG emissions. The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further research and development (R&D) efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions. 1. Background Current trends in energy supply and use are unsustainable–economically, environmentally and socially, and International Energy Agency (IEA) analysis shows that without decisive action, energy-related greenhouse gas (GHG) emissions could more than double by 2050, and energy security could be seriously compromised in many regions (IEA, 2012). To address these challenges, the IEA, at the request of the G8, is developing a series of technology roadmaps for some of the most important low-carbon technologies needed to reduce global energy- 1 related CO2 emissions by 50% in 2050 compared to 2005 levels. The basis for all roadmaps is the 2°C scenario (2DS) developed for the IEA publication Energy Technology Perspectives (IEA, 2012). Two recently published roadmaps are focussing on Biofuels for Transport and Bioenergy for Heat and Power. Each roadmap develops a growth path for the covered technologies from today to 2050, and identifies technology, financing, policy and public engagement milestones that need to be achieved to realise the technology’s full potential (for more information and to download the roadmaps
Recommended publications
  • Confederated Tribes of the Umatilla Indian Reservation P.O
    Revised CTUIR RENEWABLE ENERGY FEASIBILITY STUDY FINAL REPORT June 20, 2005 Rev.October 31, 2005 United States Government Department of Energy National Renewable Energy Laboratory DE-FC36-02GO-12106 Compiled under the direction of: Stuart G. Harris, Director Department of Science & Engineering Confederated Tribes of the Umatilla Indian Reservation P.O. Box 638 Pendleton, Oregon 97801 2 Table of Contents Page No. I. Acknowledgement 5 II. Summary 6 III. Introduction 12 III-1. CTUIR Energy Uses and Needs 14 III-1-1. Residential Population – UIR 14 III-1-2. Residential Energy Use – UIR 14 III-1-3. Commercial and Industrial Energy Use – UIR 15 III-1-4. Comparison of Energy Cost on UIR with National Average 16 III-1-5. Petroleum and Transportation Energy Usage 16 III-1-6. Electrical Power Needs – UIR 17 III-1-7. State of Oregon Energy Consumption Statistics 17 III-1-8 National Energy Outlook 17 III-2. Energy Infrastructure on Umatilla Indian Reservation 19 III-2-1. Electrical 20 III-2-2. Natural Gas 21 III-2-3. Biomass Fuels 21 III-2-4. Transportation Fuels 21 III-2-5. Other Energy Sources 21 III-3. Renewable Energy Economics 21 III-3-1. Financial Figures of Merit 21 III-3-2. Financial Structures 22 III-3-3. Calculating Levelized Cost of Energy (COE) 23 III-3-4. Financial Model and Results 25 IV. Renewable Energy Resources, Technologies and Economics – In-and-Near the UIR 27 IV-1 Biomass Resources 27 IV-1-1. Resource Availability 27 IV-1-1-1. Forest Residues 27 IV-1-1-2.
    [Show full text]
  • Estimating Babassu Palm Density Using Automatic Palm Tree Detection
    Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images Alessio Moreira dos Santos, Danielle Mitja, Eric Delaître, Laurent Demagistri, Izildinha de Souza Miranda, Thérèse Libourel Rouge, Michel Petit To cite this version: Alessio Moreira dos Santos, Danielle Mitja, Eric Delaître, Laurent Demagistri, Izildinha de Souza Miranda, et al.. Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images. Journal of Environmental Management, Elsevier, 2017, 193, pp.40 - 51. 10.1016/j.jenvman.2017.02.004. ird-01715147 HAL Id: ird-01715147 https://hal.ird.fr/ird-01715147 Submitted on 22 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Estimating babassu palm density using automatic palm tree detection with very high 2 spatial resolution satellite images 3 Alessio Moreira dos Santos ab*, Danielle Mitjac, Eric Delaîtrec, Laurent Demagistric, Izildinha de 4 Souza Mirandaa, Thérèse Libourelc, Michel Petitd. 5 6 a. Universidade Federal Rural da Amazonia (UFRA), CP.917, Belém, Pará, 66077-530, Belém, 7 Brazil. [email protected], [email protected] 8 b. Universidade Federal do Sul e Sudeste do Pará (UNIFESSPA), Folha 31, Quadra 07, Lote 9 Especial, Nova Marabá, 68507-590, Marabá, Brazil.
    [Show full text]
  • Coconut Genetic Resources
    Coconut Genetic Resources Pons Batugal, V. Ramanatha Rao and Jeffrey Oliver, editors i COCONUT GENETIC RESOURCES The International Plant Genetic Resources Institute (IPGRI) is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 Future Harvest Centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Improving Livelihoods in Commodity-based Systems. The international status of IPGRI is conferred under an Establishment Agreement which, by January 2005, had been signed by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Norway, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovakia, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for IPGRI’s research is provided by more than 150 donors, including governments, private foundations and international organizations. For details of donors and research activities please see IPGRI’s Annual Reports, which are available in printed form on request from [email protected] or from IPGRI’s Web site (www.ipgri.cgiar.org).
    [Show full text]
  • Fire, Cattle and Soil Characteristics Affect Regeneration of Attalea Phalerata in a Forest-Savannah Mosaic
    Fire, cattle and soil characteristics affect regeneration of Attalea phalerata in a forest-savannah mosaic Iris Hordijk February 2017 Fire, cattle and soil characteristics affect regeneration of Attalea phalerata in a forest-savannah mosaic MSc thesis by Iris E. Hordijk, MSc student Forest and Nature Conservation, Wageningen University February 2017 FEM 80436 Supervisor: Prof.dr.ir. L. Poorter, Forest Ecology and Forest Management Group, Wageningen University External supervisor: T. Boorsma Msc, Barba Azul Nature Reserve Coordinator, Asociación Armonía, Santa Cruz, Bolivia The MSc report may not be copied in whole or in parts without the written permission of the author and the chair group. ii Table of contents Summary ................................................................................................................................................. iv Introduction ............................................................................................................................................. 1 Factors influencing the life cycle of A. phalerata ................................................................................ 2 Methods .................................................................................................................................................. 5 Study area ............................................................................................................................................ 5 Biology of Attalea phalerata ...............................................................................................................
    [Show full text]
  • Production of Palm Oil in Indonesia
    www.oeko.de Universitas Padjadjaran (UNPAD) Indonesia Faculty of Agriculture Production of Palm Oil in Indonesia Country-focused commodity analysis in the context of Freiburg/Bandung, the Bio-Macht project. February 2019 Project-ID: 031B0235B Final Report Authors Head Office Freiburg P.O. Box 17 71 79017 Freiburg Tobias Schleicher, Oeko-Institut e.V. Street address Inga Hilbert, Oeko-Institut e.V. Merzhauser Strasse 173 Andreas Manhart, Oeko-Institut e.V. 79100 Freiburg Tel. +49 761 45295-0 Dr. Klaus Hennenberg, Oeko-Institut e.V. Dr. Ernah, Universitas Padjadjaran Office Berlin Shella Vidya, Universitas Padjadjaran Schicklerstrasse 5-7 10179 Berlin Ismi Fakhriya, Universitas Padjadjaran Tel. +49 30 405085-0 Office Darmstadt Rheinstrasse 95 64295 Darmstadt Tel. +49 6151 8191-0 [email protected] www.oeko.de Country Partner Faculty of Agriculture, Universitas Padjadjaran Alan Raya Bandung-Sumedang km 21 Jatinangor Sumedang 45363 West Java Indonesia Telephone +62 (22) 7796316 Cooperation Partner Prof. Dr. Lena Partzsch Sustainability Governance University of Freiburg Tennenbacher Str. 4 79106 Freiburg Germany Production of palm oil in Indonesia Table of Contents List of Figures 6 List of Tables 7 List of Abbreviations 9 Abstract 10 1. Introduction 10 2. About Palm Oil 12 2.1. Climate and Soils of Oil Palm Plantations 12 2.2. The Life-Cycle of Oil Palms and Oil Palm Plantations 12 2.2.1. Seed germination and planting 12 2.2.2. Growth and development 13 2.2.3. Maintenance 14 2.2.4. Harvesting 14 2.2.5. Use of fertilizers, pesticides and alternatives 15 2.3. Processing, Refining & Outputs 16 2.4.
    [Show full text]
  • Journal of the International Palm Society Vol. 60(4) Dec. 2016 the INTERNATIONAL PALM SOCIETY, INC
    Cellebratiing 60 Years Palms Journal of the International Palm Society Vol. 60(4) Dec. 2016 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Ray Hernandez, 4315 W. San Juan Street, Miami, Florida 33199 USA, e-mail [email protected], tel. Tampa, Florida 33629 USA, e-mail 1-305-348-1247. [email protected], tel. 1-813-832-3561. Associate Editor: Natalie Uhl. Vice-Presidents: Jeff Brusseau, 1030 Heather Dr., Vista, California 92084 USA, e-mail Guidelines for authors are available on request from [email protected], tel. 1-760-271-8003. the Editors, or on-line at: Kim Cyr, PO Box 60444, San Diego, California 92166- www.palms.org/palms_author_guidelines.cfm 8444 USA, e-mail [email protected], tel.
    [Show full text]
  • Non-Timber Forest Products in Brazil: a Bibliometric and a State of the Art Review
    sustainability Review Non-Timber Forest Products in Brazil: A Bibliometric and a State of the Art Review Thiago Cardoso Silva * , Emmanoella Costa Guaraná Araujo, Tarcila Rosa da Silva Lins , Cibelle Amaral Reis, Carlos Roberto Sanquetta and Márcio Pereira da Rocha Department of Forestry Engineering and Technology, Federal University of Paraná, 80.210-170 Curitiba, Brazil; [email protected] (E.C.G.A.); [email protected] (T.R.d.S.L.); [email protected] (C.A.R.); [email protected] (C.R.S.); [email protected] (M.P.d.R.) * Correspondence: [email protected]; Tel.: +55-8199-956-6178 Received: 4 July 2020; Accepted: 22 August 2020; Published: 2 September 2020 Abstract: Non-timber forest products (NTFPs) are a consolidated source of income and acquisition of inputs from forest environments. Therefore, the objective of this work was to carry out a collection of publications on NTFPs in Brazil, until 2019, available in the Scopus database, presenting a bibliometric review and the state of the art of this theme from the evaluation of these publications, discussing the challenges of Brazilian legislation on NTFPs. After screening the articles of interest, 196 documents were evaluated, in which they were observed institutions and authors, analyzing networks of citations and terms used, areas of forest sciences and sciences that encompass the most explored biomes and the most studied species. The results showed that the concern to research on NTFPs in Brazil began in the 1990s, with an increase in the number of publications over the years. Besides that, the research on NTFPs is multidisciplinary, with emphasis on the areas of Agricultural and Biological Sciences and Environmental Science.
    [Show full text]
  • PHENOLOGY, BIOMETRICS and FRUITS PRODUCTION of Attalea
    Facultad de Ciencias ACTA BIOLÓGICA COLOMBIANA Departamento de Biología http://www.revistas.unal.edu.co/index.php/actabiol Sede Bogotá ARTÍCULO DE INVESTIGACIÓN / RESEARCH ARTICLE BOTÁNICA PHENOLOGY, BIOMETRICS AND FRUITS PRODUCTION OF Attalea nucifera (ARECACEAE) IN COLOMBIA FENOLOGÍA, PARÁMETROS BIOMÉTRICOS Y PRODUCTIVIDAD DE FRUTOS DE Attalea nucifera (ARECACEAE) EN COLOMBIA Ivón Jiménez-Morera1 , Néstor García1 1Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 – 62, Bogotá, Colombia *For correspondence: [email protected] Received: 06th February 2019, Returned for revision: 03rd May 2019, Accepted: 28th May 2019. Associate Editor: Xavier Marquínez-Casas. Citation/Citar este artículo como: Jiménez-Morera I, García N. Phenology, biometrics and fruits production of Attalea nucifera (Arecaceae) in Colombia. Acta biol. Colomb. 2020;25(1):104-111. DOI: http://dx.doi.org/10.15446/abc.v25n1.77701 ABSTRACT Attalea nucifera is a threatened palm endemic to the Magdalena River basin in Colombia. In the past its seeds were consumed by the inhabitants of the town of Guaduas, Cundinamarca, although currently its use is less frequent. To assess the productive potential of this palm, we studied its phenology, biometric parameters, and fruit productivity in a forest relict in Guaduas. Field work was carried out between April 2016 and March 2017. The reproductive cycle of this species lasted approximately 12 and a half months from bud to fruit ripening. Although bud production occurred throughout the year, it increased during periods of greatest rainfall. Flowering peaks occurred towards the end of the rainy season and fruits ripened towards the period of low rainfall. We found a positive correlation between the number of leaves in the crown and the production of reproductive structures (rs = 0.447, p = 0.004).
    [Show full text]
  • Attalea Speciosa) | Feedipedia
    Babassu (Attalea speciosa) | Feedipedia Animal feed resources Feedipedia information system Home About Feedipedia Team Partners Get involved Contact us Babassu (Attalea speciosa) Automatic translation Description Nutritional aspects Nutritional tables References Sélectionner une langue ​▼ Click on the "Nutritional aspects" tab for recommendations for ruminants, pigs, poultry, rabbits, horses, fish and crustaceans Feed categories All feeds Forage plants Cereal and grass forages Legume forages Forage trees Aquatic plants Common names Other forage plants Plant products/by-products Babassu, babassu palm [English]; babassou [French]; babasú, palma babasu [Spanish]; babaçu, babaçú, cusí, baguaçu, Cereal grains and by-products auaçu, aguaçu, guaguaçu, uauaçu, coco-de-macaco, coco-de-palmeira, coco-naiá, coco-pindoba, palha-branca [Portuguese]; Legume seeds and by-products Babassupalme [German]; ババス [Japanese] Oil plants and by-products Fruits and by-products Products: Roots, tubers and by-products babassu oil meal, babassu oil cake Sugar processing by-products babassu mesocarp Plant oils and fats Other plant by-products Feeds of animal origin Species Animal by-products Attalea speciosa Mart. ex Spreng. [Arecaceae] Dairy products/by-products Animal fats and oils Synonyms Insects Other feeds Orbignya barbosiana Burret, Orbignya huebneri Burret, Orbignya martiana Barb. Rodr., Orbignya oleifera Burret, Orbignya Minerals phalerata Mart., Orbignya speciosa (Mart. ex Spreng.) Barb. Rodr. Other products Feed categories Latin names Plant products and by-products Oil plants and by-products Plant and animal families Plant and animal species Related feed(s) Resources Description Broadening horizons Babassu (Attalea speciosa Mart. ex Spreng.) is an erect perennial evergreen palm, reaching up a height of 15 to 30 m. The Literature search trunk is slender, ringed with leaf scars, 20-50 cm in diameter.
    [Show full text]
  • Traditional Knowledge in Policy and Practice
    United Nations University Press is the publishing arm of the United Nations University. UNU Press publishes scholarly and policy-oriented books and periodicals on the issues facing the United Nations and its peoples and member states, with particular emphasis upon international, regional and transboundary policies. The United Nations University was established as a subsidiary organ of the United Nations by General Assembly resolution 2951 (XXVII) of 11 December 1972. It functions as an international community of scholars engaged in research, postgraduate training and the dissemination of knowledge to address the pressing global problems of human survival, development and welfare that are the concern of the United Nations and its agencies. Its activities are devoted to advancing knowledge for human security and development and are focused on issues of peace and governance and environment and sustainable development. The Univer- sity operates through a worldwide network of research and training centres and programmes, and its planning and coordinating centre in Tokyo. Traditional knowledge in policy and practice Traditional knowledge in policy and practice: Approaches to development and human well-being Edited by Suneetha M. Subramanian and Balakrishna Pisupati © United Nations University, 2010 The views expressed in this publication are those of the authors and do not nec- essarily reflect the views of the United Nations University. United Nations University Press United Nations University, 53-70, Jingumae 5-chome, Shibuya-ku, Tokyo 150-8925, Japan Tel: +81-3-5467-1212 Fax: +81-3-3406-7345 E-mail: [email protected] general enquiries: [email protected] http://www.unu.edu United Nations University Office at the United Nations, New York 2 United Nations Plaza, Room DC2-2062, New York, NY 10017, USA Tel: +1-212-963-6387 Fax: +1-212-371-9454 E-mail: [email protected] United Nations University Press is the publishing division of the United Nations University.
    [Show full text]
  • Aspectos Etnobotânicos Da Palmeira Babaçu (Attalea Speciosa Mart. Ex Spreng.) Em Comunidades Extrativistas No Piauí, Nordeste Do Brasil
    ISSN 1981-1268 SILVA ET AL. (2017) 196 http://dx.doi.org/10.21707/gs.v11.n03a15 ASPECTOS ETNOBOTÂNICOS DA PALMEIRA BABAÇU (ATTALEA SPECIOSA MART. EX SPRENG.) EM COMUNIDADES EXTRATIVISTAS NO PIAUÍ, NORDESTE DO BRASIL MAURICIO EDUARDO CHAVES E SILVA1*; ETHYÊNNE MORAES BASTOS1;JOSÉ RODRIGUES DE ALMEIDA NETO1; KELLY POLYANA PEREIRA DOS SANTOS 1; FÁBIO JOSÉ VIEIRA2; ROSELI FARIAS MELO DE BARROS3 1Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal do Piauí (UFPI), Teresina, Piauí, Brasil. 2 Professor da Universidade Estadual do Piauí – UESPI, Campus Professor Barros Araújo, Picos,Piauí, Brasil. 3Professora da Universidade Federal do Piauí (UFPI), Campus Universitário Ministro Petrônio Portella, Departamento de Biologia, Teresina, Piauí, Brasil. * Autor para correspondência: [email protected] Recebido em 17 de janeiro de 2016. Aceito em 25 de novembro de 2016. Publicado em 29 de julho de 2017. RESUMO - O babaçu (A. speciosa) é uma das espécies de palmeiras que mais se destacam em fornecer produtos úteis para o homem. Dada sua importância para várias populações locais, o presente trabalho teve por objetivo investigar os aspectos etnobotânicos do babaçu em três comunidades extrativistas do município de Esperantina no estado do Piauí, Brasil. Foram avaliados os diversos usos da espécie, quais as partes da planta de maior interesse, e a relação que existe entre a palmeira e as atividades socioeconômicas praticadas pelos extrativistas. Para tanto, foram realizadas 43 entrevistas semi-estruturadas com informantes chaves e coletadas informações sobre dados socioeconômicos e etnoconhecimento da espécie. Os dados foram analisados considerando-se as categorias de uso, os índices de valor para parte da planta (PPV) e valor da diversidade de uso (UD).
    [Show full text]
  • 1 Ornamental Palms
    1 Ornamental Palms: Biology and Horticulture T.K. Broschat and M.L. Elliott Fort Lauderdale Research and Education Center University of Florida, Davie, FL 33314, USA D.R. Hodel University of California Cooperative Extension Alhambra, CA 91801, USA ABSTRACT Ornamental palms are important components of tropical, subtropical, and even warm temperate climate landscapes. In colder climates, they are important interiorscape plants and are often a focal point in malls, businesses, and other public areas. As arborescent monocots, palms have a unique morphology and this greatly influences their cultural requirements. Ornamental palms are over- whelmingly seed propagated, with seeds of most species germinating slowly and being intolerant of prolonged storage or cold temperatures. They generally do not have dormancy requirements, but do require high temperatures (30–35°C) for optimum germination. Palms are usually grown in containers prior to trans- planting into a field nursery or landscape. Because of their adventitious root system, large field-grown specimen palms can easily be transplanted. In the landscape, palm health and quality are greatly affected by nutritional deficien- cies, which can reduce their aesthetic value, growth rate, or even cause death. Palm life canCOPYRIGHTED also be shortened by a number of MATERIAL diseases or insect pests, some of which are lethal, have no controls, or have wide host ranges. With the increasing use of palms in the landscape, pathogens and insect pests have moved with the Horticultural Reviews, Volume 42, First Edition. Edited by Jules Janick. 2014 Wiley-Blackwell. Published 2014 by John Wiley & Sons, Inc. 1 2 T.K. BROSCHAT, D.R. HODEL, AND M.L.
    [Show full text]