Magnitude of Crustal Extension Across the Northern Basin and Range Province: Constraints from Paleomagnetism

Total Page:16

File Type:pdf, Size:1020Kb

Magnitude of Crustal Extension Across the Northern Basin and Range Province: Constraints from Paleomagnetism Earth and Planetary Sctence l.etter~'. 75 (1985) 93. 10() 93 Elsevier Science Publishers B.V.. Amsterdam - Printed in The Netherlands [41 Magnitude of crustal extension across the northern Basin and Range province: constraints from paleomagnetism Nicholas L. Bogen t,, and Richard A. Schweickert 2 I Department of Geological Sciences, Unioersit.v of Michigan, A nn Arhor. MI 48109 (U.S.A. ) e Mackay SchoolofMines. Unioersi(v of Net;aria at Reno, Reno. NV89557 (U.S.A.) Received December 8. 1984; revised version received March 30. 1985 The magnitude of crustal extension across the northern Basin and Range province is a matter of longstanding controversy; estimates range from 10 to 3009~,. Recently published estimates of extension across the southern Basin and Range province (36°N) are in the range of 80-100%. Thus, the larger values suggested for the northern part of the province (40°N) seem to require substantial counterclockwise rotation of the Sierra Nevada during 'l-ertiary extension. Paleomagnetic data from the range, however, limit rotation to 4 + 10 ° at the 95~ confidence level. These limits. combined with estimates of extension near the Garlock fault, allow severe constraints to be placed on the magnitude of extension across more northerly parts of the province. We conclude that the maximum extension at 40°N is about 50%. and that values of 39 5- 12q~ (188 + 43 km) are likely. I. Introduction ber of north-striking, planar normal faults. In such models, reasonable dip-slip displacements on the The continental crust beneath the Basin and faults yield values of extension across the entire Range province (Fig. 1) has undergone a large province of 10-20% [4-7]. Hamilton and Myers amount of extension during Cenozoic time and [8] pointed out that listric normal faults with the extension is continuing at present. The magnitude same throw as planar faults would produce greater of extension is not well known, however, particu- extension and they speculated that as much as larly in the northern part of the province; esti- 300% extension might have occurred across the mates range widely from 10 to 300%. More precise northern Basin and Range. More recently, estimates arc required to understand the structural Wernicke [9] and Allmendinger ct al. [10] have evolution of the Basin and Range province and, in demonstrated the existence of low-angle normal general, the uplift, subsidence and rifting of ex- faults in the northern Basin and Range, but neither tended continental lithosphere. In contrast, the the number of these faults nor their displacements magnitude of shortening strains across large re- are well known. To determine the magnitude of gions of the crust have been known for some time extension across the Basin and Range from crustal in at least a few areas, for example, the Idaho- structure alone, it would be necessary to know the Wyoming and southern Canadian overthrust belts location, dip and displacement of all of the normal [1,2]. Yet, few similar data have been available for faults. regions characterized by extensional strains, de- Recently, Wernicke et al. [11] showed that there spite the importance of such strains in studies of has been a minimum of 65% (140 km) of east-west continental basin and plateau formation [3]. extension across the southern part of the Basin Early estimates of the magnitude of crustal and Range, just north of the Garlock fault (Fig. 1). extension across the northern part of the Basin They compared the distances between various geo- and Range province were based largely on simple logic features north of the fault with the distances models of crustal structure involving a large num- between correlative features to the south where little or no extension has occurred since the end of * New address: Woodv,'ard-(.'lyde Consultants, 201 Wil- Miocene time. Their result is the first estimate of Iowbrook Boulevard. p.o. Box 290. Wayne. NJ 07470. U.S.A. extension in the region that is not tied to a model 0t)12-821X/85/$03.30 :' 1985 Elsevier Science Publishers B.V. 94 \ Sierra Nevada has rotated counterclockwise. From this test, we are able to constrain the magnitude of crustal extension across the northern Basin and SRP Range province. A similar method relating block .i : , rotation to extension has been applied by Le Pichon and Angelier [15] to estimate the extension across the Aegean Sea, although they did not use paleomagnetic data to constrain the accompanying °+ n_ovc, rotation of the Aegean arc. Frei et al. [16] also have studied the rotation of the Sierra Nevada in conjunction with rotations of other crustal blocks to the northwest, including the Klamath Moun- tains and Oregon Coast Range. Their principal concern was the paleogeographic and tectonic evolution of the continental margin during Ceno- zoic time but also included the westward move- ment of the Sierra Nevada block. In contrast, the main purpose of this study is to determine some of the large-scale structural properties of extending continental crust and therefore, our methods, as- sumptions and data are different from and inde- pendent of theirs. Yet, we note that our main conclusion regarding the magnitude of extension Fig. 1. Generalized map of the Basin and Range province. bounded by the Sierra Nevada (SN). Snake River plain (SRP), across the northern part of the Basin and Range Colorado plateau (CP) and Garlock fault (GF). A rotation of province is not substantially different and the two the Sierra Nevada bkv,:k about a pole shown here at its south- approaches are mutually st, pportive, in large part. ern end (the location is not critical) of 23 ° counterclockwise would cause 185 km more east-west extension at 40°N than at 2. Paleomagnetism 36°N. Paleomagnctic data, however, allow countercltx:kwise rotation up to 6 ° . which would produce at most 48 km more east-west extension at 40°N than at 36°N. Paleomagnetic data have been collected from five formations in the western Sierra Nevada metamorphic belt (Fig. 2). The formations range of the crustal structure. in age from Mississippian to Late Jurassic: four of The width of the Basin and Range province the units are volcanic and one is a mafic dike increases from about 325 km at 36°N to about 680 swarm. In the far-northern Sierra Nevada, the km at 40°N (Fig. 1). This observation led Ham- Mississipian Taylor and Permian Reeve Forma- ilton and Myers [8] to suggest that extension in the lions record northwesterly, normal magnetizations north has been far greater than in the south. They based on plots of stepwise demagnetization data noted that such differential extension would re- [17]. Linear trajectories on vector-endpoint di- quire the northern Sierra Nevada to have moved agrams indicate that a single component is pre- westward more than the southern part of the range, sent. Formation mean directions and paleomag- resulting in a significafft counterclockwise rotation nctic pole positions are listed in Table 1. Similar (Fig. 1). Their suggestion seems reasonable in light magnetization directions are present in three of paleomagnetic evidence of rotations in other Jurassic formations in the central part of the west- regions of far-western North America during Ter- ern belt, including the Lower Jurassic Penon tiary time, although these rotations are generally Blanco Formation, the Callovian-Oxfordian Log- considered to have occurred in a clockwise direc- town Ridge Formation and the Oxfordian Sonora tion [12--14]. In the following, we use dike swarm (Table 1, [18]). These formation means paleomagnetic data from the Sierra Nevada and were also determined by regression analysis of Colorado plateau to test the hypothesis that the vector end-point diagrams, largely from thermal- 95 ---'T £,o 119" Sonora dikes bear no marked cleavage or foliation I in contrast to the other units which yielded only a Me/ones Fault i single component of magnetization. Mr" Tcyior ~ Reeve fm Si~es Demagnetization studies of the Reeve and Taylor Formations in alternating fields (AF) indi- cate that the remanence is of low coercivity with ' T-:::--- : ,4) nof Area f,; stable end-point directions obtained between 15 -12 and 30 mT [17]. AF demagnetization did not Z J2 ._ break down the remanence of most samples of the M-;- three Jurassic units, however, and thus, thermal 0 5 ~m demagnetization was employed. Negative fold tests from both the northern and central Sierra and a conglomerate test of pillow z_ \ breccia from the Logtown Ridge Formation indi- cate that the northwesterly magnetization is sec- \. ondary [17,18]. There is no firm upper limit on the \ R~dge Frn Sties age of magnetization yet, all of the units were folded and metamorphosed to low-greenschist -38°~onorf3 DJkes "~04 / #.& facies during the Late Jurassic Nevadan orogeny, .CSFT the youngest structural-metamorphic event to have Penon L3fanco occurred in the region and the only such event to Frn S;fes Sonora Fault have affected all of the units studied [19]. We ~eiones Fautt suggest, as did tIannah and Verosub [17]. that the secondary magnetizations formed during the -!'°. Nevadan metamorphic culmination, after folding but during final development of the foliation. This Fig. 2. Paleomagnetic sampling sites in the western metamor- point is discussed further below. phic belt of the Sierra Nevada, California. Taylor and Reeve The Nevadan orogeny is one of the most tightly Formation sites are from [17] and the remainder are from [18]. bracketed deformational-metamorphic events Mz and Pz indicate Mesozoic and Paleozoic rocks, respec- tively. known. Folded strata are as young as early Kim- meridgian and folds and cleavages are cut by plutons as old as late Kimmeridgian [19,20]. The demagnetization data. metamorphic culmination is late tectonic and Thermal demagnetism studies revealed a broad therefore is of late Kimmeridgian age, although it range of unblocking temperatures for each of the may have extended into the early Tithonian Age as five formations.
Recommended publications
  • Slip Rate of the Western Garlock Fault, at Clark Wash, Near Lone Tree Canyon, Mojave Desert, California
    Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California Sally F. McGill1†, Stephen G. Wells2, Sarah K. Fortner3*, Heidi Anderson Kuzma1**, John D. McGill4 1Department of Geological Sciences, California State University, San Bernardino, 5500 University Parkway, San Bernardino, California 92407-2397, USA 2Desert Research Institute, PO Box 60220, Reno, Nevada 89506-0220, USA 3Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W Dayton St., Madison, Wisconsin 53706, USA 4Department of Physics, California State University, San Bernardino, 5500 University Parkway, San Bernardino, California 92407-2397, USA *Now at School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S. Oval Mall, Columbus, Ohio 43210, USA **Now at Department of Civil and Environmental Engineering, 760 Davis Hall, University of California, Berkeley, California, 94720-1710, USA ABSTRACT than rates inferred from geodetic data. The ously published slip-rate estimates from a simi- high rate of motion on the western Garlock lar time period along the central section of the The precise tectonic role of the left-lateral fault is most consistent with a model in which fault (Clark and Lajoie, 1974; McGill and Sieh, Garlock fault in southern California has the western Garlock fault acts as a conju- 1993). This allows us to assess how the slip rate been controversial. Three proposed tectonic gate shear to the San Andreas fault. Other changes as a function of distance along strike. models yield signifi cantly different predic- mechanisms, involving extension north of the Our results also fi ll an important temporal niche tions for the slip rate, history, orientation, Garlock fault and block rotation at the east- between slip rates estimated at geodetic time and total bedrock offset as a function of dis- ern end of the fault may be relevant to the scales (past decade or two) and fault motions tance along strike.
    [Show full text]
  • Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
    Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault.
    [Show full text]
  • Regional Tectonic Systems of the Pacific Northwest Delineated from ERTS-1 Imagery
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1975 Regional tectonic systems of the Pacific Northwest delineated from ERTS-1 imagery Linda Kay Wackwitz The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Wackwitz, Linda Kay, "Regional tectonic systems of the Pacific Northwest delineated from ERTS-1 imagery" (1975). Graduate Student Theses, Dissertations, & Professional Papers. 7103. https://scholarworks.umt.edu/etd/7103 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. APR 1 6 1984 (iETo;,pr<i a 1384 ' r' r: ^ REGIONAL TECTONIC SYSTEMS OF THE PACIFIC NORTHWEST DELINEATED FROM ERTS-1 IMAGERY by Linda K. Wackwitz B.A. Colby College, 1972 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1975 Approved by Chairman, Board of Examiners / ^ f - / - - -- Dean, Graduate School I ,y. Date UMI Number: EP37904 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands
    The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands David Coblentz Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM Abstract—While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky Islands region is located near the actively deforming plate margin of the Western United States that has seen active and diverse tectonics spanning more than 300 million years, many aspects of which are preserved in the present-day geology. This tectonic history has played a fundamental role in the development and nature of the topography, bedrock geology, and soil distribution through the region that in turn are important factors for understanding the biodiversity. Consideration of the geologic and tectonic history of the Sky Islands also provides important insights into the “deep time” factors contributing to present-day biodiversity that fall outside the normal realm of human perception. in the North American Cordillera between the Sierra Madre Introduction Occidental and the Colorado Plateau – Southern Rocky The “Sky Island” region of the Madrean Archipelago (lo- Mountains (figure 1). This part of the Cordillera has been cre- cated between the northern Sierra Madre Occidental in Mexico ated by the interactions between the Pacific, North American, and the Colorado Plateau/Rocky Mountains in the Southwest- Farallon (now entirely subducted under North America) and ern United States) is an area of exceptional biodiversity and has Juan de Fuca plates and is rich in geology features, including become an important study area for geoecology, biology, and major plateaus (The Colorado Plateau), large elevated areas conservation management.
    [Show full text]
  • Garlock Fault: an Intracontinental Transform Structure, Southern California
    GREGORY A. DAVIS Department of Geological Sciences, University of Southern California, Los Angeles, California 90007 B. C. BURCHFIEL Department of Geology, Rice University, Houston, Texas 77001 Garlock Fault: An Intracontinental Transform Structure, Southern California ABSTRACT Sierra Nevada. Westward shifting of the north- ern block of the Garlock has probably contrib- The northeast- to east-striking Garlock fault uted to the westward bending or deflection of of southern California is a major strike-slip the San Andreas fault where the two faults fault with a left-lateral displacement of at least meet. 48 to 64 km. It is also an important physio- Many earlier workers have considered that graphic boundary since it separates along its the left-lateral Garlock fault is conjugate to length the Tehachapi-Sierra Nevada and Basin the right-lateral San Andreas fault in a regional and Range provinces of pronounced topogra- strain pattern of north-south shortening and phy to the north from the Mojave Desert east-west extension, the latter expressed in part block of more subdued topography to the as an eastward displacement of the Mojave south. Previous authors have considered the block away from the junction of the San 260-km-long fault to be terminated at its Andreas and Garlock faults. In contrast, we western and eastern ends by the northwest- regard the origin of the Garlock fault as being striking San Andreas and Death Valley fault directly related to the extensional origin of the zones, respectively. Basin and Range province in areas north of the We interpret the Garlock fault as an intra- Garlock.
    [Show full text]
  • Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6263-6276, MAY 10, 1986 Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift PAUL MORGAN1 Departmentof Geosciences,Purdue University,West Lafayette, Indiana WILLIAM R. SEAGER Departmentof Earth Sciences,New Mexico State University,Las Cruces MATTHEW P. GOLOMBEK Jet PropulsionLaboratory, CaliforniaInstitute of Technology,Pasadena Careful documentationof the Cenozoicgeologic history of the Rio Grande rift in New Mexico reveals a complexsequence of events.At least two phasesof extensionhave been identified.An early phase of extensionbegan in the mid-Oligocene(about 30 Ma) and may have continuedto the early Miocene (about 18 Ma). This phaseof extensionwas characterizedby local high-strainextension events (locally, 50-100%,regionally, 30-50%), low-anglefaulting, and the developmentof broad, relativelyshallow basins, all indicatingan approximatelyNE-SW •-25ø extensiondirection, consistent with the regionalstress field at that time.Extension events were not synchronousduring early phase extension and were often temporally and spatiallyassociated with major magmatism.A late phaseof extensionoccurred primarily in the late Miocene(10-5 Ma) with minor extensioncontinuing to the present.It was characterizedby apparently synchronous,high-angle faulting givinglarge verticalstrains with relativelyminor lateral strain (5-20%) whichproduced the moderuRio Granderift morphology.Extension direction was approximatelyE-W, consistentwith the contemporaryregional stress field. Late phasegraben or half-grabenbasins cut and often obscureearly phasebroad basins.Early phase extensionalstyle and basin formation indicate a ductilelithosphere, and this extensionoccurred during the climax of Paleogenemagmatic activity in this zone.Late phaseextensional style indicates a more brittle lithosphere,and this extensionfollowed a middle Miocenelull in volcanism.Regional uplift of about1 km appearsto haveaccompanied late phase extension, andrelatively minor volcanism has continued to thepresent.
    [Show full text]
  • Yellowstone Plume Trigger for Basin and Range Extension, and Coeval Emplacement of the Nevada–Columbia Basin Magmatic Belt
    Geosphere, published online on 17 February 2015 as doi:10.1130/GES01051.1 Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and AdjacentYellowstone Areas plume themed trigger issuefor Basin and Range extension Yellowstone plume trigger for Basin and Range extension, and coeval emplacement of the Nevada–Columbia Basin magmatic belt Victor E. Camp1, Kenneth L. Pierce2, and Lisa A. Morgan3 1Department of Geological Sciences, San Diego State University, San Diego, California 92182, USA 2U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Box 2, Bozeman, Montana 59715, USA 3U.S. Geological Survey, 973 Federal Center, Box 25046, Denver, Colorado 80225-0046, USA ABSTRACT and Range. It was not the sole cause of Basin Juan de Fuca–Farallon plates, tractional forces and Range extension, but rather the catalyst applied to the base of the lithosphere, buoyancy Widespread extension began across the for extension of the Nevadaplano, which was forces associated with lithospheric density varia- northern and central Basin and Range already on the verge of regional collapse. tions, and basal normal forces associated with Province at 17–16 Ma, contemporaneous mantle upwelling and/or gravitational insta- with magmatism along the Nevada–Colum- INTRODUCTION bilities. They concluded that boundary forces bia Basin magmatic belt, a linear zone of associated with plate interaction would produce dikes and volcanic centers that extends for The Basin and Range Province is one of the neither the magnitude nor the rates of extension >1000 km, from southern Nevada to the best exposed extensional areas in the world for observed in the northern and central Basin and Columbia Basin of eastern Washington.
    [Show full text]
  • Landsliding and the Evolution of Normal Fault-Bounded Mountains
    Landsliding and the Evolution of Normal Fault-Bounded Mountains Alexander L. Densmore Department of Geology Trinity College, Dublin 2 Ireland [email protected] Michael A. Ellis Center for Earthquake Research and Information University of Memphis, Memphis TN 38125 USA Robert S. Anderson Institute of Tectonics and Department of Earth Sciences University of California, Santa Cruz CA 95064 USA 1 Abstract Much of the tectonic and climatic history in high-relief regions, such as the mountains of the Basin and Range province, western U.S.A., is contained in the morphology of hillslopes, drainage networks, and other landforms that range in scale from 10-1 to 101 km. To understand how these landforms evolve, we have developed a numerical landscape evolution model that combines a detailed tectonic displacement field with a set of physically-based geomorphic rules. Bedrock landsliding, long recognized as a significant geomorphic process in mountainous topography, is for the first time explicitly included in the ruleset. In a series of numerical experiments, we generate synthetic landscapes that closely resemble mountainous topography observed in the Basin and Range. The production of realistic landscapes depends critically on the presence of bedrock landslides, and landsliding yields rates of long-term erosion that are comparable in magnitude to those of fluvial erosion. The erosive efficiency of bedrock landsliding implies that hillslopes may respond very quickly to changes in local baselevel, and that fluvial erosion is the rate-limiting process in steady state experimental landscapes. Our experiments generate power-law distributions of landslide sizes, somewhat similar to both field and laboratory observations. Thus, even a simple model of bedrock landsliding is capable of quantitatively reproducing mountainous topography and landslide distributions, and represents a significant step forward in our understanding of the evolution of normal fault-bounded ranges.
    [Show full text]
  • List P ‐ Major Terms
    LIST P ‐ MAJOR TERMS Major Term Usage dates Type of Term absolute age 1960‐ academic institutions 1989‐ actinium 1965‐ Chemical terms addresses 1918‐1965 Adriatic Sea 1962‐ Geographic terms Aegean Sea 1977‐ Geographic terms aerial photography 1949‐1961 aeronomy 1971‐1992 Afghanistan 1933‐ Geographic terms Africa 1933‐ Geographic terms Agnatha 1981‐ Fossil terms Alabama 1918‐ Geographic terms Alaska 1918‐ Geographic terms Albania 1933‐ Geographic terms Alberta 1918‐ Geographic terms algae 1960‐ Fossil terms Algeria 1933‐ Geographic terms Alps 1933‐ Geographic terms aluminum 1966‐ Chemical terms aluminum 1966‐1980 Commodity terms aluminum ores 1981‐ Commodity terms americium 1977‐ Chemical terms Amphibia 1918‐ Fossil terms Andes 1961‐ Geographic terms Andorra 1969‐ Geographic terms Angiospermae 1969‐ Fossil terms Angola 1933‐ Geographic terms Anhui China 1992‐ Geographic terms Antarctic Ocean 1964‐2004 Geographic terms Antarctica 1966‐ Geographic terms antimony 1965‐ Chemical terms antimony 1965‐1980 Commodity terms antimony ores 1981‐ Commodity terms Apennines 1967‐ Geographic terms Appalachians 1918‐ Geographic terms Arabian Peninsula 1970‐ Geographic terms Arabian Sea 1946‐ Geographic terms Archaeocyatha 1959‐ Fossil terms Archean 1918‐ Geologic age terms Arctic America 1939‐1964 Geographic terms Arctic Ocean 1936‐ Geographic terms Arctic region 1918‐ Geographic terms Argentina 1933‐ Geographic terms argon 1966‐ Chemical terms Arizona 1918‐ Geographic terms Arkansas 1918‐ Geographic terms Armenia 1993‐ Geographic terms arsenic 1965‐
    [Show full text]
  • Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane Keith D. Putirka1,* and Cathy J. Busby2,* 1California State University, Fresno, Department of Earth and Environmental Sciences, 2345 E. San Ramon Ave., MS/MH24, Fresno, California 93720, USA 2Department of Earth Science, University of California, Santa Barbara, California 93106, USA BACKGROUND AND HISTORY Figure 1. A map showing an outline of the Sierra Nevada This Geosphere themed issue is an outgrowth and approximate boundaries of of our Penrose Conference: Origin and Uplift the Walker Lane belt. The out- of the Sierra Nevada, California, which was line of the Walker Lane (and held in Bridgeport, California, August 16–20, its southern extension into the 2010. The theme is here expanded to include Eastern California Shear Zone) the Walker Lane (Fig. 1), since a large number is modifi ed from Faulds et al. of our Penrose abstracts were oriented to that (2005) and Oldow and Cashman topic, and because that region is no less a part (2009); we draw the western Sierra of the Sierran story than the high peaks them- boundary to coincide with the Walker selves. A fundamental question for the confer- Sierra Nevada range front; the N evada Lane ence and themed issue is “How did the Sierra Walker Lane belt is then drawn Nevada form?” The question can mean many to include the region of the things to disparate disciplines. One might refer Basin and Range province where & to the age and origin of the rocks that form the basins and ranges trend more Sierra Nevada batholith, or instead to the time N–S, rather than NE–SW.
    [Show full text]
  • Hall Morley 2004 Sun
    Sundaland Basins Robert Hall SE Asia Research Group, Department of Geology, Royal Holloway University of London, Egham, Surrey, U.K. Christopher K. Morley Department of Petroleum Geoscience, Universiti of Brunei Darussalam, Tunku Link, Gadong, Brunei Darussalam The continental core of Sundaland, comprising Sumatra, Java, Borneo, the Thai–Malay Peninsula and Indochina, was assembled during the Triassic Indosin- ian orogeny, and formed an exposed landmass during Pleistocene lowstands. Because the region includes extensive shallow seas, and is not significantly elevated, it is often assumed to have been stable for a long period. This stability is a myth. The region is today surrounded by subduction and collision zones, and merges with the India–Asia collision zone. Cenozoic deformation of Sundaland is recorded in the numerous deep sedimentary basins alongside elevated highlands. Some sediment may have been supplied from Asia following Indian collision but most was locally derived. Modern and Late Cenozoic sediment yields are exceptionally high despite a relatively small land area. India–Asia collision, Australia–SE Asia collision, backarc extension, subduction rollback, strike-slip faulting, mantle plume activity, and differential crust-lithosphere stretching have been proposed as possible basin- forming mechanisms. In scale, crustal character, heat flow and mantle character the region resembles the Basin and Range province or the East African Rift, but is quite unlike them in tectonic setting. Conventional basin modeling fails to predict heat flow, elevation, basin depths and subsidence history of Sundaland and overes- timates stretching factors. These can be explained by interaction of a hot upper mantle, a weak lower crust, and lower crustal flow in response to changing forces at the plate edges.
    [Show full text]
  • Modern Strain Localization in the Central Walker Lane, Western United States
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trinity University Trinity University Digital Commons @ Trinity Geosciences Faculty Research Geosciences Department 2008 Modern Strain Localization in the Central Walker Lane, Western United States: Implications for the Evolution of Intraplate Deformation in Transtensional Settings Benjamin E. Surpless Trinity University, [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/geo_faculty Part of the Earth Sciences Commons Repository Citation Surpless, B.E. (2008) Modern strain localization in the central walker lane, western United States: Implications for future seismicity and plate boundary tectonics. Tectonophysics, 457(3-4), 239-253. doi:10.1016/j.tecto.2008.07.001 This Post-Print is brought to you for free and open access by the Geosciences Department at Digital Commons @ Trinity. It has been accepted for inclusion in Geosciences Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. 1 Modern strain localization in the central Walker Lane, western United States: Implications for the evolution of intraplate deformation in transtensional settings Benjamin Surpless Department of Geosciences, Trinity University, One Trinity Place, San Antonio, TX 78209, United States Keywords: Transtension , Walker Lane Lake Tahoe , Strain partitioning , North American – Pacific plate boundary *Tel: +1 210 999 7110; fax: +1 210 999 7090 E-mail address: [email protected] ABSTRACT Approximately 25% of the differential motion between the Pacific and North American plates occurs in the Walker Lane, a zone of dextral motion within the western margin of the Basin and Range province.
    [Show full text]