Study on Earth Radiation Budget Mission Scenarios

Total Page:16

File Type:pdf, Size:1020Kb

Study on Earth Radiation Budget Mission Scenarios ;tw. GKSS il FOESCMUNGSZENT^UR/l ¥ —uj-. | Study on Earth Radiation Budget Mission Scenarios OtCl *U. ", •}- ' • i1' Autoren: R. Dlhopolsky R. Hollmann J. Muller R. Stuhlmann GKSS 97/E/71 ISSN 0344-9629 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. GKSS 97/E/71 llLUlluiiiUiiuuinuiimuiiujti *DE011812925* Study on Earth Radiation Budget Mission Scenarios Autoren: R. DIhopolsky R. Hollmann J. Muller R. Stuhlmann (Institut fur Atmospharenphysik) GKSS-Forschungszentrum Geesthacht GmbH • Geesthacht • 1997 Die externen Berichte der GKSS werden kostenlos abgegeben. The delivery of the external GKSS reports is free of charge. Anforderungen /Requests: GKSS-Forschungszentrum Geesthacht GmbH Bibliothek/Library Postfach 11 60 D-21494 Geesthacht Germany Als Manuskript vervielfaltigt. Fur diesen Bericht behalten wir uns alle Rechte vor. GKSS-Forschungszentrum Geesthacht GmbH • Telefon (04152)87-0 Max-Planck-StraJ3e • D-21502 Geesthacht / Postfach 1160 • D-21494 Geesthacht *DE011812925* GKSS 97/E/71 Study on Earth Radiation Budget Mission Scenarios R. Dlhopolsky, R. Hollmann, J. Muller, R. Stuhlmann 126 pages with 21 figures and 29tables Abstract The goal of this study is to study optimized satellite configurations for observation of the radiation balanceof the Earth.We present a literature survey of Earth Radiation Budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satelliteorbits and scanning operation. We use Meteosat data sampled at three hour intervals as a databaseto simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at mid-morning, noon and mid-afternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurementsmade during daylight hours. We have found in the shortwave inversion comparison that at least 15 % of the monthly regional errors can be attributedto the shortwave anisotropic models used. Studie fiber optimale Satellitenkonfigurationen zur Besthnmung der Strahlungsbilanz der Erde Zusammenfassung Die Zielsetzung dieser Studie ist die Ermittlung einer optimierten Satellitenkonfiguration fur die Zwecke zukiinftiger Strahlungsbilanzmessungen der Erde. Zuerst wird in diesem Bericht eine Literaturstudie fiber die satellitengestiitzten Strahlungsbilanz-Missionen und deren verwendeten Instrumente der letzten Jahrzehnte gegeben. Zur Simulation von realistischen Satelliten- missionen wurde ein Programmpaket entwickelt. Als EingabegroBen dienen Orbitparameter, wie Aquatoruberflugszeit, und Instrumentspeziflkationen. Fur die Atmosphare werden als Datengrundlage ausMETEOSAT-Daten abgeleitete StrahlungsfluBdichten in dreistiindigen Intervallen verwendet. Als Ergebnis werden aus den fur die verschiedenen Szenarien simulierten Strahlungsbilanzmessungen Monats-, zonale sowie regionale und globale Mittelwerte derkurz- und langwelligen StrahlungsfluBdichten besthmnt und mit den tatsachlichen Feldem verglichen. Die Vergleiche zeigen, dafi die optimale Kombination aus drei Satelliten besteht: ein Satelht mit einem Vormittagsiiberflug des Aquators, einer am Mittag und einer am Nachmittag. Es zeigt sich, daJ3 Aquatoriiberflugszeiten in der Nahe des Sonnenaufgang und Sonnemmtergangs fur die kurz- wellige Komponente vermieden werden sollten. Fur bewolkte Szenen und Landbeobachtungen der langwelligen StrahlungsfluBdichte ist bei nur zwei Messungen am Tag ein Tagesgangmodell erforderlich. Es wird der Inversionsprozefi der kurzwelligen StrahlungsfluBdichte untersucht, wobei sich zeigt, daB 15 % des Fehlers im regionalen Monatsmittel aufdie verwendeten Anisotropiemodelle zuriickzufiihren ist. Masnuscript received / Manuskripteingang in der Redaktion: 18. Dezember 1997 Contents 1 Introduction 15 2 Review of ERB Mission objectives and Requirements 17 2.1 Previous, Current and Planned ERB Missions.............................................. 17 2.1.1 Nimbus 2,3,6 and 7................................................................................ 19 2.1.2 ERBE...................................................................................................... 21 2.1.3 ScaRaB - METEOR 3/7....................................................................... 21 2.1.4 CERES-EOS...................................................................................... 21 2.2 Review of Algorithms for Inversion................................................................. 22 2.2.1 Satellites with ERB Instruments........................................................... 22 2.2.2 Non-dedicated ERB Satellites.............................................................. 34 2.2.3 ERB Data by Synergy of Different Satellites..................................... 38 2.3 Summary............................................................................................................ 41 3 Review of existing and Planned ERB Instruments 43 3.1 Introduction......................................................................................................... 43 3.1.1 Top of Atmosphere Radiation budget ................................................. 43 3.1.2 Atmospheric Radiation budget .............................................................. 43 3.1.3 Surface Radiation Budget ........................................................................44 3.2 Summary of ERB Instruments.......................................................................... 44 3.2.1 Nimbus 2 and 3...................................................................................... 48 3.2.2 Nimbus 6 and Nimbus 7...........................................................................48 3.2.3 ERBE...................................................................................................... 48 v - vi - 3.2.4 ScaRaB................................................................................................... 49 3.2.5 CERES................................................................................................... 50 3.2.6 ISCCP: NOAA, METEOSAT, GOES, GMS......................................... 50 3.2.7 GERB...................................................................................................... 50 3.3 Instrument Types for multi-satellite ERB Missions............................................ 51 3.3.1 Measured Parameters............................................................................. 51 3.3.2 ISCCP as a Model ERB....................................................................... 54 3.4 ERB Monitoring at the Top of Atmosphere.................................................... 57 3.4.1 Random Error......................................................................................... 58 3.4.2 Systematic Error................................................................................... 59 3.4.3 Conversion to TOA Fluxes .................................................................... 61 3.4.4 Coverage of the Diurnal Cycle.............................................................. 61 3.5 Summary............................................................................................................ 62 4 Parametric Tool to model ERB Mission Scenarios 63 4.1 Development Strategy ...................................................................................... 63 4.1.1 Data Set and use in model.................................................................... 63 4.1.2 Temporal Colocation of Data: Treatment of Time in model............ 64 4.1.3 Spatial Colocation of Points................................................................. 68 4.1.4 Input Files............................................................................................... 69 4.1.5 Output Files............................................................................................ 72 4.1.6 Diurnal Averaging................................................................................ 72 4.2 Results of Parametric Tool application to Database .........................................76 4.2.1 Differences for SW Inversion................................................................. 78 4.2.2 Regional Flux Differences between Mission Scenarios..........................87 4.2.3 Zonal Flux Differences.......................................................................... 95 4.2.4 Global Flux Differences.......................................................................... 99 5 Recommendations for Future ERB Missions 103 5.1 Summary of Results ...........................................................................................103 - vii - 5.2 Results and Definition of Optimized Mission Scenarios ................................ 105 5.3 Discussion of Possible Application in other climatological Programs................106 References 109 Appendix 115 A.l User’s Manual........................................................................................................117 - vm - List of Figures 4.1 Definition of Pixel Boundaries.........................................................................
Recommended publications
  • SATELLITES at WORK Space in the Seventies
    SaLf ILMITRATBONS REPROMhdONkp N BLACK ANd WHiT? SATELLITES AT WORK Space in the Seventies 4 (SPACE IN N72-13 8 6 6 (NASA-EP-8 ) SATELLITES AT WORK THE SEVENTIES) W.R. Corliss (NASA) Jun. 1971 29 p CSCL 22B Unclas Reproduced by G3/31 11470 NATIONAL TECHNICAL u. INFORMATION SERVICE U S Department of Commerce Springfield VA 22151 J National Aeronautics and Space Administration SPACE IN THE SEVENTIES Man has walked on the Moon, made scientific observations there, and brought back to Earth samples of the lunar surface. Unmanned scientific spacecraft have probed for facts about matter, radiation and magnetism in space, and have collected data relating to the Moon, Venus, Mars, the Sun and some of the stars, and reported their findings to ground stations on Earth. Spacecraft have been put into orbit around the Earth as weather observation stations, as communications relay stations for a world-wide telephone and television network, and as aids to navigation. In addition, the space program has accelerated the advance of technology for science and industry, contributing many new ideas, processes and materials. All this took place in the decade of the Sixties. What next? What may be expected of space exploration in the Seventies? NASA has prepared a series of publications and motion pictures to provide a look forward to SPACE IN THE SEVENTIES. The topics covered in this series include: Earth orbital science; planetary exploration; practical applications of satellites; technology utilization; man in space; and aeronautics. SPACE IN THE SEVENTIES presents the planned programs of NASA for the coming decade.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Climate Science for Lawyers
    Climate Science for Lawyers Leah A. Dundon n an era where addressing the impacts of climate change must equal the heat that escapes to space. Most people know that may become one of humanity’s greatest challenges, we as the primary source of heat coming into Earth is sunlight. How- citizens should all have a basic understanding of the sci- ever, fewer people stop to consider how that heat leaves Earth to Ience. As environmental and energy lawyers, however, achieve a stable average temperature despite the fact that heat this is even more important. Every day we are called upon from the sun has been hitting the earth every day for eons. to advise individuals, companies, NGOs, and policy makers. The answer lies in the flow of electromagnetic radiation Issues related to climate change are increasingly touching our (“radiation” or “light”), which for all practical purposes is the practices. only way heat enters or leaves Earth. Radiation is visible light Scientists have a solid, long-tested understanding of how but also invisible radio waves, microwaves, infrared, ultravio- heat flows into and out of Earth’s atmosphere and how green- let, and even gamma and X-rays. The only difference between house gases (GHGs), such as carbon dioxide, methane, and these forms of radiation is the wavelength, or frequency. fluorinated gases, trap heat. Adding more long-lived GHGs Matter can both absorb and emit radiation. We intuitively to the atmosphere is causing a warming of the climate that know that Earth absorbs the sun’s radiation when we feel a will persist long after GHG emissions stop.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • THE INFRARED CLOUD IMAGER by Brentha Thurairajah a Thesis Submitted in Partial Fulfi
    THERMAL INFRARED IMAGING OF THE ATMOSPHERE: THE INFRARED CLOUD IMAGER by Brentha Thurairajah A thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering MONTANA STATE UNIVERSITY Bozeman, Montana April 2004 © COPYRIGHT by Brentha Thurairajah 2004 All Rights Reserved ii APPROVAL of a thesis submitted by Brentha Thurairajah This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the college of graduate studies. Dr. Joseph A. Shaw, Chair of Committee Approved for the Department of Electrical and Computer Engineering Dr. James N. Peterson, Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod, Graduate Dean iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under the rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Brentha Thurairajah April 2nd, 2004 iv ACKNOWLEDGEMENT I would like to thank my advisor Dr. Joseph Shaw for always being there, for guiding me with patience throughout the project, for helping me with my course and research work through all these three years, and for providing helpful comments and constructive criticism that helped me complete this document.
    [Show full text]
  • LST ATBD): Version 3.3, (April 1999)
    Satellite Products and Services Review Board Enterprise Algorithm Theoretical Basis Document For VIIRS Land Surface Temperature Production Compiled by the SPSRB Common Standards Working Group Version 1.2 April, 2019 ___________________________________ NOAA Enterprise Algorithm Theoretical Basis Document For VIIRS Land Surface Temperature Production Page 2 of 67 TITLE: Enterprise Algorithm Theoretical Basis Document for VIIRS Land Surface Temperature Production AUTHORS: Yunyue Yu, NOAA/NESDIS/STAR, College Park Yuling Liu, CICS/UMD, College Park Peng Yu, CICS/UMD, College Park Heshun Wang, CICS/UMD, College Park NOAA Enterprise Algorithm Theoretical Basis Document For VIIRS Land Surface Temperature Production Page 3 of 67 DOCUMENT HISTORY DOCUMENT REVISION LOG The Document Revision Log identifies the series of revisions to this document since the baseline release. Please refer to the above page for version number information. DOCUMENT TITLE: Algorithm Theoretical Basis Document Template DOCUMENT CHANGE HISTORY Revision CCR Approval # Date Revision Originator Project Group No. and Date 1.0 Oct. 2017 Developing a new ATBD document 1.1 Mar. 2018 Updates according to feedback from ARR Update the quality flag matrix, snow mask input 1.2 Apr. 2019 switch from NWP to snow cover EDR and quality flag bits order NOAA Enterprise Algorithm Theoretical Basis Document For VIIRS Land Surface Temperature Production Page 4 of 67 LIST OF CHANGES Significant alterations made to this document are annotated in the List of Changes table. DOCUMENT TITLE: Algorithm
    [Show full text]
  • Nimbus-7 Earth Radiation Budget Calibration History--Part I: the Solar Channels
    NASA Reference Publication 1316 1993 Nimbus-7 Earth Radiation Budget Calibration History--Part I: The Solar Channels H. Lee Kyle Goddard Space Flight Center Greenbelt, Maryland Douglas V. Hoyt Brenda J. Vallette Research and Data Systems Corporation Greenbelt, Maryland John R. Hickey The Eppley Laboratories Newport, Rhode Island Robert H. Maschhoff Gulton Industries Albuquerque, New Mexico National Aeronautics and Space Administration Scientific and Technical Information Branch ACRONYMS AND ABBREVIATIONS ACRIM Active Cavity Radiometer Irradiance Monitor A/D analog to digital convertor APEX Advanced Photovoltaic Experiment CZCS Coastal Zone Color Scanner DSAS Digital Solar Aspect Sensor ERB Earth Radiation Budget ERBS Earth Radiation Budget Satellite FOV field of view H-F Hickey-Frieden Cavity Radiometer IPS International Pyrheliometric Standard JPL Jet Propulsion Laboratory LDEF Long Duration Exposure Facility LIMS Limb Infrared Monitor of the Stratosphere NASA National Aeronautics and Space Administration NIP Normal Incidence Pyrheliometer NSSDC National Space Science Data Center PEERBEC Passive Exposure Earth Radiation Budget Experiment Components ppm parts per million RSM reference sensor model SEFDT Solar Earth Flux Data Tapes SMM Solar Maximum Mission SMMR Scanning Multichannel Microwave Radiometer UARS Upper Atmosphere Research Satellite UV ultraviolet WRR World Radiometric Reference iii TABLE OF CONTENTS Section 1. INTRODUCTION ............................................ 1 o THE HICKEY-FRIEDEN (H-F) CAVITY RADIOMETER ..................
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Analytic Radiative-Advective Equilibrium As a Model for High
    Geophysical Research Letters RESEARCH LETTER Analytic radiative-advective equilibrium 10.1002/2015GL067172 as a model for high-latitude climate Key Points: 1 2 • An analytic model for high-latitude Timothy W. Cronin and Malte F. Jansen temperature profiles is derived • Sensitivity of temperature profiles 1Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA, 2Department of the depends on the nature of the forcing Geophysical Sciences, University of Chicago, Chicago, Illinois, USA • The model may be useful for study of paleoclimate and exoplanet atmospheres Abstract We propose radiative-advective equilibrium as a basic-state model for the high-latitude atmosphere. Temperature profiles are determined by a competition between stabilization by atmospheric Correspondence to: shortwave absorption and advective heat flux convergence, and destabilization by surface shortwave T. W. Cronin, [email protected] absorption. We derive analytic expressions for temperature profiles, assuming power law atmospheric heating profiles as a function of pressure and two-stream windowed-gray longwave radiative transfer. We discuss example profiles with and without an atmospheric window and show that the sensitivity of surface Citation: Cronin, T. W., and M. F. Jansen (2015), temperature to forcing depends on the nature of the forcing, with greatest sensitivity to radiative forcing by Analytic radiative-advective increased optical thickness and least sensitivity to increased atmospheric heat transport. These differences equilibrium as a model for in sensitivity of surface temperature to forcing can be explained in terms of a forcing-dependent high-latitude climate, Geophys. Res. Lett., 42, doi:10.1002/2015GL067172. lapse-rate feedback. Received 25 NOV 2015 Accepted 10 DEC 2015 Accepted article online 14 DEC 2015 1.
    [Show full text]
  • Summary of Meteorological Satellites
    Technical Summary of Meteorological Satellites TIROS – Television and Infra-Red Observation Satellite series Parameter TIROS I TIROS II TIROS III TIROS IV TIROS V TIROS VI TIROS VII TIROS VIII12 TIROS IX5 TIROS X 9 Launch Date 1/4/1960 23/11/1960 12/7/1961 8/2/1962 19/6/1962 18/9/1962 19/6/1963 21/12/1963 22/1/1965 2/7/1965 Deactivated 19/6/1960 1/2/1961 30/10/1961 30/6/1962 5/5/1963 11/10/1963 3/2/19661 1/7/19672 15/2/19673 3/7/19674 Lifetime 79 days 69 days 108 days 125 days 320 days 388 days 978 days 1258 days 754 days 732 days Pictures 19389 25574 24000 23370 48547 59830 111047 88662 76604 59119 Launcher Thor-Able Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Site ETR ETR ETR ETR ETR ETR ETR ETR WTR ETR Pre-launch A1 A2 A3 A9 A50 A51 A52 A53 A54 OT-1 Designation 1960 2A 1960 16A 1961 17A 1962 2 A 1962 25A 1962 47A 1963 24A11 1963 54A 1965 4A 1965 51A 1960 β 2 1960 π 1 1961 ρ 1 1962 β 1 1962 αα 1 1962 αψ 1 Catalog No 29 63 162 226 309 397 604 716 978 1430 Apogee 867 km 837 937 972 1119 822 743 878 2967 957 Perigee 768 km 717 854 817 680 783 713 796 806 848 Inclination 48.392° 48.530° 47.898° 48.3° 58.1° 58.2° 58.2° 58.5° 96.4° 98.6° Period 99.24’ 98.26’ 100.4’ 100.4’ 100.5’ 98.7’ 97.4’ 99.3’ 119.2’ 100.6’ Mass 120 kg 125 129 129 129 127 135 119 138 127 Camera 1 TV-NA TV-NA TV-WA TV-WA TV-WA TV-WA TV-WA APT TV-WA TV-WA 3/5/62 14/5/63 21/10/63 31/8/64 Camera 2 TV-WA TV-WA TV-WA TV-MA TV-MA TV-MA TV-WA TV-WA TV-WA TV-WA 10/6/62 7/7/62 29/11/62 26/7/65 -/9/65 IR • • • • IRP • • • • HB
    [Show full text]
  • C:\Users\Vabento\Dropbox
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS The use of remotely sensed Land Surface Temperature for climate monitoring Doutoramento em Ciências Geofísicas e da Geoinformação Especialidade de Deteção Remota Virgílio Alexandre da Silva Marques Bento Tese orientada por: Professor Doutor Carlos da Camara Doutora Isabel Trigo Documento especialmente elaborado para a obtenção do grau de doutor 2018 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS The use of remotely sensed Land Surface Temperature for climate monitoring Doutoramento em Ciências Geofísicas e da Geoinformação Especialidade de Deteção Remota Virgílio Alexandre da Silva Marques Bento Tese orientada por: Professor Doutor Carlos da Camara Doutora Isabel Trigo Júri: Presidente: • Doutor João Manuel de Almeida Serra, Professor Catedrático Faculdade de Ciências da Universidade de Lisboa. Vogais: • Doutora Renata Libonati dos Santos, Professora Adjunto l Departamento de Meteorologia da Universidade Federal do Rio de Janeiro (Brasil); • Doutor Mário Jorge Modesto Gonzalez Pereira, Professor Auxiliar Escola de Ciências e Tecnologia da Universidade de Trás-os-Montes e Alto Douro; • Doutora Isabel Alexandra Martinho Franco Trigo, Investigadora Principal Instituto Português do Mar e da Atmosfera (Orientadora); • Doutor Carlos Alberto Leitão Pires, Professor Auxiliar Faculdade de Ciências da Universidade de Lisboa; • Doutora Célia Marina Pedroso Gouveia, Professora Auxiliar Convidada Faculdade de Ciências da Universidade de Lisboa. Documento especialmente elaborado para a obtenção do grau de doutor Fundação para a Ciência e Tecnologia, SFRH/BD/52559/2014 2018 Acknowledgments I want to start by thanking my advisers, Professor Carlos da Camara and Doctor Isabel Trigo, for their scientific guidance and support, and for the opportunity to work with them. To Professor Carlos da Camara, I want to leave a special thank you for the unconditional belief in my aptitudes, for his always welcome ideas and his unstoppable humour, which lightened the day in many occasions.
    [Show full text]
  • Nimbus II Permanent Records
    Nimbus II Permanent Records EOSDIS Science Operations, ESDIS Project Code 423 Goddard Space Flight Center, Greenbelt, MD 20771 ESIP Federation Meeting, Santa Barbara, CA. July 9, 2009 1 NIMBUS II Instruments Launched May 15, 1966 • 3 instruments collected Earth observations starting in May – Advanced Vidicon camera (AVCS) to provides television pictures of clouds in the earth's atmosphere – High resolution Infrared Radiometer (HRIR) to map the Earth's cloud cover at night and to measure the temperatures of cloud tops and terrain features – Medium resolution infrared radiometer (MRIR) to measure electromagnetic radiation emitted and reflected from the earth and its atmosphere in five wavelength bands 11/21/19 2 HRIR instrument • Single scanning radiometer, using a 3.5 - 4.1 micron filter and Lead Selenide (PbSe) photoconductive detector cell radiatively cooled to -75 deg C. – Provides measurements of blackbody temperatures between 210K - 330K • Noise equivalent ~1 degree C for a 250K background • Sun-synchronous, 108 minute nodal period – Scanning coincident with spacecraft velocity vector (no yaw error) – Scan mirror inclined 45 degrees to axis of rotation (scans perpendicular to flight path) – Scan rate operation of 44.7 revolutions per minute provides a scan line separation of 8.3 km • Instantaneous field-of-view of 8.7 milliradians provides ground resolution of 8 km at an altitude of 1110 km • Performance was excellent until orbit 2455 when the tape recorder failed – Time period of data coverage: • 16 May 1966 (Julian day 136) through 13 Nov 1966 (Julian day 319) • Most data collected during nighttime part of orbit – Faint 200-Hz interference – observed pre-launch – associated with AC noise on bus power • Overall calibration in good agreement with pre-launch measurements – The HRIR detector, after stabilizing at -76°C post launch, exhibits a warming trend and became nominal at -65°C.
    [Show full text]