SATELLITES at WORK Space in the Seventies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Space Administration
https://ntrs.nasa.gov/search.jsp?R=19700024651 2020-03-23T18:20:34+00:00Z TO THE CONGRESSOF THE UNITEDSTATES : Transmitted herewith is the Twenty-first Semiannual Repol* of the National Aeronautics and Space Administration. Twen~-first SEMIANNUAL REPORT TO CONGRESS JANUARY 1 - JUNE 30, 1969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 Editors: G. B. DeGennaro, H. H. Milton, W. E. Boardman, Office of Public Affairs; Art work: A. Jordan, T. L. Lindsey, Office of Organiza- tion and Management. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402-Price $1.25 THE PRESIDENT May 27,1970 The White House I submit this Twenty-First Semiannual Report of the National Aeronautics and Space Aldministration to you for transmitttal to Congress in accordance with section 206(a) of the National Aero- nautics and Space Act of 1958. It reports on aotivities which took place betiween January 1 and June 30, 1969. During this time, the Nation's space program moved forward on schedule. ApolIo 9 and 10 demonstrated the ability of ;the man- ned Lunar Module to operate in earth and lunar orbit and its 'eadi- ness to attempt the lunar landing. Unmanned observatory and ex- plorer class satellites carried on scientific studies of the regions surrounding the Earth, the Moon, and the Sun; a Biosatellite oarwing complex biological science experiment was orbited; and sophisticated weather satellites and advanced commercial com- munications spacecraft became operational. Advanced research projects expanded knowledge of space flighk and spacecraft engi- neering as well as of aeronautics. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
For Bibliography by Year, See the Website)
THIS IS THE TEXT OF A BIBLIOGRAPHY IN THE WEB SITE “THE DISCOVERY OF GLOBAL WARMING” BY SPENCER WEART, HTTP://WWW.AIP.ORG/HISTORY/CLIMATE. FEBRUARY 2014. COPYRIGHT © 2003-2014 SPENCER WEART & AMERICAN INSTITUTE OF PHYSICS Bibliography by Author (for Bibliography by Year, see the Website) This bibliography may seem long (more than 2500 items), but it has a great many omissions. Please see the discussion of sources in the “Method” essay. Note in particular that the IPCC reports have by far the most complete bibliography for recent scientific work. Abbreviations used in the notes: AIP: Niels Bohr Library at the American Institute of Physics, College Park, MD LDEO: Lamont-Doherty Earth Observatory, Palisades, NY SIO: Scripps Institution of Oceanography Archives, La Jolla, CA Abarbenel, Albert, and Thomas McCluskey (1950). “Is the World Getting Warmer?” Saturday Evening Post, 1 July, pp. 22-23, 57-63. Abbot, Charles G., and F.E. Fowle, Jr. (1908). “Income and Outgo of Heat from the Earth, and the Dependence of Its Temperature Thereon.” Annals of the Astrophysical Observatory (Smithsonian Institution, Washington DC) 2: 159-176. Abbot, Charles G., and F.E. Fowle, Jr. (1913). “Volcanoes and Climate.” Smithsonian Miscellaneous Collections 60(29): 1-24. Abbot, Charles G. (1967). “Precipitation in Five Continents.” Smithsonian Miscellaneous Collections 151(5). Abelmann, Andrea, et al. (2006). “Extensive Phytoplankton Blooms in the Atlantic Sector of the Glacial Southern Ocean.” Paleoceanography 21: PA1013 [doi:10.1029/2005PA001199, 2006]. Abelson, P.H. (1977). “Energy and Climate.” Science 197: 941. Abe-Ouchi, Ayako, et al. (2013). “Insolation-Driven 100,000-Year Glacial Cycles and Hysteresis of Ice-Sheet Volume.” Nature 500: 190-93 [doi:10.1038/nature12374]. -
The Space-Based Global Observing System in 2010 (GOS-2010)
WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available. -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
Space Debris
IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low -
A Review of the Image Dissector Meteorological Cameras and a View of Their Future
1969 (6th) Vol. 1 Space, Technology, and The Space Congress® Proceedings Society Apr 1st, 8:00 AM A Review of the Image Dissector Meteorological Cameras and a View of Their Future Edward W. Koeing ITT AOD Gilbert A. Branchflower NASA, GSFC Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Koeing, Edward W. and Branchflower, Gilbert A., "A Review of the Image Dissector Meteorological Cameras and a View of Their Future" (1969). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-16/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A REVIEW OF THE IMAGE DISSECTOR METEOROLOGICAL CAMERAS AND A VIEW OF THEIR FUTURE Edward W. Koenig Gilbert A. Branchflower ITT Aerospace/Optical Division NASA Goddard Space Flight Center Fort Wayne, Indiana Greenbelt, Maryland SUMMARY During the Fourth Space Conference, a paper was and the large tube, 2 l/^ inches diameter, presented entitled "The Image Dissector Camera, used in the ATS-F and ERTS programs. A new Approach to Spacecraft Sensors". This is a continuation of that paper. Two daylight The ATS-III and Nimbus-B cameras are shown in cloud cover cameras were discussed in the Figure 3, emphasizing the compact nature of earlier paper. They were the Applications such a system, since the Nimbus camera is only Technology Satellite III Image Dissector Camera 12 pounds and required but 12 watts input for (ATS III IDC) and the Nimbus Image Dissector all tube, video, scan and signal processing Camera System (NIMBUS IDCS). -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
John F. Kennedy Space Center
1 . :- /G .. .. '-1 ,.. 1- & 5 .\"T!-! LJ~,.", - -,-,c JOHN F. KENNEDY ', , .,,. ,- r-/ ;7 7,-,- ;\-, - [J'.?:? ,t:!, ;+$, , , , 1-1-,> .irI,,,,r I ! - ? /;i?(. ,7! ; ., -, -?-I ,:-. ... 8 -, , .. '',:I> !r,5, SPACE CENTER , , .>. r-, - -- Tp:c:,r, ,!- ' :u kc - - &te -- - 12rr!2L,D //I, ,Jp - - -- - - _ Lb:, N(, A St~mmaryof MAJOR NASA LAUNCHINGS Eastern Test Range Western Test Range (ETR) (WTR) October 1, 1958 - Septeniber 30, 1968 Historical and Library Services Branch John F. Kennedy Space Center "ational Aeronautics and Space Administration l<ennecly Space Center, Florida October 1968 GP 381 September 30, 1968 (Rev. January 27, 1969) SATCIEN S.I!STC)RY DCCCIivlENT University uf A!;b:,rno Rr=-?rrh Zn~tituta Histcry of Sciecce & Technc;oGy Group ERR4TA SHEET GP 381, "A Strmmary of Major MSA Zaunchings, Eastern Test Range and Western Test Range,'" dated September 30, 1968, was considered to be accurate ag of the date of publication. Hmever, additianal research has brought to light new informetion on the official mission designations for Project Apollo. Therefore, in the interest of accuracy it was believed necessary ta issue revfsed pages, rather than wait until the next complete revision of the publiatlion to correct the errors. Holders of copies of thia brochure ate requested to remove and destroy the existing pages 81, 82, 83, and 84, and insert the attached revised pages 81, 82, 83, 84, 8U, and 84B in theh place. William A. Lackyer, 3r. PROJECT MOLL0 (FLIGHTS AND TESTS) (continued) Launch NASA Name -Date Vehicle -Code Sitelpad Remarks/Results ORBITAL (lnaMANNED) 5 Jul 66 Uprated SA-203 ETR Unmanned flight to test launch vehicle Saturn 1 3 7B second (S-IVB) stage and instrment (IU) , which reflected Saturn V con- figuration. -
Summary of Meteorological Satellites
Technical Summary of Meteorological Satellites TIROS – Television and Infra-Red Observation Satellite series Parameter TIROS I TIROS II TIROS III TIROS IV TIROS V TIROS VI TIROS VII TIROS VIII12 TIROS IX5 TIROS X 9 Launch Date 1/4/1960 23/11/1960 12/7/1961 8/2/1962 19/6/1962 18/9/1962 19/6/1963 21/12/1963 22/1/1965 2/7/1965 Deactivated 19/6/1960 1/2/1961 30/10/1961 30/6/1962 5/5/1963 11/10/1963 3/2/19661 1/7/19672 15/2/19673 3/7/19674 Lifetime 79 days 69 days 108 days 125 days 320 days 388 days 978 days 1258 days 754 days 732 days Pictures 19389 25574 24000 23370 48547 59830 111047 88662 76604 59119 Launcher Thor-Able Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Thor-Delta Site ETR ETR ETR ETR ETR ETR ETR ETR WTR ETR Pre-launch A1 A2 A3 A9 A50 A51 A52 A53 A54 OT-1 Designation 1960 2A 1960 16A 1961 17A 1962 2 A 1962 25A 1962 47A 1963 24A11 1963 54A 1965 4A 1965 51A 1960 β 2 1960 π 1 1961 ρ 1 1962 β 1 1962 αα 1 1962 αψ 1 Catalog No 29 63 162 226 309 397 604 716 978 1430 Apogee 867 km 837 937 972 1119 822 743 878 2967 957 Perigee 768 km 717 854 817 680 783 713 796 806 848 Inclination 48.392° 48.530° 47.898° 48.3° 58.1° 58.2° 58.2° 58.5° 96.4° 98.6° Period 99.24’ 98.26’ 100.4’ 100.4’ 100.5’ 98.7’ 97.4’ 99.3’ 119.2’ 100.6’ Mass 120 kg 125 129 129 129 127 135 119 138 127 Camera 1 TV-NA TV-NA TV-WA TV-WA TV-WA TV-WA TV-WA APT TV-WA TV-WA 3/5/62 14/5/63 21/10/63 31/8/64 Camera 2 TV-WA TV-WA TV-WA TV-MA TV-MA TV-MA TV-WA TV-WA TV-WA TV-WA 10/6/62 7/7/62 29/11/62 26/7/65 -/9/65 IR • • • • IRP • • • • HB -
Nimbus II Permanent Records
Nimbus II Permanent Records EOSDIS Science Operations, ESDIS Project Code 423 Goddard Space Flight Center, Greenbelt, MD 20771 ESIP Federation Meeting, Santa Barbara, CA. July 9, 2009 1 NIMBUS II Instruments Launched May 15, 1966 • 3 instruments collected Earth observations starting in May – Advanced Vidicon camera (AVCS) to provides television pictures of clouds in the earth's atmosphere – High resolution Infrared Radiometer (HRIR) to map the Earth's cloud cover at night and to measure the temperatures of cloud tops and terrain features – Medium resolution infrared radiometer (MRIR) to measure electromagnetic radiation emitted and reflected from the earth and its atmosphere in five wavelength bands 11/21/19 2 HRIR instrument • Single scanning radiometer, using a 3.5 - 4.1 micron filter and Lead Selenide (PbSe) photoconductive detector cell radiatively cooled to -75 deg C. – Provides measurements of blackbody temperatures between 210K - 330K • Noise equivalent ~1 degree C for a 250K background • Sun-synchronous, 108 minute nodal period – Scanning coincident with spacecraft velocity vector (no yaw error) – Scan mirror inclined 45 degrees to axis of rotation (scans perpendicular to flight path) – Scan rate operation of 44.7 revolutions per minute provides a scan line separation of 8.3 km • Instantaneous field-of-view of 8.7 milliradians provides ground resolution of 8 km at an altitude of 1110 km • Performance was excellent until orbit 2455 when the tape recorder failed – Time period of data coverage: • 16 May 1966 (Julian day 136) through 13 Nov 1966 (Julian day 319) • Most data collected during nighttime part of orbit – Faint 200-Hz interference – observed pre-launch – associated with AC noise on bus power • Overall calibration in good agreement with pre-launch measurements – The HRIR detector, after stabilizing at -76°C post launch, exhibits a warming trend and became nominal at -65°C. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application.