Elasmosaurus Platyurus Cope 1868, and Clarification of the Cervical-Dorsal Transition in Plesiosauria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foramina in Plesiosaur Cervical Centra Indicate a Specialized Vascular System
Foss. Rec., 20, 279–290, 2017 https://doi.org/10.5194/fr-20-279-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License. Foramina in plesiosaur cervical centra indicate a specialized vascular system Tanja Wintrich1, Martin Scaal2, and P. Martin Sander1 1Bereich Paläontologie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, 53115 Bonn, Germany 2Institut für Anatomie II, Universität zu Köln, Joseph-Stelzmann-Str. 9, 50937 Cologne, Germany Correspondence: Tanja Wintrich ([email protected]) Received: 16 August 2017 – Revised: 13 November 2017 – Accepted: 14 November 2017 – Published: 19 December 2017 Abstract. The sauropterygian clade Plesiosauria arose in the 1 Introduction Late Triassic and survived to the very end of the Cretaceous. A long, flexible neck with over 35 cervicals (the highest 1.1 Sauropterygian evolution and plesiosaur origins number of cervicals in any tetrapod clade) is a synapomor- phy of Pistosauroidea, the clade that contains Plesiosauria. Plesiosauria are Mesozoic marine reptiles that had a global Basal plesiosaurians retain this very long neck but greatly distribution almost from their origin in the Late Triassic reduce neck flexibility. In addition, plesiosaurian cervicals (Benson et al., 2012) to their extinction at the end of the have large, paired, and highly symmetrical foramina on the Cretaceous (Ketchum and Benson, 2010; Fischer et al., ventral side of the centrum, traditionally termed “subcentral 2017). Plesiosauria belong to the clade Sauropterygia and foramina”, and on the floor of the neural canal. We found are its most derived and only post-Triassic representatives, that these dorsal and the ventral foramina are connected by being among the most taxonomically diverse of all Meso- a canal that extends across the center of ossification of the zoic marine reptiles (Motani, 2009). -
Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs. -
A New Plesiosaur from the Lower Jurassic of Portugal and the Early Radiation of Plesiosauroidea
A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea EDUARDO PUÉRTOLAS-PASCUAL, MIGUEL MARX, OCTÁVIO MATEUS, ANDRÉ SALEIRO, ALEXANDRA E. FERNANDES, JOÃO MARINHEIRO, CARLA TOMÁS, and SIMÃO MATEUS Puértolas-Pascual, E., Marx, M., Mateus, O., Saleiro, A., Fernandes, A.E., Marinheiro, J., Tomás, C. and Mateus, S. 2021. A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea. Acta Palaeontologica Polonica 66 (2): 369–388. A new plesiosaur partial skeleton, comprising most of the trunk and including axial, limb, and girdle bones, was collected in the lower Sinemurian (Coimbra Formation) of Praia da Concha, near São Pedro de Moel in central west Portugal. The specimen represents a new genus and species, Plesiopharos moelensis gen. et sp. nov. Phylogenetic analysis places this taxon at the base of Plesiosauroidea. Its position is based on this exclusive combination of characters: presence of a straight preaxial margin of the radius; transverse processes of mid-dorsal vertebrae horizontally oriented; ilium with sub-circular cross section of the shaft and subequal anteroposterior expansion of the dorsal blade; straight proximal end of the humerus; and ventral surface of the humerus with an anteroposteriorly long shallow groove between the epipodial facets. In addition, the new taxon has the following autapomorphies: iliac blade with less expanded, rounded and convex anterior flank; highly developed ischial facet of the ilium; apex of the neural spine of the first pectoral vertebra inclined posterodorsally with a small rounded tip. This taxon represents the most complete and the oldest plesiosaur species in the Iberian Peninsula. -
(Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al. -
Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed. -
Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M. -
A New Specimen of the Triassic Pistosauroid Yunguisaurus, With
[Palaeontology, 2013, pp. 1–22] A NEW SPECIMEN OF THE TRIASSIC PISTOSAUROID YUNGUISAURUS, WITH IMPLICATIONS FOR THE ORIGIN OF PLESIOSAURIA (REPTILIA, SAUROPTERYGIA) by TAMAKI SATO1,2*, LI-JUN ZHAO3,XIAO-CHUNWU2 and CHUN LI4 1Tokyo Gakugei University, 4-1-1 Nukui-Kita-Machi, Koganei City, Tokyo 184-8501, Japan; e-mail: [email protected] 2Canadian Museum of Nature, PO Box 3443 STN ‘D’, Ottawa, ON Canada, K1P 6P4; e-mail: [email protected] 3Zhejiang Museum of Natural History, 6 Westlake Cultural Plaza, Hangzhou 310014, China; e-mail: [email protected] 4Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing, 10004, China; e-mail: [email protected] *Corresponding author. Typescript received 19 March 2012; accepted in revised form 24 March 2013 Abstract: An adult skeleton of the pistosauroid sauroptery- marine reptiles and does not serve as a precursor of the plesio- gian Yunguisaurus liae reveals a number of morphological fea- saurian pattern with fewer mesopodia of different topology; it tures not observed in the holotype, such as the complete demonstrates variability of the limb morphology among the morphology of the skull roof, stapes, atlas and axis, ventral Triassic pistosauroids. The pectoral girdles of Corosaurus, view of the postcranium, and nearly complete limbs and tail. Augustasaurus and Yunguisaurus may indicate early stages of Size and morphological differences between the two specimens the adaptation towards the plesiosaurian style of paraxial limb are mostly regarded as ontogenetic variation, and newly added movements with ventroposterior power stroke. data did not affect the phylogenetic relationships with other pistosauroids significantly. -
Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria)
Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria) Adam Stuart Smith BSc (hons) (Portsmouth), MSc (Bristol) A thesis submitted to the National University of Ireland, University College Dublin for the degree of Doctor of Philosophy November 2007 Supervisor: Dr Gareth J. Dyke Head of School: Professor Thomas Bolger School of Biology and Environmental Science University College Dublin Belfield Dublin 4 Ireland i Contents Frontispiece i Contents ii List of figures vi Acknowledgements xviii Declaration xx Abstract xxi Chapter 1. Introduction and objectives………………………………………….. 1 1.1 General introduction 1 1.2 Palaeobiology 4 1.3 Locomotion 7 1.4 Anatomy 10 1.5 Taxonomic diversity 12 1.6 Thesis objectives 14 1.7 Thesis structure 14 Chapter 2 - Historical background………………………………………………... 16 2.1 History of plesiosaurs 16 2.2 Plesiosaur systematics 16 2.3 Pliosauroidea 16 2.4 Rhomaleosauridae – taxon history 20 2.5 Rhomaleosauridae – previous research 24 2.6 Rhomaleosaurus or Thaumatosaurus? 25 Chapter 3 - Material and palaeontological approaches………………………. 27 3.1 Institutional abbreviations 27 3.2 Data collection –general 28 3.3 NMING F8785 Rhomaleosaurus cramptoni 30 3.3.1 History 30 3.3.2 Iconic specimen 33 3.4 NMING 10194 38 3.5 NMING F8749 38 3.6 NMNH R1336, NMING F8780, TCD.22931 Plesiosaurus 41 macrocephalus 3.7 NMING F8771 and TCD.22932 Thalassiodracon hawkinsi 41 3.8 BMNH 49202 45 3.9 BMNH R38525 Archaeonectrus rostratus 45 ii 3.10 BMNH R4853 Rhomaleosaurus thorntoni 45 3.11 BMNH R2028*, R2029*, R1317, R2061*, R2047*, R2027*, 49 R1318, R1319 and R2030* Eurycleidus arcuatus 3.12 BMNH R5488 Macroplata tenuiceps 50 3.13 BMNH R1310, TCD.47762a, TCD.47762b, 51 3.14 YORYM G503 Rhomaleosaurus zetlandicus 51 3.15 WM 851.S Rhomaleosaurus propinquus 54 3.16 SMNS12478 Rhomaleosaurus victor 54 3.17 LEICS G221.1851 54 3.18 WARMS G10875 56 3.19 TCD.57763 Attenborosaurus conybeari 56 3.20 Additional material 56 3.21 Possible rhomaleosaurids excluded from this study 58 Chapter 4 - Specimen descriptions………………………………………………. -
The Evolutionary History of Polycotylid Plesiosaurians Rsos.Royalsocietypublishing.Org V
The evolutionary history of polycotylid plesiosaurians rsos.royalsocietypublishing.org V. Fischer1,†, R. B. J. Benson2,†,P.S.Druckenmiller3, H. F. Ketchum4 and N. Bardet5 Research 1DepartmentofGeology,UniversitédeLiège,14alléedu6Août,Liège4000, Belgium 2Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 Cite this article: Fischer V, Benson RBJ, 3AN, UK Druckenmiller PS, Ketchum HF,Bardet N. 2018 3University of Alaska Museum and Department of Geosciences, University of Alaska The evolutionary history of polycotylid Fairbanks, 1962YukonDrive,Fairbanks,AK99775, USA plesiosaurians. R. Soc. open sci. 5:172177. 4Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK http://dx.doi.org/10.1098/rsos.172177 5CR2P CNRS-MNHN-UPMC Paris 6, Département Origines et Evolution, Muséum National d’Histoire Naturelle, CP 38,57rueCuvier,75005Paris, France VF, 0000-0002-8808-6747 Received: 11 December 2017 Accepted: 13February 2018 Polycotylidae is a clade of plesiosaurians that appeared during the Early Cretaceous and became speciose and abundant early in the Late Cretaceous. However, this radiation is poorly understood. Thililua longicollis from the Middle Turonian of Morocco is an enigmatic taxon possessing an Subject Category: atypically long neck and, as originally reported, a series Biology (whole organism) of unusual cranial features that cause unstable phylogenetic relationships for polycotylids. We reinterpret the holotype Subject Areas: specimen of Thililua longicollis and clarify its cranial anatomy. evolution/taxonomy and Thililua longicollis possesses an extensive, foramina-bearing systematics/palaeontology jugal, a premaxilla–parietal contact and carinated teeth. Phylogenetic analyses of a new cladistic dataset based on Keywords: first-hand observation of most polycotylids recover Thililua and Mauriciosaurus as successive lineages at the base of evolutionary radiation, biotic turnover, the earliest Late Cretaceous polycotyline radiation. -
A New Specimen of Cardiocorax Mukulu with a Nearly Complete Cranium from Angola
Miguel Patrick Marx BS Geologia A new specimen of Cardiocorax mukulu with a nearly complete cranium from Angola Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Octávio Mateus, Prof. Associado com Agregação FCT-UNL 19 May 2020 May 2020 Miguel Patrick Marx BS Geologia A new specimen of Cardiocorax mukulu with a nearly complete cranium from Angola Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Octávio Mateus, Prof. Associado com Agregação FCT-UNL i Acknowledgments Firstly, I would like to thank my advisor, Octávio Mateus, for allowing me to work on this incredible specimen, guiding me throughout the process of this work, and being an incredible mentor and friend. I would like to thank Mike Polcyn and Louis Jacobs for their generous advice, mentorship, and for introducing me to the two rules. I want to also thank Ricardo Araújo for the advice on how to measure plesiosaur vertebrae. I am immensely grateful to Projecto PaleoAngola for funding my stay in Angola for the 2019 summer excavation, and the Institute of Study for Earth and Man at SMU for funding my trip to Dallas in Dec. of 2017, providing financial aid for my visit in Nov. of 2019, and funding the CT scan of the cranium from MGUAN PA278. I also thank Chris Beard and Megan Sims for organizing my collection visit to the University of Kansas and Ross Seacord, George Corner, and Shane Tucker for accommodating my visit to the University of Nebraska- Lincoln in April of 2019. I would also like to thank Elliot Smith for providing a photograph of the skull of Thalassomedon haningtoni (UNSM 50132). -
Volume 38 Sc Terra.Indd
GORTANIA. Geologia,GORTANIA Paleontologia, Paletnologia 38 (2016) Geologia, Paleontologia, Paletnologia 38 (2016) 39-75 Udine, 30.XI.2017 ISSN: 2038-0410 Fabio Marco Dalla Vecchia COMMENTS ON THE SKELETAL ANATOMY OF THE TRIASSIC REPTILE BOBOSAURUS FOROJULIENSIS (SAUROPTERYGIA, PISTOSAUROIDEA) COMMENTI SULL’ANATOMIA SCHELETRICA DEL RETTILE TRIASSICO BOBOSAURUS FOROJULIENSIS (SAUROPTERYGIA, PISTOSAUROIDEA) Riassunto breve - Bobosaurus forojuliensis è un grande rettile eusaurotterigio proveniente dal Carnico marino (Fomazione di Rio del Lago, circa 235 milioni di anni) di Dogna (Regione Autonoma Friuli Venezia Giulia, Provincia di Udine, Italia nordorientale) rappresentato da due esemplari: l’olotipo (MFSN 27285) e un singolo, isolato arco neurale (MFSN 27854). È un pistosauroide che per alcuni è il plesiosauro più primitivo, per altri è il sister-group di Plesiosauria o comunque è al di fuori di tale clade. L’olotipo è costituito da uno scheletro parziale e moderatamente disarticolato che include la punta del muso con alcuni denti, parte del segmento cervicale della colonna vertebrale, i segmenti dorsale (inclusivo delle vertebre pettorali) e sacrale, la maggior parte del segmento caudale, alcuni elementi gastrali, l’omero destro, quasi tutto il cinto pelvico e alcuni elementi degli arti posteriori. Questi reperti sono stati descritti da Dalla Vecchia (2006). Con il presente articolo si completa la descrizione dell’olotipo, mostrando in particolare i vari elementi scheletrici in dettaglio e a colori. Inoltre, questi elementi scheletrici sono confrontati con le corrispondenti ossa degli altri Pistosauroidea, soprattutto Yunguisaurus liae e Wangosaurus brevirostris del Ladinico superiore cinese, che al tempo della prima pubblicazione di Bobosaurus forojuliensis non erano ancora noti. L’esemplare MFSN 27854 assomiglia, in parte, agli archi neurali del notosauroide Simosaurus che nel 2006 non era ancora noto nella Formazione di Rio del Lago della zona di Dogna e potrebbe appartenere, in alternativa, ad un taxon vicino a quest’ultimo. -
Reptilia, Plesiosauria) from the Toarcian of Luxembourg Peggy Vincent, Robert Weis, Guy Kronz, Dominique Delsate
Microcleidus melusinae , a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg Peggy Vincent, Robert Weis, Guy Kronz, Dominique Delsate To cite this version: Peggy Vincent, Robert Weis, Guy Kronz, Dominique Delsate. Microcleidus melusinae , a new ple- siosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg. Geological Magazine, Cambridge University Press (CUP), 2019, 156 (1), pp.99-116. 10.1017/S0016756817000814. hal-02298448 HAL Id: hal-02298448 https://hal.sorbonne-universite.fr/hal-02298448 Submitted on 26 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg ∗ PEGGY VINCENT †, ROBERT WEIS‡, GUY KRONZ‡ & DOMINIQUE DELSATE‡ ∗ CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum national d’histoire naturelle, CP 38, 57 rue Cuvier, F-75005, Paris, France ‡Musée national d’histoire naturelle, Centre de recherche scientifique, Section Paléontologie, 25 rue Münster, L-2160 Luxembourg, Grand-Duché de Luxembourg Abstract – Most of the known and most-complete Early Jurassic specimens of plesiosaurians were re- covered from the United Kingdom and Germany, and few specimens from that age originate from other areas in Europe. This study describes a new plesiosaurian taxon from Toarcian deposits of Luxem- bourg, Microcleidus melusinae, represented by the most complete skeleton ever discovered from this country.