Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria)

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria) Anatomy and Systematics of the Rhomaleosauridae (Sauropterygia: Plesiosauria) Adam Stuart Smith BSc (hons) (Portsmouth), MSc (Bristol) A thesis submitted to the National University of Ireland, University College Dublin for the degree of Doctor of Philosophy November 2007 Supervisor: Dr Gareth J. Dyke Head of School: Professor Thomas Bolger School of Biology and Environmental Science University College Dublin Belfield Dublin 4 Ireland i Contents Frontispiece i Contents ii List of figures vi Acknowledgements xviii Declaration xx Abstract xxi Chapter 1. Introduction and objectives………………………………………….. 1 1.1 General introduction 1 1.2 Palaeobiology 4 1.3 Locomotion 7 1.4 Anatomy 10 1.5 Taxonomic diversity 12 1.6 Thesis objectives 14 1.7 Thesis structure 14 Chapter 2 - Historical background………………………………………………... 16 2.1 History of plesiosaurs 16 2.2 Plesiosaur systematics 16 2.3 Pliosauroidea 16 2.4 Rhomaleosauridae – taxon history 20 2.5 Rhomaleosauridae – previous research 24 2.6 Rhomaleosaurus or Thaumatosaurus? 25 Chapter 3 - Material and palaeontological approaches………………………. 27 3.1 Institutional abbreviations 27 3.2 Data collection –general 28 3.3 NMING F8785 Rhomaleosaurus cramptoni 30 3.3.1 History 30 3.3.2 Iconic specimen 33 3.4 NMING 10194 38 3.5 NMING F8749 38 3.6 NMNH R1336, NMING F8780, TCD.22931 Plesiosaurus 41 macrocephalus 3.7 NMING F8771 and TCD.22932 Thalassiodracon hawkinsi 41 3.8 BMNH 49202 45 3.9 BMNH R38525 Archaeonectrus rostratus 45 ii 3.10 BMNH R4853 Rhomaleosaurus thorntoni 45 3.11 BMNH R2028*, R2029*, R1317, R2061*, R2047*, R2027*, 49 R1318, R1319 and R2030* Eurycleidus arcuatus 3.12 BMNH R5488 Macroplata tenuiceps 50 3.13 BMNH R1310, TCD.47762a, TCD.47762b, 51 3.14 YORYM G503 Rhomaleosaurus zetlandicus 51 3.15 WM 851.S Rhomaleosaurus propinquus 54 3.16 SMNS12478 Rhomaleosaurus victor 54 3.17 LEICS G221.1851 54 3.18 WARMS G10875 56 3.19 TCD.57763 Attenborosaurus conybeari 56 3.20 Additional material 56 3.21 Possible rhomaleosaurids excluded from this study 58 Chapter 4 - Specimen descriptions………………………………………………. 59 4.1 Background 59 4.2 NMING F8785, Rhomaleosaurus cramptoni, skull 59 4.2.1 Skull roof 61 4.2.2 Palate 63 4.2.3 Basicranium 65 4.2.4 Mandible 67 4.2.5 Dentition 68 4.3 NMING F8785, Rhomaleosaurus cramptoni, postcranium 70 4.3.1 Axial skeleton 70 4.3.2 Limbs 73 4.3.3 Girdles 76 4.4 BMNH R4853, Rhomaleosaurus thorntoni 78 4.4.1 Axial skeleton 78 4.4.2 Pectoral girdle 93 4.4.3 Pelvic girdle 95 4.4.4 Limbs 97 4.5 YORYM G503, Rhomaleosaurus zetlandicus 100 4.5.1 Forelimb 100 4.5.2 Caudal vertebrae 102 4.6 Rhomaleosaurus full body reconstruction 105 4.7 NMING F10194, skull 108 4.7.1 Skull roof 108 iii 4.7.2 Palate 112 4.7.3 Basicranium 115 4.7.4 Mandible and dentition 117 4.8 NMING F10194, postcranium 117 4.8.1 Axial skeleton 117 4.8.2 Pectoral girdle 118 4.8.3 Pelvic girdle 120 4.8.4 Limbs 120 4.9 NMING F8749 122 4.9.1 Skull roof 122 4.9.2 Palate and dentition 125 4.9.3 Mandible 130 4.10 Comparison of taxa 132 4.10.1 Skull roof comparison 132 4.10.2 Palate comparison 147 4.10.3 Mandible and dentition comparison 148 4.10.4 Axial skeleton comparison 150 4.10.5 Girdles comparison 152 4.10.6 Limbs comparison 153 4.10.7 General proportions comparison 155 Chapter 5 – Morphometric and cladistic analyses…………………………….. 157 5.1 Analyses 157 5.2 Specimen-based morphometric analysis 157 5.2.1 Taphonomy 1 - Preservation of parts 157 5.2.2 Taphonomy 2 – Exposure 157 5.2.3 Accessibility 158 5.2.4 Size of data set 158 5.2.5 Data collection 158 5.2.6 Results 160 5.3 Specimen-based cladistic analysis 160 5.2.1 Character list with character discussion 168 5.3.2 Results 205 Chapter 6 – Systematic palaeontology…………………………………………... 208 6.1 Rhomaleosauridae - Generic and species-level systematics 208 6.1.1 Genus Rhomaleosaurus Seeley, 1874 208 6.1.2 Gen. nov. (for ‘Rhomaleosaurus’ victor) (Fraas, 1910) 208 Tarlo, 1960 iv Tarlo, 1960 6.1.3 Genus Eurycleidus Andrews, 1922a 212 6.1.4 Genus Macroplata Swinton, 1930a 216 6.1.5 Genus Archaeonectrus Novozhilov, 1964 217 6.2 Revised supra-generic systematics 217 Chapter 7 – Discussion…………………………………………………….……… 221 7.1 Phylogenetic analysis – discussion 221 7.2 Plesiosauroid-pliosauroid dichotomy 221 7.3 The base of Pliosauroidea 222 7.4 Leptocleididae, Pliosauridae and Brachauchenidae 222 7.5 Rhomaleosauridae 223 7.6 Eurycleidus 224 7.7 Comparison of Eurycleidus interpretations 226 7.8 Rhomaleosaurus 228 7.9 Simolestes and Maresaurus 229 7.10 Morphometric analysis – discussion 230 7.11 A caudal fin in plesiosaurs? 231 Chapter 8 – Conclusions………………………………………………………….. 233 8.1 Context 233 8.2 Systematics – conclusions 233 8.3. Anatomy – conclusions 235 References……………………………………………………………………………. 237 Appendices…………………………………………………………………………… 257 Appendix 1. Plesiosaur publications 257 Appendix 2. Additional specimens 259 Appendix 3. Abbreviations 268 Appendix 4. Morphometric data 269 Appendix 5. Data matrix 278 v List of figures Figure 1.1. Diagrams of the four main types of temporal organisation in 2 amniote skulls. A. anapsid (no temporal fenestrae), B. synapsid (single lower temporal fenestra), C. diapsid (two temporal fenestrae, upper and lower), D. euryapsid (single upper temporal fenestra). Plesiosaurs possess the euryapsid condition (see text for discussion) (modified from Benton, 1997). Figure 1.2. Cladogram showing the broad-scale interrelationships amongst 2 basal sauropterygians indicating the derived position of Plesiosauria within the clade (arrow) (modified from Rieppel, 2000). Figure 1.3. Life restorations of plesiosaurs. A. a typical plesiosauromorph 5 (Elasmosaurus platyurus), B. a typical pliosauromorph (Liopleurodon ferox). Figure 1.4. Outline of Rhomaleosaurus victor, a plesiosaur from the 8 Posidonia Shale of Germany, exposed in ventral view showing the plate-like girdles, tightly packed gastralia and wing-like limbs, typical of all plesiosaurs (length = 3.44m). Figure 1.5. Variation in plesiosaur skulls and dentition. A. Hydrorion 11 brachypterygius, a plesiosaurid from the Toarcian of Germany (Based on Brown, 1993). B. Kaiwhekea katiki, a cryptoclidid from the Maastrichtian of New Zealand (Redrawn from Cruickshank and Fordyce, 2002). C. Liopleurodon ferox, a pliosaurid from the Callovian of Europe. Redrawn from Noè et al. (2003) (Scale bar = 10cm). Figure 2.1. The first full body reconstruction of a plesiosaur (Plesiosaurus 17 dolichodeirus) (From Conybeare, 1824, Plate XLIX). Figure 2.2. Graph showing the actual and cumulative numbers of plesiosaur 19 species and genera named since the first plesiosaur was introduced in 1821 (see Appendix 1). Each time interval represents two decades; the cumulative numbers of valid genera and species both increase at a steady rate for most of the history, with a noticeable exponential increase in the last two time intervals (1981-today). Data for 2008 – 2020 was estimated based on the average number of new taxa named per year between 2001 and 2007. vi Figure 2.3. Family-level comparison of two competing hypotheses of 21 plesiosaur relationships. The hypotheses are broadly similar, but differ in the position of Polycotylidae. Druckenmiller (2006a) recognises a distinct clade (Leptocleididae) which form a sister relationship with Polycotylidae within Pliosauroidea. O’Keefe (2001a) resolves polycotylids within the Plesiosauroidea. N.B. The Rhomaleosauridae and Cryptoclididae are actually resolved as paraphyletic assemblages in the analysis of Druckenmiller (2006a) but they are depicted here as monophyletic in both cladograms for ease of comparison – for detailed differences between these hypotheses, see Figure 2.4. Figure 2.4. Detailed comparison of two competing hypotheses of 22 relationships amongst plesiosaurs showing major areas of variation (taxa in boxes). The top phylogeny is from Druckenmiller (2006a, modified from Figure 4.42); the bottom phylogeny is from O’Keefe (2001a, modified from Fig. 20). Both phylogenies divide plesiosaurs (labelled ‘PLESIOSAURIA’) into two superfamilies, Plesiosauroidea and Pliosauroidea (Pliosauroidea = Clade A in Druckenmiller’s phylogeny). In particular, note the differing position of polycotylids (=Clade B in Druckenmiller’s phylogeny) in a derived position in Pliosauroidea according to Druckenmiller, and in a derived position in Plesiosauroidea according to O’Keefe. There is also no consensus on the superfamilial affinity of Thalassiodracon. Within Pliosauroidea, the position of Simolestes and Leptocleidus also show significant variation between the phylogenies (see text for further discussion). Figure 3.1. Geographical map showing the discovery locations of twenty-two 29 specimens of Lower Jurassic plesiosaurs, examined during the production of this thesis. All of the specimens originated from the UK and Germany (highlighted in grey). Figure 3.2. Detailed location map of NMING F8785, the holotype of 31 Rhomaleosaurus cramptoni (the area in grey represents the Lias Group). Figure 3.3. Stratigraphic position of NMING F8785, the holotype of 32 Rhomaleosaurus cramptoni. The exact horizon within the Bifrons Zone is unknown (modified from Simms et al. 2004). Figure 3.4 Photograph of specimen NMING F8785, the holotype of 34 Rhomaleosaurus cramptoni, taken prior to the specimen being broken up and moved to storage. vii and moved to storage. Figure 3.5. One of ten blocks containing the postcranium of specimen 35 NMING F8785, the holotype of Rhomaleosaurus cramptoni. As of October 2007, these still await reconstruction and preparation. Figure 3.6. Padded fibreglass case constructed to enclose and protect 35 specimen NMING F8785, the skull of the holotype of Rhomaleosaurus cramptoni. Figure 3.7. Casts of the holotype of Rhomaleosaurus cramptoni on display, 36 A. in the Natural History Museum, London, UK; B. in the Bath Royal Literary and Scientific Institute, Bath, UK. See text for discussion of the differences between these casts. C. (over page) Illustration of “Item No.
Recommended publications
  • Cranial Anatomy, Taxonomic Implications
    [Palaeontology, Vol. 55, Part 4, 2012, pp. 743–773] CRANIAL ANATOMY, TAXONOMIC IMPLICATIONS AND PALAEOPATHOLOGY OF AN UPPER JURASSIC PLIOSAUR (REPTILIA: SAUROPTERYGIA) FROM WESTBURY, WILTSHIRE, UK by JUDYTH SASSOON1, LESLIE F. NOE` 2 and MICHAEL J. BENTON1* 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK; e-mails: [email protected], [email protected] 2Geociencias, departamento de Fisica, Universidad de los Andes, Bogota´ DC, Colombia; e-mail: [email protected] *Corresponding author. Typescript received 5 December 2010; accepted in revised form 6 April 2011 Abstract: Complete skulls of giant marine reptiles of the genera. The two Westbury Pliosaurus specimens share many Late Jurassic are rare, and so the discovery of the 1.8-m- features, including the form of the teeth, but marked differ- long skull of a pliosaur from the Kimmeridge Clay Forma- ences in the snout and parietal crest suggest sexual dimor- tion (Kimmeridgian) of Westbury, Wiltshire, UK, is an phism; the present specimen is probably female. The large important find. The specimen shows most of the cranial size of the animal, the extent of sutural fusion and the and mandibular anatomy, as well as a series of pathological pathologies suggest this is an ageing individual. An erosive conditions. It was previously referred to Pliosaurus brachy- arthrotic condition of the articular glenoids led to pro- spondylus, but it can be referred reliably only to the genus longed jaw misalignment, generating a suite of associated Pliosaurus, because species within the genus are currently in bone and dental pathologies.
    [Show full text]
  • Foramina in Plesiosaur Cervical Centra Indicate a Specialized Vascular System
    Foss. Rec., 20, 279–290, 2017 https://doi.org/10.5194/fr-20-279-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License. Foramina in plesiosaur cervical centra indicate a specialized vascular system Tanja Wintrich1, Martin Scaal2, and P. Martin Sander1 1Bereich Paläontologie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, 53115 Bonn, Germany 2Institut für Anatomie II, Universität zu Köln, Joseph-Stelzmann-Str. 9, 50937 Cologne, Germany Correspondence: Tanja Wintrich ([email protected]) Received: 16 August 2017 – Revised: 13 November 2017 – Accepted: 14 November 2017 – Published: 19 December 2017 Abstract. The sauropterygian clade Plesiosauria arose in the 1 Introduction Late Triassic and survived to the very end of the Cretaceous. A long, flexible neck with over 35 cervicals (the highest 1.1 Sauropterygian evolution and plesiosaur origins number of cervicals in any tetrapod clade) is a synapomor- phy of Pistosauroidea, the clade that contains Plesiosauria. Plesiosauria are Mesozoic marine reptiles that had a global Basal plesiosaurians retain this very long neck but greatly distribution almost from their origin in the Late Triassic reduce neck flexibility. In addition, plesiosaurian cervicals (Benson et al., 2012) to their extinction at the end of the have large, paired, and highly symmetrical foramina on the Cretaceous (Ketchum and Benson, 2010; Fischer et al., ventral side of the centrum, traditionally termed “subcentral 2017). Plesiosauria belong to the clade Sauropterygia and foramina”, and on the floor of the neural canal. We found are its most derived and only post-Triassic representatives, that these dorsal and the ventral foramina are connected by being among the most taxonomically diverse of all Meso- a canal that extends across the center of ossification of the zoic marine reptiles (Motani, 2009).
    [Show full text]
  • O'keefe, F. R. 2006
    12 Neoteny and the Plesiomorphic Condition of the Plesiosaur Basicranium F. Robin O’Keefe Introduction Historically, the systematics of the Plesiosauria (Reptilia, Sauroptery- gia) were based largely on postcranial characters (Persson, 1963; Brown, 1981). Several factors account for this bias: plesiosaur skulls tend to be del- icate and are often crushed even when preserved, postcranial elements are relatively common and cranial elements are not, lack of knowledge about the relationships of stem-group sauropterygians, and lack of knowledge of plesiosaur cranial anatomy itself. However, recent detailed examinations of plesiosaur cranial anatomy have identified many characters of use in plesiosaur systematics (Brown, 1993; Cruickshank, 1994; Storrs & Taylor, 1996; Storrs, 1997; Carpenter, 1997; Evans, 1999; O’Keefe, 2001, 2004), and the systematics of the group have changed markedly in response (Carpenter, 1997; O’Keefe, 2001, 2004). The work of Rieppel and others has clarified the anatomy and relationships of stem-group sauropterygians (Storrs, 1991; see Rieppel, 2000, for review). This work has laid the anatomic and phylogenetic foundations for a better understanding of ple- siosaur cranial anatomy. The purpose of this paper is to describe the condition of the braincase in stratigraphically early and morphologically primitive plesiosaurs. In- formation on the braincase of plesiomorphic taxa is important because it establishes the polarity of characters occurring in more derived ple- siosaurs. This paper begins with a short review of braincase anatomy in stem-group sauropterygians. Data on braincase morphology of the ple- siomorphic plesiosaur genera Thalassiodracon and Eurycleidus are then presented and interpreted via comparison with other plesiosaurs, stem- group sauropterygians, and stem diapsids (Araeoscelis).
    [Show full text]
  • Carpenter 1999 EL PLESIOSAURIO DE VILLA DE LEYVA (BOYACÁ, COLOMBIA)
    Boletín de Geología Vol. 23, No. 38, Enero-Junio de 2001 Callawayasaurus colombiensis (Welles) Carpenter 1999 EL PLESIOSAURIO DE VILLA DE LEYVA (BOYACÁ, COLOMBIA). ¿UN NUEVO ESPÉCIMEN? Jerez Jaimes, J. H1.; Narváez Parra, E. X1. RESUMEN En los depósitos del Cretácico (Aptiano) de Villa de Leyva se han reportado dos especies de plesiosaurios, un pliosaurio Kronosaurus boyacensis Hampe 1992, y un plesiosaurio Callawayasaurus colombiensis (Welles) Carpenter, 1999 (= Alzadasaurus colombiensis Welles, 1962). Se realiza la determinación de un espécimen de elasmosaurio encontrado por los pobladores de la zona rural de Villa de Leyva en 1999 con base en material fotográfico del mismo, siendo muy probable que corresponda a la especie Callawayasaurus colombiensis (Welles) Carpenter, 1999. Palabras Claves: Cretácico, Plesiosaurios, Villa de Leyva. ABSTRACT In the deposits of the Cretaceous (Aptian) of Villa de Leyva two plesiosaurs species have been reported, a pliosaur Kronosaurus boyacensis Hampe 1992, and a plesiosaur Callawayasaurus colombiensis (Welles) Carpenter, 1999 (= Alzadasaurus colombiensis Welles, 1962). We carried out the determination of elasmosaur specimen found by the inhabitants of the rural area of Villa de Leyva in 1999, on the basis of photographic material of it. Probably it corresponds to the Callawayasaurus colombiensis specie (Welles) Carpenter, 1999. Key Words: Cretaceous, Plesiosaurs, Villa de Leyva. 1Biólogos, Calle 10A # 24-68 Bucaramanga, Santander (Colombia). Correo electrónico: [email protected] Callawayasaurus
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N
    Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Spring 2014 Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N. Cost Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Biology Commons Recommended Citation Cost, Ian N., "Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale" (2014). Master's Theses. 57. https://scholars.fhsu.edu/theses/57 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. DESCRIPTION OF AN UNUSUAL CERVICAL VERTEBRAL COLUMN OF A PLESIOSAUR FROM THE KIOWA SHALE being A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Ian Cost B.A., Bridgewater State University M.Ed., Lesley University Date_____________________ Approved________________________________ Major Professor Approved________________________________ Chair, Graduate Council This Thesis for The Master of Science Degree By Ian Cost Has Been Approved __________________________________ Chair, Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Chair, Department of Biological Science i PREFACE This manuscript has been formatted in the style of the Journal of Vertebrate Paleontology. Keywords: plesiosaur, polycotylid, cervical vertebrae, Dolichorhynchops, Trinacromerum ii ABSTRACT The Early Cretaceous (Albian) Kiowa Shale of Clark County, Kansas consists mainly of dark gray shale with occasional limestone deposits that represent a near shore environment.
    [Show full text]
  • A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
    LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo­ graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec­ imens; certain specimens from New Zealand, now in the British Museum (see LYDEK­ KER 1889, pp.
    [Show full text]
  • A New Plesiosaur from the Lower Jurassic of Portugal and the Early Radiation of Plesiosauroidea
    A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea EDUARDO PUÉRTOLAS-PASCUAL, MIGUEL MARX, OCTÁVIO MATEUS, ANDRÉ SALEIRO, ALEXANDRA E. FERNANDES, JOÃO MARINHEIRO, CARLA TOMÁS, and SIMÃO MATEUS Puértolas-Pascual, E., Marx, M., Mateus, O., Saleiro, A., Fernandes, A.E., Marinheiro, J., Tomás, C. and Mateus, S. 2021. A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea. Acta Palaeontologica Polonica 66 (2): 369–388. A new plesiosaur partial skeleton, comprising most of the trunk and including axial, limb, and girdle bones, was collected in the lower Sinemurian (Coimbra Formation) of Praia da Concha, near São Pedro de Moel in central west Portugal. The specimen represents a new genus and species, Plesiopharos moelensis gen. et sp. nov. Phylogenetic analysis places this taxon at the base of Plesiosauroidea. Its position is based on this exclusive combination of characters: presence of a straight preaxial margin of the radius; transverse processes of mid-dorsal vertebrae horizontally oriented; ilium with sub-circular cross section of the shaft and subequal anteroposterior expansion of the dorsal blade; straight proximal end of the humerus; and ventral surface of the humerus with an anteroposteriorly long shallow groove between the epipodial facets. In addition, the new taxon has the following autapomorphies: iliac blade with less expanded, rounded and convex anterior flank; highly developed ischial facet of the ilium; apex of the neural spine of the first pectoral vertebra inclined posterodorsally with a small rounded tip. This taxon represents the most complete and the oldest plesiosaur species in the Iberian Peninsula.
    [Show full text]
  • Friends of Mound Springs
    Friends of Mound Springs I S S U E 2 , D E C E M B E R 2 0 0 6 A B N 9 6 5 8 3 7 6 0 2 6 6 D A T E S O F I N T E R E S T : · Next FOMS Presidents Message Meeting early Following the inaugural Meeting of the Friends of Mound Springs (FOMS) on 29 June this March 2007. year the group has since been established as a formal entity under the DEH Friends of Final Date, Parks network. I am particularly grateful for the efforts of Simon Lewis and Tony Latz, Sec- Venue & Time retary and Treasurer respectively, in shouldering the burden of this work. to be advised. A second meeting was held on 16 November and it was pleasing to be able to welcome to · Friends of the meeting Geoff Axford and Mike Hinsliff from DEH. Geoff and Mike have important re- Parks Group gional responsibilities for mound springs management both within and outside of the formal Forum 3-5 parks and reserves system of the Far North and it was most useful to hear from them about August 2007, some of their work. It was also instructive to hear from FOMS Vice President Travis Gotch Port Lincoln about his continuing work on springs. SA. Also discussed at the meeting was the need for more interpretative signage to better inform · GAB Consul- the large number of visitors to mound springs, particular in Wabma Kadarbu Mound Springs Conservation Park near Coward Springs. Signage which had been in place at the tative Com- Park faded and was removed some time ago, but has not been replaced and Mike indicated mittee Next that he would follow this up.
    [Show full text]
  • A Large Rhomaleosaurid Pliosaur from the Upper Lias of Rutland Richard Forrest
    A large Rhomaleosaurid Pliosaur from the Upper Lias of Rutland Richard Forrest Abstract: The fragmentary remains of a very large rhomaleosaurid pliosaur were retrieved during building works at Barnsdale Hall, Rutland. The limited material prevents clear identification at specific level, though on the basis of similarities of ratios of dimensions it shows closer affinity to Rhomaleosaurus arcuatus and R.victor than to R.cramptoni. Although scaling up from such fragmentary material is unreliable, the estimated length of this animal at 7.5 to 8 metres makes it possibly the largest Rhomaleosaurid pliosaur described to date. The fossil material broken end the shaft is oval in section, 148 mm wide and 96 mm deep. The head is 153 mm broad and The bones were excavated in 1988 by Mr. Roy 160 mm deep. Orientation can be determined by Draycott during construction of a retaining wall at rugosities from ridges for muscle attachment on the Barnsdale Hall, east of Rutland Water, in the county posterior side and the ventral surface. A deep hole in of the same name. An outer whorl of the ammonite the posterior muscle attachment presumably marks Hildoceras bifrons was found in association with the where a ligament was connected to the bone. There bones. It can therefore be placed with confidence in is slight taphonomic crushing around the trochanter. the bifrons Zone of the Upper Lias (Lower Jurassic, The surface is encrusted in places with a pyritised Toarcian, Whitbian). It is probable that much more deposit, which shows traces of tracks left by extensive remains of the animal were present at the scavengers post-mortem.
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • On the Cranial Anatomy of the Polycotylid Plesiosaurs, Including New Material of Polycotylus Latipinnis, Cope, from Alabama F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 2004 On the cranial anatomy of the polycotylid plesiosaurs, including new material of Polycotylus latipinnis, Cope, from Alabama F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O’Keefe, F. R. 2004. On the cranial anatomy of the polycotylid plesiosaurs, including new material of Polycotylus latipinnis, Cope, from Alabama. Journal of Vertebrate Paleontology 24(2):326–340. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ON THE CRANIAL ANATOMY OF THE POLYCOTYLID PLESIOSAURS, INCLUDING NEW MATERIAL OF POLYCOTYLUS LATIPINNIS, COPE, FROM ALABAMA F. ROBIN O’KEEFE Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A., [email protected] ABSTRACT—The cranial anatomy of plesiosaurs in the family Polycotylidae (Reptilia: Sauropterygia) has received renewed attention recently because various skull characters are thought to indicate plesiosauroid, rather than plio- sauroid, affinities for this family. New data on the cranial anatomy of polycotylid plesiosaurs is presented, and is shown to compare closely to the structure of cryptocleidoid plesiosaurs. The morphology of known polycotylid taxa is reported and discussed, and a preliminary phylogenetic analysis is used to establish ingroup relationships of the Cryptocleidoidea.
    [Show full text]