Ethical Issues in the Use of Human Brain Tissue for Therapeutic And

Total Page:16

File Type:pdf, Size:1020Kb

Ethical Issues in the Use of Human Brain Tissue for Therapeutic And J7ournal ofMedical Ethics 1998;24:118-122 J Med Ethics: first published as 10.1136/jme.24.2.118 on 1 April 1998. Downloaded from The brain-mind quiddity: ethical issues in the use ofhuman brain tissue for therapeutic and scientific purposes Larry Burd, Jennifer M Gregory and Jacob Kerbeshian University ofNorth Dakota, USA Abstract understanding the unique construct of brain The use ofhuman brain tissue in neuroscience activity which we call "the mind". This term, "the research is increasing. Recent developments include mind", is the conceptual vehicle used to commu- transplanting neural tissue, growing or maintaining nicate many of the brain activities which have yet neural tissue in laboratories and using surgically defied either anatomical or functional localization. removed tissuefor experimentation. Also, it is likely In some people with substantial amounts of miss- that in thefuture there will be attempts at partial or ing brain tissue all of these activities occur. Other complete brain transplants. A discussion of the ethical people with apparently normal brains demon- issues of using human brain tissuefor research and strate very few of these activities. Although the brain transplantation has been organized around role ofindividual parts ofthe brain remains poorly nine broadly defined topic areas. Criteria for human understood neuroscience seems posed to make use remarkable progress in the near future. A recent brain tissue transplantation and laboratory of copyright. brain tissue are proposed. development in clinical neuroscience has been the (Journal ofMedical Ethics 1998;24:118-122) isolation and laboratory growth ofbrain tissue cell Keywords: Brain transplantation; neuroscience; person- lines in laboratories around the world.4 These hood; life; ethics; brain; mind efforts at the cellular level and the whole brain or total body transplants in animals completed more than three decades ago by White and colleagues In a previous issue of the journal, Dr Gillon's edi- seem certain to be the focus of increasing empha-http://jme.bmj.com/ torial provided a framework and commentary as a sis from neuroscientists in the future. These companion piece to an article by Dr Northoff on strategies offer attractive methodologies for re- ethical issues of brain transplantation.' 2 These searchers and clinicians who seek to ameliorate articles provided an important first step for the sequelae of human central nervous system discussion of the philosophical and ethical issues disease and dysfunction."8 In contrast to the suc- surrounding brain transplantation. In this paper cess in animals of head transplants, the current we wish to add to this ongoing discussion and to science base suggests that mature cerebral tissue on September 24, 2021 by guest. Protected describe several additional relevant areas in this in large blocks cannot be homotransplanted into discussion. These issues relate to development of mature brains.7 8 These efforts at the cellular level the mind-brain duality, personhood, and self- on the one hand and at the level of whole brain identity. The 1990s have been designated as the transplants (limited to animals to date) on the "Decade of the Brain" to recognize both the other, give rise to nine important ethical, social, tremendous progress that has been made in the and scientific questions which are the focus of this basic and clinical neurosciences and to call atten- discussion: tion to the work yet to be done.3 Late into this decade important advances have revealed insights 1 Is it possible to grow brain tissue without the into the molecular basis of several neurological occurrence of corresponding mind (mental) disorders, for example, the diagnosis of Hunting- activities? ton's Chorea and Fragile X Syndrome. Impressive 2 If activity is present in this tissue, does it advances have accompanied these basic science support a mind-brain unit and as a result generate efforts in the understanding of functioning of the emotions, sensations, or other internally gener- central nervous system. Functional imaging stud- ated brain activity? ies have substantially enhanced the scientific 3 Should developmental experience be a criterion understanding of brain organization. However, for the brain-mind unit to have the qualities of a relatively little parallel progress has been made in person? Burd, Gregory, Kerbeshian 119 J Med Ethics: first published as 10.1136/jme.24.2.118 on 1 April 1998. Downloaded from 4 Might brain tissue separated from a body can be difficult to define and has been the subject of manifest fear, hopelessness, euphoria or creativity? numerous legal, moral, and ethical debates, this 5 Does the brain-mind unit need a body to have discussion looks the other way. At what level of the qualities of a person? brain activity is the mind functional? If the absence 6 If mental activities occur in laboratory brain ofthis activity defines brain death does the presence tissue specimens, how would these activities be of brain activity define life? The brain is a neural detectable? structure which develops very early in pregnancy, 7 If the mind-brain unit is present in laboratory and continues to develop throughout pregnancy brain tissue specimens should these laboratory and in the first years of life. The brain assumes specimens be used to study mental activities? control over a number of extremely important 8 Can a person give consent for his or her brain functions and becomes responsive to changes in the tissue to be grown or maintained in a laboratory environment very early in the developmental setting if the tissue had or later develops the inde- period. If removed from the head and maintained pendent capacity to respond at some level? would brain tissue have similar functional capaci- 9 Should a human subjects institutional review ties? Could this tissue support mental activities? In board review these activities and how could such a what way are the individual neurons grown in a board determine when a person is being studied culture different from the neurons that comprise rather than a collection of neurons? the brain of an airline pilot struggling to land a damaged plane, a first-grader walking home imag- ining the birthday presents he will receive tomor- 1) Is it possible to grow brain tissue without the row at his party, or of a physician walking into his occurrence of corresponding mind activities? office to tell one of his close friends that the friend There are several useful measures ofbrain activity has a fatal illness? Using the fictitious case of Susan and the absence of these are the most useful crite- referred to by Gillon,' questions 1) and 2) ask when ria for the diagnosis of brain death.9 The criteria does a collection of brain tissue become large for clinical death in use today refer to loss offunc- enough or have sufficiently organized neurophysi- copyright. tion of both the brain and the mind.'" Brain death ological activity to develop mental activities and results in a cessation ofthe brain-mind duality and become a "Susan". the loss ofpersonhood that makes possible the use 3) Should developmental experience be a crite- of all body parts for donation, experimental rion for the brain-mind unit to have the qualities dissection, or simply burial. Relatively little of a person? If a large number of neurons can be discussion has taken place about the maintenance grown in the laboratory setting and then develop http://jme.bmj.com/ or growth of brain tissue in laboratory settings. organized neural activity, could one argue that the Brain tissue grown in a laboratory dish is alive or lack of developmental experience prevents this dead. The "alive" state implies that the cells are at brain tissue from achieving mental activities? some level functional and responsive. The cells Would a lack of developmental experience pre- have metabolism and demonstrate some actions clude personhood status so that the tissue would similar to cells that are a part of the human brain always remain just tissue? Must brain tissue be when it is functional. It is obvious that whole attached to a body for developmental experience on September 24, 2021 by guest. Protected brains are not required for mental activity and to occur? psychological development to occur. Herein 4) Might brain tissue separated from a body resides the quiddity of the mind-brain relation- manifest mental experiences offear, hopelessness, ship. Are they, mind and brain, always biologically euphoria or creativity? The constructs used to and functionally linked? There is no evidence that describe or define many mind-brain activities are mental activity exists without brain tissue. But, poorly delineated but at their extremes easily rec- does living brain tissue always equate to mental ognized. The functional limitations of people with activity? From an ethical and philosophical view is profound mental retardation or the prodigious the relationship of brain -o neural activity -* capacity demonstrated by persons with savant mental activity (mind) always present. Or is the skills are easily recognized. People demonstrate a relationship trivial for small amounts of brain tis- wide range of responses to what appear to be vir- sue where the equation could be stated brain -e tually identical injuries. In the locked-in syndrome neural activity (neurochemical and electrical a person is unable to express himself while his organization).mental activity (mind)? brain has considerable functional capacity." This 2) If activity is present in brain tissue does it condition is surely amongst the most tragic of support a mind-brain unit and as a result generate those which afflict human beings. During general emotions, sensations or internally generated mental anaesthetic for surgery brain activity is markedly activity? While the boundary between life and death reduced but, because of the reversibility of this 120 The brain-mind quiddity J Med Ethics: first published as 10.1136/jme.24.2.118 on 1 April 1998.
Recommended publications
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • GLOSSARY Glossary Adapted with Permission from R
    GLOSSARY Glossary adapted with permission from R. Kalb (ed.) Multiple Sclerosis: The Questions You Have: The Answers You Need (5th ed.) New York: Demos Medical Publishing, 2012. This glossary is available in its entirety (as well as additional MS terms) online at nationalMSsociety.org/glossary. 106 | KNOWLEDGE IS POWER 106 | KNOWLEDGE IS POWER Americans with Disabilities Act Blood-brain barrier (ADA) A semi-permeable cell layer around The first comprehensive legislation blood vessels in the brain and spinal to prohibit discrimination on the cord that prevents large molecules, basis of disability. The ADA (passed immune cells, and potentially in 1990) guarantees full participation damaging substances and disease- in society to people with disabilities. causing organisms (e.g., viruses) from The four areas of social activity passing out of the blood stream into the covered by the ADA are employment; central nervous system (brain, spinal public services and accommodations; cord and optic nerves). A break in the transportation; and communications blood-brain barrier may underlie the Autoimmune(e.g., telephone disease services). Centraldisease process nervous in system MS. A process in which the body’s immune The part of the nervous system that system causes illness by mistakenly includes the brain, optic nerves, and attacking healthy cells, organs or tissues Cerebrospinalspinal cord. fluid (CSF) in the body that are essential for good health. In multiple sclerosis, the specific antigen — or target — that the immune A watery, colorless, clear fluid that cells are sensitized to attack remains bathes and protects the brain and unknown, which is why MS is considered spinal cord.
    [Show full text]
  • Progress and Challenges in Probing the Human Brain
    University of Pennsylvania ScholarlyCommons Neuroethics Publications Center for Neuroscience & Society 10-2015 Progress and Challenges in Probing the Human Brain Russell A. Poldrack Martha J. Farah University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/neuroethics_pubs Part of the Bioethics and Medical Ethics Commons, Neuroscience and Neurobiology Commons, and the Neurosciences Commons Recommended Citation Poldrack, R. A., & Farah, M. J. (2015). Progress and Challenges in Probing the Human Brain. Nature, 526 (7573), 371-379. http://dx.doi.org/10.1038/nature15692 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/neuroethics_pubs/136 For more information, please contact [email protected]. Progress and Challenges in Probing the Human Brain Abstract Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly er view its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience.
    [Show full text]
  • Basic Brain Anatomy
    Chapter 2 Basic Brain Anatomy Where this icon appears, visit The Brain http://go.jblearning.com/ManascoCWS to view the corresponding video. The average weight of an adult human brain is about 3 pounds. That is about the weight of a single small To understand how a part of the brain is disordered by cantaloupe or six grapefruits. If a human brain was damage or disease, speech-language pathologists must placed on a tray, it would look like a pretty unim- first know a few facts about the anatomy of the brain pressive mass of gray lumpy tissue (Luria, 1973). In in general and how a normal and healthy brain func- fact, for most of history the brain was thought to be tions. Readers can use the anatomy presented here as an utterly useless piece of flesh housed in the skull. a reference, review, and jumping off point to under- The Egyptians believed that the heart was the seat standing the consequences of damage to the structures of human intelligence, and as such, the brain was discussed. This chapter begins with the big picture promptly removed during mummification. In his and works down into the specifics of brain anatomy. essay On Sleep and Sleeplessness, Aristotle argued that the brain is a complex cooling mechanism for our bodies that works primarily to help cool and The Central Nervous condense water vapors rising in our bodies (Aristo- tle, republished 2011). He also established a strong System argument in this same essay for why infants should not drink wine. The basis for this argument was that The nervous system is divided into two major sec- infants already have Central nervous tions: the central nervous system and the peripheral too much moisture system The brain and nervous system.
    [Show full text]
  • The Human Brain Hemisphere Controls the Left Side of the Body and the Left What Makes the Human Brain Unique Is Its Size
    About the brain Cerebrum (also known as the The brain is made up of around 100 billion nerve cells - each one cerebral cortex or forebrain) is connected to another 10,000. This means that, in total, we The cerebrum is the largest part of the brain. It is split in to two have around 1,000 trillion connections in our brains. (This would ‘halves’ of roughly equal size called hemispheres. The two be written as 1,000,000,000,000,000). These are ultimately hemispheres, the left and right, are joined together by a bundle responsible for who we are. Our brains control the decisions we of nerve fibres called the corpus callosum. The right make, the way we learn, move, and how we feel. The human brain hemisphere controls the left side of the body and the left What makes the human brain unique is its size. Our brains have a hemisphere controls the right side of the body. The cerebrum is larger cerebral cortex, or cerebrum, relative to the rest of the The human brain is the centre of our nervous further divided in to four lobes: frontal, parietal, occipital, and brain than any other animal. (See the Cerebrum section of this temporal, which have different functions. system. It is the most complex organ in our fact sheet for further information.) This enables us to have abilities The frontal lobe body and is responsible for everything we do - such as complex language, problem-solving and self-control. The frontal lobe is located at the front of the brain.
    [Show full text]
  • Neuroscience
    NEUROSCIENCE SCIENCE OF THE BRAIN AN INTRODUCTION FOR YOUNG STUDENTS British Neuroscience Association European Dana Alliance for the Brain Neuroscience: the Science of the Brain 1 The Nervous System P2 2 Neurons and the Action Potential P4 3 Chemical Messengers P7 4 Drugs and the Brain P9 5 Touch and Pain P11 6 Vision P14 Inside our heads, weighing about 1.5 kg, is an astonishing living organ consisting of 7 Movement P19 billions of tiny cells. It enables us to sense the world around us, to think and to talk. The human brain is the most complex organ of the body, and arguably the most 8 The Developing P22 complex thing on earth. This booklet is an introduction for young students. Nervous System In this booklet, we describe what we know about how the brain works and how much 9 Dyslexia P25 there still is to learn. Its study involves scientists and medical doctors from many disciplines, ranging from molecular biology through to experimental psychology, as well as the disciplines of anatomy, physiology and pharmacology. Their shared 10 Plasticity P27 interest has led to a new discipline called neuroscience - the science of the brain. 11 Learning and Memory P30 The brain described in our booklet can do a lot but not everything. It has nerve cells - its building blocks - and these are connected together in networks. These 12 Stress P35 networks are in a constant state of electrical and chemical activity. The brain we describe can see and feel. It can sense pain and its chemical tricks help control the uncomfortable effects of pain.
    [Show full text]
  • Brain Comparisons Teacher's Guide
    Teacher’s Guide Written by Leslie Miller, Ph.D., Barbara Tharp, M.S., Judith Dresden, M.S., Katherine Taber, Ph.D., Karen Kabnick, Ph.D., and Nancy Moreno, Ph.D. © 2015 Baylor College of Medicine TEACHER’S GUIDE Written by Leslie Miller, Ph.D., Barbara Tharp, M.S., Judith Dresden, M.S. Katherine Taber, Ph.D., Karen Kabnick, Ph.D., and Nancy Moreno, Ph.D. BioEd Teacher Resources from the Center for Educational Outreach Baylor College of Medicine ISBN: 978-1-888997-98-9 © 2015 Baylor College of Medicine © 2015 Baylor College of Medicine. All rights reserved. Fifth edition. First edition published 1992. Printed in the United States of America. ISBN: 978-1-888997-98-9 Teacher Resources from the Center for Educational Outreach at Baylor College of Medicine. The mark “BioEd” is a service mark of Baylor College of Medicine. The marks “BrainLink” and “NeuroExplorers” are registered trademarks of Baylor College of Medicine. No part of this book may be reproduced by any mechanical, photographic or electronic process, or in the form of an audio recording, nor may it be stored in a retrieval system, transmitted or otherwise copied for public or private use without prior written permission of the publisher, except for classroom use. The activities described in this book are intended for school-age children under direct supervision of adults. The authors, Baylor College of Medicine and the publisher cannot be responsible for any accidents or injuries that may result from conduct of the activities, from not specifically following directions, or from ignoring cautions contained in the text.
    [Show full text]
  • Neuroscience: the Science of the Brain
    NEUROSCIENCE SCIENCE OF THE BRAIN AN INTRODUCTION FOR YOUNG STUDENTS British Neuroscience Association European Dana Alliance for the Brain Neuroscience: the Science of the Brain 1 The Nervous System P2 2 Neurons and the Action Potential P4 3 Chemical Messengers P7 4 Drugs and the Brain P9 5 Touch and Pain P11 6 Vision P14 Inside our heads, weighing about 1.5 kg, is an astonishing living organ consisting of 7 Movement P19 billions of tiny cells. It enables us to sense the world around us, to think and to talk. The human brain is the most complex organ of the body, and arguably the most 8 The Developing P22 complex thing on earth. This booklet is an introduction for young students. Nervous System In this booklet, we describe what we know about how the brain works and how much 9 Dyslexia P25 there still is to learn. Its study involves scientists and medical doctors from many disciplines, ranging from molecular biology through to experimental psychology, as well as the disciplines of anatomy, physiology and pharmacology. Their shared 10 Plasticity P27 interest has led to a new discipline called neuroscience - the science of the brain. 11 Learning and Memory P30 The brain described in our booklet can do a lot but not everything. It has nerve cells - its building blocks - and these are connected together in networks. These 12 Stress P35 networks are in a constant state of electrical and chemical activity. The brain we describe can see and feel. It can sense pain and its chemical tricks help control the uncomfortable effects of pain.
    [Show full text]
  • The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification
    The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit To cite this version: Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit. The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.94. 10.3389/fnana.2018.00094. hal-01929504 HAL Id: hal-01929504 https://hal.archives-ouvertes.fr/hal-01929504 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 06 November 2018 doi: 10.3389/fnana.2018.00094 The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet 1* †, Silvio Sarubbo 2† and Laurent Petit 3* 1Department of Neurosurgery, Lariboisière Hospital, Paris, France, 2Division of Neurosurgery, Structural and Functional Connectivity Lab, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy, 3Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives—UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d’Azyr up to the beginning of the 19th century.
    [Show full text]
  • SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This
    12/19/2018 11:00 AM FOUNDATIONAL LEARNING SYSTEM 092892-181219 © Johnson & Johnson Servicesv Inc. 2018 All rights reserved. 1 SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This module will strengthen your understanding of basic neuroanatomy, neurovasculature, and functional roles of specific brain regions. 1 12/19/2018 11:00 AM Lesson 1: Introduction to the Brain The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. In this lesson, we’ll discuss the principle brain regions, layers of the brain, and lobes of the brain, as well as common terms used to orient neuroanatomical discussions. 2 SAY: The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. (Purves 2012/p717/para1) In this lesson, we’ll explore these organizational layers by discussing the principle brain regions, layers of the brain, and lobes of the brain. We’ll also discuss the terms used by scientists and healthcare providers to orient neuroanatomical discussions. 2 12/19/2018 11:00 AM Lesson 1: Learning Objectives • Define terms used to specify neuroanatomical locations • Recall the 4 principle regions of the brain • Identify the 3 layers of the brain and their relative location • Match each of the 4 lobes of the brain with their respective functions 3 SAY: Please take a moment to review the learning objectives for this lesson. 3 12/19/2018 11:00 AM Directional Terms Used in Anatomy 4 SAY: Specific directional terms are used when specifying the location of a structure or area of the brain.
    [Show full text]
  • Glossary of Key Brain Science Terms
    A Glossary of Key Brain Science Terms www.dana.org keep in touch (Italicized terms are defined within this glossary.) Aadrenal glands: Located on top of each kidney, these two glands are involved in the body’s response to stress and help regulate growth, blood glucose levels, and the body’s metabolic rate. They receive signals from the brain and secrete several different hormones in response, including cortisol and adrenaline. adrenaline: Also called epinephrine, this hormone is secreted by the adrenal glands in response to stress and other challenges to the body. The release of adrenaline causes a number of changes throughout the body, including the metabolism of carbohydrates to supply the body’s energy demands. allele: One of the variant forms of a gene at a particular location on a chromosome. Differing alleles produce variation in inherited characteristics such as hair color or blood type. A dominant allele is one whose physiological function—such as making hair blonde—is manifest even when only a single copy is present (among the two copies of each gene that everyone inherits from their parents). A recessive allele is one that manifests only when two copies are present. amino acid: A type of small organic molecule. Amino acids have a variety of biological roles, but are best known as the “building blocks” of proteins. amino acid neurotransmitters: The most prevalent neurotransmitters in the brain, these include gluta- mate and aspartate, which have excitatory actions, and glycine and gamma-amino butyric acid (GABA), which have inhibitory actions. amygdala: Part of the brain’s limbic system, this primitive brain structure lies deep in the center of the brain and is involved in emotional reactions, such as anger, as well as emotionally charged memories.
    [Show full text]
  • Brain Anatomy
    BRAIN ANATOMY Adapted from Human Anatomy & Physiology by Marieb and Hoehn (9th ed.) The anatomy of the brain is often discussed in terms of either the embryonic scheme or the medical scheme. The embryonic scheme focuses on developmental pathways and names regions based on embryonic origins. The medical scheme focuses on the layout of the adult brain and names regions based on location and functionality. For this laboratory, we will consider the brain in terms of the medical scheme (Figure 1): Figure 1: General anatomy of the human brain Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 12.2 CEREBRUM: Divided into two hemispheres, the cerebrum is the largest region of the human brain – the two hemispheres together account for ~ 85% of total brain mass. The cerebrum forms the superior part of the brain, covering and obscuring the diencephalon and brain stem similar to the way a mushroom cap covers the top of its stalk. Elevated ridges of tissue, called gyri (singular: gyrus), separated by shallow groves called sulci (singular: sulcus) mark nearly the entire surface of the cerebral hemispheres. Deeper groves, called fissures, separate large regions of the brain. Much of the cerebrum is involved in the processing of somatic sensory and motor information as well as all conscious thoughts and intellectual functions. The outer cortex of the cerebrum is composed of gray matter – billions of neuron cell bodies and unmyelinated axons arranged in six discrete layers. Although only 2 – 4 mm thick, this region accounts for ~ 40% of total brain mass. The inner region is composed of white matter – tracts of myelinated axons.
    [Show full text]