DEPARTAME Arbuscular Myc Composition in Past Composition In

Total Page:16

File Type:pdf, Size:1020Kb

DEPARTAME Arbuscular Myc Composition in Past Composition In DEPARTAMENTO DE CIÊNCIAS DA VIDA 2010 FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA Azores: assessing e Arbuscular Mycorrhizal Fungal diversity and ion in pastures of th of ion in pastures nt practices t e composition in pasttures of the Azores: assessing the impact of management practices iversity and composi iversity and impact of managem impact of the Mycorrhizal Fungi d r Arbuscula Catarina Alexandra Drumonde Melo 2010 Catarina Melo DEPARTAMENTO DE CIÊNCIAS DA VIDA FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA Arbuscular Mycorrhizal Fungal diversity and composition in pastures of the Azores: assessing the impact of management practices Tese apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra para obtenção do grau de Doutor em Biologia, na especialidade de Ecologia, realizada sob a orientação científica da Professora Doutora Helena Freitas (Universidade de Coimbra) e do Professor Doutor Paulo A. V. Borges (Universidade dos Açores) Catarina Alexandra Drumonde Melo 2010 Acknowledgements I wish to thank my supervisors Prof. Dr. Helena Freitas and Prof. Dr. Paulo Borges for their encouragement, patient supervision and constructive criticisms. I will always be grateful to Prof. Dr. Paulo Borges, for being the person who most contributed to my scientific training. Special thanks to Prof. Dr. Raimundo Cabrera and Dr. Maria Jaizme-Vega for their friendship, help, advice, knowledge that provided a stimulating, productive and enjoyable work environment during part of my study period in ULL (Tenerife). I would like to thank to the Instituto Canario de Investigaciones Agrarias (ICIA) for logistical support to my experiences in Tenerife, especially to Mirriam and Paulito. I also thank to Susana for her advice, knowledge and suggestions with molecular techniques and helpful discussions, and for providing to me friendly working conditions in Coimbra Lab during part of my study period. I am grateful to Dr. C. Walker for his comments and help in spores’ identification and description. Special thanks to my dearest friend Clara Gaspar, for her friendship, advices, help with statistical analysis and suggestions. I would also like to thank to all members of Centro de Biotecnologia dos Açores (CBA) for their friendship and understanding, especially to Prof. Dr. Artur Machado for his encouragement during the last step of my PhD. I gratefully acknowledge financial support for this research that was provided by the Portuguese Fundação para a Ciência e a Tecnologia to my PhD grant (SFRH/BD/18355/2004). To my parents for keeping me motivated and for believing in me, especially to my mother for travelling with me during my study periods in Tenerife and Coimbra, and for taking care of my son Gustavo. Special thanks to my husband Vasco for helping in all the field work, for his patience, understanding, love and encouragement during this task. Finally, and “because the last are the first” to my sons, Martim and Gustavo for all the love and affection that helped me recover in the most difficult times of this task, and to Gustavo for all the companionship and sharing over the past 5 years. Aos meus filhos…… TABLE OF CONTENTS Page Abstract .................................................................................................................. 13 Resumo .................................................................................................................. 15 Chapter I ................................................................................................................. 19 General Introduction ............................................................................................... 21 1. The importance of soil microorganisms .............................................................. 21 2. Mycorrhizal fungi ................................................................................................ 22 3. Arbuscular mycorrhizal fungi .............................................................................. 23 3.1. The AMF life cycle ........................................................................................... 25 3.2. Paris- and Arum- type colonisation .................................................................. 26 3.3. Ecology of Arbuscular Mycorrhizae ................................................................. 28 3.3.1. Host specificity .............................................................................................. 28 3.3.2. Plant succession and mycorrhizal colonisation ............................................ 29 3.4. Genetics of AMF .............................................................................................. 30 4. Arbuscular mycorrhiza ........................................................................................ 32 4.1. Nutritional benefits ........................................................................................... 32 4.2. Other beneficial features ................................................................................. 34 5. Identification, systematic, phylogeny and diversity of the Glomeromycota………35 5.1. Systematics and phylogeny of the Glomeromycota………………………………35 6. Methods for AMF identification ........................................................................... 39 6.1. Morphological methods ................................................................................... 39 6.2. Molecular methods .......................................................................................... 41 6.2.1. Marker genes for AMF community studies ................................................... 42 7. AMF and Agriculture ........................................................................................... 43 8. Study areas ......................................................................................................... 45 8.1.1. Island overview ............................................................................................. 45 8.1.2. Studied pastures ........................................................................................... 46 8.2. Land use history and soil management ........................................................... 48 8.2.1. Land use in past ............................................................................................ 48 8.2.2. Land use today ............................................................................................. 50 9. Aims of this dissertation ...................................................................................... 52 Chapter II Species composition of arbuscular mycorrhizal fungi in semi-natural and intensive pastures from Terceira Island (Azores) ................................................................... 53 1. Introduction ......................................................................................................... 55 2. Materials and methods ........................................................................................ 59 2.1. Study sites ....................................................................................................... 59 2.2. Sample collection ............................................................................................. 61 2.3. Study plant ....................................................................................................... 61 2.4. Soil analyses .................................................................................................... 62 2.5. Establishment of a trap culture ......................................................................... 62 2.6. AMF spore extraction and identification ........................................................... 63 2.7. Data analysis ................................................................................................... 65 3. Results ................................................................................................................ 66 3.1. AMF species recorded ..................................................................................... 66 3.2. Species descriptions ........................................................................................ 68 3.3. AMF species composition ................................................................................ 77 3.4. Soil nutrient parameters .................................................................................. 83 3.5. AMF spore density ........................................................................................... 84 4. Discussion .......................................................................................................... 86 Chapter III Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots of Holcus lanatus L. in semi-natural and intensive pastures in Terceira island (Azores) ........ 93 1 .Introduction ......................................................................................................... 95 2. Materials and methods ....................................................................................... 99 2.1. Experimental design ........................................................................................ 99 2.2. Site description ................................................................................................ 99 2.3. Study plant ...................................................................................................... 101 2.4. Rhizosphere extraction ...................................................................................
Recommended publications
  • A Checklist of Egyptian Fungi: II
    Microbial Biosystems 1(1): 40–49 (2016) ISSN 2357-0334 http://fungiofegypt.com/Journal/index.html Microbial Biosystems Copyright © 2016 Nafady et al. Online Edition ARTICLE A checklist of Egyptian fungi: II. Glomeromycota Nafady NA1*, Abdel-Azeem AM2 and Salem FM2 1Botany and Microbiology Department, Faculty of Science, Assuit University, Assiut 71516, Egypt- [email protected] 2Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt- [email protected], [email protected] Nafady NA, Abdel-Azeem AM, Salem FM 2016 – A checklist of Egyptian fungi: II. Glomeromycota. Microbial Biosystems 1(1), 40–49 Abstract Information about arbuscular mycorrhizal fungi (AMF) was abstracted based on an intensive search of publications, thesis, and preliminary annotated checklists and compilations. By screening all available sources of information, it was possible to report forty-eight taxa belonging to one class (Glomeromycetes), four orders (Archaeosporales, Diversisporales, Glomerales and Paraglomerales) and six families (Acaulosporaceae, Archaeosporaceae, Entrophosporaceae, Gigasporaceae, Glomeraceae and Pacisporaceae). Order Glomerales accommodates the greatest range of species (28 species), the order Archaeosporales and Paraglomerales accommodate the lowest range (one species each). Key words – AM fungi – checklist – Egypt – Glomus – mycorrhiza – Saint Katherine Introduction The arbuscular mycorrhizal (AM) symbiosis is the most widespread on earth and is defined as the association between the fungi of the phylum Glomeromycota (Schüβler et al. 2001) and most of the terrestrial species ranging from thallophytes to Angiosperms. The morphology of the fungus colonizing plant root tissues is highly elaborated in AM symbiosis. In natural communities, approximately 80% of higher plants were obligately dependent upon fungal associates. AM fungi are believed to be disseminated intercontinentally prior to continental drift, as supported by fossil records of earlier plants (Berch 1986; Stubblefield et al.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi in the Rhizosphere of Musa Spp. in Western Cuba
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 10(1): 176–185 (2020) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/10/1/18 Arbuscular mycorrhizal fungi in the rhizosphere of Musa spp. in western Cuba Furrazola E1, Torres–Arias Y1, Herrera–Peraza RA1, Fors RO2, González– González S3, Goto BT4 and Berbara RLL2 1Instituto de Ecología y Sistemática (IES), La Habana, Cuba 2Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil 3Universidad de La Frontera, Temuco, Chile 4Universidade Federal do Rio Grande do Norte, Natal, Brazil Furrazola E, Torres–Arias Y, Herrera–Peraza RA, Fors RO, González–González S, Goto BT, Berbara RLL 2020 – Arbuscular mycorrhizal fungi in the rhizosphere of Musa spp. in western Cuba. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 10(1), 176–185, Doi 10.5943/cream/10/1/18 Abstract Diversity of arbuscular mycorrhizal fungi (AMF) in banana and plantain fields in western Cuba is here reported. Thirty rhizosphere soil samples were collected and used for direct evaluation of the AMF community and establishment of trap cultures. AMF spores were extracted from the soil samples by wet sieving and decanting, and species were identified based on the morphology of the spores. Overall, 56 AMF morphospecies were differentiated within at least 10 genera. From the total number of morphospecies, 25 were identified up to the species level, and 31 were morphologically different from described species. From field samples, 42 morphospecies were verified, with predominance of the genera Acaulospora and Glomus. However, the most frequent species recovered directly from the field samples were Claroideoglomus etunicatum and Funneliformis geosporum.
    [Show full text]
  • Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
    Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels.
    [Show full text]
  • Phragmites Australis
    Journal of Ecology 2017, 105, 1123–1162 doi: 10.1111/1365-2745.12797 BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 283 List Vasc. PI. Br. Isles (1992) no. 153, 64,1 Biological Flora of the British Isles: Phragmites australis Jasmin G. Packer†,1,2,3, Laura A. Meyerson4, Hana Skalov a5, Petr Pysek 5,6,7 and Christoph Kueffer3,7 1Environment Institute, The University of Adelaide, Adelaide, SA 5005, Australia; 2School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; 3Institute of Integrative Biology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich,€ Switzerland; 4University of Rhode Island, Natural Resources Science, Kingston, RI 02881, USA; 5Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, CZ-25243, Pruhonice, Czech Republic; 6Department of Ecology, Faculty of Science, Charles University, CZ-12844, Prague 2, Czech Republic; and 7Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa Summary 1. This account presents comprehensive information on the biology of Phragmites australis (Cav.) Trin. ex Steud. (P. communis Trin.; common reed) that is relevant to understanding its ecological char- acteristics and behaviour. The main topics are presented within the standard framework of the Biologi- cal Flora of the British Isles: distribution, habitat, communities, responses to biotic factors and to the abiotic environment, plant structure and physiology, phenology, floral and seed characters, herbivores and diseases, as well as history including invasive spread in other regions, and conservation. 2. Phragmites australis is a cosmopolitan species native to the British flora and widespread in lowland habitats throughout, from the Shetland archipelago to southern England.
    [Show full text]
  • SZENT ISTVÁN UNIVERSITY DOCTORAL SCHOOL Of
    SZENT ISTVÁN UNIVERSITY DOCTORAL SCHOOL of BIOLOGICAL SCIENCES PhD THESIS MYCOLOGICAL INVESTIGATION FROM HUNGARIAN FLOATING ISLANDS Ágnes Zöld-Balogh Gödöllő 2020 1 SZENT ISTVÁN UNIVERSITY DOCTORAL SCHOOL of BIOLOGICAL SCIENCES PhD THESIS MYCOLOGICAL INVESTIGATION FROM HUNGARIAN FLOATING ISLANDS Ágnes Zöld-Balogh Gödöllő 2020 2 Doctoral school: PhD school name: SZIE, Doctoral School of Biological Sciences Discipline: Biological sciences Head of PhD School: Prof. Dr. Zoltán Nagy DSc Head of Institute SZIE, Faculty of Agricultural and Environmental Sciences Institute of Botany and Ecophysiology MTA–SZIE Plant Ecology Research Group Supervisor: Dr. Bratek Zoltán, PhD senior lecturer ELTE TTK Biological Institute Department of Plant Physiology and Molecular Plant Biology .............................................. Dr. Nagy Zoltán Dr. Bratek Zoltán Head of PhD School Supervisor 3 Background and objektives Among the plants- and fungal species of terrestrial and wetland communties tight and multifold networks have been formed in order to maintain life functions. The floating islands swim on the water substrate as the habitats with the thickening peat mats which create transition among terrestrial and wetland habitats. The relationships of plant and fungal communities creating this phenomenon are poorly revealed. In spite of the up-to-date researches their roles have been proved in the biogeogchemical cycles of several elements just like in the avoidance of the fresh water’s eutrophication. All of these are strongly connected to anoxic and oxic processes happening in rhizoplane and the storing capacity of peat pointing to the geological future distances. The peat used to cover huge territories of the earth surface which was shrunk into a little region on earth due to the transforming activities of mankind.
    [Show full text]
  • The Effect of Salinity Gradient and Heavy Metal Pollution on Arbuscular Mycorrhizal Fungal Community Structure in Some Algerian Wetlands
    Acta Bot. Croat. 79 (1), 3–14, 2020 CODEN: ABCRA 25 DOI: 10.37427/botcro-2020-001 ISSN 0365-0588 eISSN 1847-8476 The effect of salinity gradient and heavy metal pollution on arbuscular mycorrhizal fungal community structure in some Algerian wetlands Warda Sidhoum1,2*, Kheira Bahi2,3, Zohra Fortas1 1 Laboratory of Microorganisms Biology and Biotechnology, University of Oran 1 Ahmed Ben Bella, Oran, Algeria 2 Abdelhamid Ibn Badis University, Mostaganem, Algeria 3 Department of Biology, Faculty of Natural Science and Life, University of Oran 1 Ahmed Ben Bella, Oran, Algeria Abstract – Algerian natural wetlands suffer from anthropogenic disturbances due to industrial development and urbanization. This study was designed to draw attention to arbuscular mycorrhizal fungi (AMF) distribu- tion and community assemblages following heavy metal and salinity concentrations in two wetlands subjected to domestic and industrial effluents. Rhizospheric soil and roots of 18 plant species were collected in two wet- lands along a decreasing salinity gradient. The results showed that 72.72% of plant species exhibit an association within arbuscular mycorrhizas (AM), and 36.36% a dual association between AM and dark septate endophytes (DSE). A total of 33 AMF morphospecies were distinguished on the basis of morphological criteria dominated by taxa belonging to Glomeraceae and Acaulosporaceae. Soil contamination was investigated by determining metallic trace elements (MTE) (Cd, Cu, Ni, Pb, Cr and Zn) using an atomic absorption spectrophotometer. Val- ues of the pollution index revealed wetlands that were particularly polluted by lead. Two-way ANOVA showed significant variations in metal content among sampling locations and transects. Principal component analysis showed that species richness, and mycorrhizal frequency were slightly affected by MTE.
    [Show full text]
  • Four New Species of Arbuscular Mycorrhizal Fungi (Glomeromycota) Associated with Endemic Plants from Ultramafic Soils of New Caledonia
    Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia Thomas Crossay, Alexis Cilia, Yvon Cavaloc, Hamid Amir & Dirk Redecker Mycological Progress ISSN 1617-416X Mycol Progress DOI 10.1007/s11557-018-1386-5 1 23 Your article is protected by copyright and all rights are held exclusively by German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Mycological Progress https://doi.org/10.1007/s11557-018-1386-5 ORIGINAL ARTICLE Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia Thomas Crossay1 & Alexis Cilia1 & Yvon Cavaloc1 & Hamid Amir1 & Dirk Redecker2 Received: 13 September 2017 /Revised: 2 February 2018 /Accepted: 8 February 2018 # German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Four new species of arbuscular mycorrhizal (AM) fungi (Glomeromycota) were isolated from the rhizosphere of en- demic metallophytic plants in ultramafic soils inNewCaledonia(SouthPacific)andpropagatedonSorghum vulgare.
    [Show full text]
  • Checklist of the Glomeromycota in the Brazilian Savanna
    Checklist of the Glomeromycota in the Brazilian Savanna KHADIJA JOBIM¹, BRUNA IOHANNA SANTOS OLIVEIRA², BRUNO TOMIO GOTO³ 1Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil 2Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Oeste da Bahia, 47808-021, Barreiras, BA, Brazil 3Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — The Brazilian savanna (Cerrado) was the first Brazilian biome to be surveyed for arbuscular mycorrhizal fungi (AMF) and currently comprises the third Brazilian biome in species representation. This paper provides a checklist of arbuscular mycorrhizal fungi (AMF) in the Cerrado. A total of 92 species of AMF have been found in the Brazilian Cerrado over three decades of work conducted in this biome. The results characterize the Cerrado as an important AMF reservoir and show that rupestrian fields, one of several physiognomies of the cerrado, are biologically promising. KEY WORDS— biodiversity, taxonomy, conservation, cerrado Introduction The arbuscular mycorrhizal fungi (AMF) make up the Glomeromycota currently divided into three classes (Archaeosporomycetes, Glomeromycetes and Paraglomeromycetes), five orders (Archaeosporales, Diversisporales, Gigasporales, Glomerales and Paraglomerales), 15 families, 38 genera and approximately 270 species (Oehl et al. 2011; Błaszkowski 2012, 2014; Goto et al. 2012, Marinho et al. 2014; Oehl et al. 2015). These fungi form arbuscular mycorrhizal associations with more than 80% of terrestrial plant, except for one species, Geosiphon pyriformis, a unique glomeromycotan forming association with cyanobacteria Nostoc (Smith & Read 2008; Wettstein 1915).
    [Show full text]
  • Update: Atlantic Forest AM Fungi (Glomeromycota)
    Updates on the knowledge of arbuscular mycorrhizal fungi (Glomeromycotina) in the Atlantic Forest biome – an example of very high species richness in Brazilian biomes KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, BRUNO TOMIO GOTO2* 1Programa de Pós-Graduação em Sistemática e Evolução & 2Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — The Atlantic Forest has historically one of the most sampled biomes on Arbuscular Mycorrhizal Fungi (AMF) diversity in Brazil. Due to the high number of studies published in recent decades, the number of species records available in the literature, including new species for science, has increased substantially. In an effort to monitor recent advances, this paper cites additions to the AMF richness in the Atlantic Forest and provides an updated checklist. We highlight the Atlantic Forest as the most representative Brazilian biome, as is to be expected for a global diversity hotspot. Since the Atlantic Forest is the Brazilian area most threatened by human impact, most particularly forest fragmentation, this checklist underscores the importance of developing and maintaining conservation policies for the remainder of Brazil. KEY WORDS — mycorrhizae, taxonomy, forest fragmentation, conservation Introduction Glomeromycotina subphylum (Mucoromycota) is a monophyletic clade currently represented by about 300 species distributed in three classes, five orders, 15 families and 38 genera (Oehl et al. 2011; Goto et al. 2012a; Błaszkowski 2012; Błaszkowski et al. 2014; Spatafora et al. 2016). This subphylum comprises the Arbuscular Mycorrhizal Fungi (AMF), symbiotic mutualistic organisms associated with about 80% terrestrial plants species and Geosiphon pyriformis (Kütz.) F.
    [Show full text]
  • (Am) Fungi in Ornamental Flowering Plants Commonly Found in Goa
    1 STUDIES ON ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN ORNAMENTAL FLOWERING PLANTS COMMONLY FOUND IN GOA A Thesis submitted to Goa University for the Award of the Degree of DOCTOR OF PHILOSOPHY in BOTANY By MS. JYOTI D. VAINGANKAR, M. Sc. Research Guide PROF. B.F. RODRIGUES, M.Sc., Ph.D. Goa University, Taleigao Goa 2012 2 DECLARATION I hereby declare that the thesis entitled “STUDIES ON ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN ORNAMENTAL FLOWERING PLANTS COMMONLY FOUND IN GOA” submitted to Goa University, for the award of the degree of DOCTOR OF PHILOSOPHY IN BOTANY is a record of original and independent work carried out by me during August 2007 - August 2012, in the DEPARTMENT OF BOTANY, GOA UNIVERSITY under the supervision of Dr. B. F. RODRIGUES, Professor, Department of Botany, Goa University and that it has not previously formed the basis for the award of any Degree, Diploma, Associate-ship or Fellowship or any other similar title to any candidate of this or any other University. Signature of the Guide Signature of the student (B. F. RODRIGUES) (JYOTI D. VAINGANKAR) Professor, Department of Botany Goa University 3 CERTIFICATE I hereby certify that the thesis entitled “STUDIES ON ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN ORNAMENTAL FLOWERING PLANTS COMMONLY FOUND IN GOA” submitted to Goa University, for the award of the degree of DOCTOR OF PHILOSOPHY IN BOTANY is a record of original and independent work carried out by her in the DEPARTMENT OF BOTANY, GOA UNIVERSITY during the period of August 2007 – August 2012, under my supervision and that it has not previously formed the basis for the award of any Degree, Diploma, Associate-ship or Fellowship or any other similar title to any candidate of this or any other University.
    [Show full text]
  • Gleb Województwa Lubuskiego
    A K A D E M I A R O L N I C Z A W SZCZECINIE 6à$:20,5.2:$/&=<. GRZYBY I MIKORYZY ARBUSKULARNE (GLOMEROMYCOTA) GLEB WOJEWÓDZTWA LUBUSKIEGO Praca doktorska wykonana Z.DWHGU]H2FKURQ\5ROLQ Akademii Rolniczej w Szczecinie Promotor prof. zw. dr hab. -DQXV]%áDV]NRZVNL SZCZECIN 2008 3RG]L NRZDQLD Panu 3URPRWRURZL3URI]ZGUKDE-DQXV]RZL%áDV]NRZVNLHPX VHUGHF]QLHG]L NXM ]DZV]HFKVWURQQSRPRFLFHQQHUDG\ udzielane w trakcie realizacji pracy. $V\VWHQWRZLZ=DNáDG]LH)L]\NL PJU LQ* $QGU]HMRZL *DZOLNRZL ]D Z\NRQDQLH DQDOL]\ spektralnej. ']L NXM UyZQLH*PRMHM*RQLHURG]LFRP bratu i siostrze za XG]LHORQSRPRFLZVSDUFLH 6SLVWUHFL Str. STRESZCZENIE............................................................................................... 4 :67 3............................................................................................................. 7 1. 0$7(5,$à,0(72'<............................................................................ 12 1. 1. %DGDQLDZ\VW SRZDQLDJU]\EyZLPLNRU\]DUEXVNXODUQ\FK 12 1. 1. 1. 2EV]DUEDGD 12 1. 1. 2. Warunki klimatyczne.......................................................... 16 1. 1. 3. Pobieranie prób................................................................. 19 1. 1. 4. =DNáDGDQLHNXOWXUSXáDSNRZ\FKL]RODFMDLGHQW\ILNRZDQLH $*0RUD]RNUHODQLHPLNRU\] 19 1. 2. %DGDQLHZSá\ZXGlomus claroideum N.C. Schenck et G.S. Sm. QDHPLVM XOWUDVáDEHMELRFKHPLOXPLQHVFHQFMLPisum sativum L..... 21 1. 3. Analizy chemiczne i obliczenia statystyczne.................................. 21 2. WYNIKI I DYSKUSJA............................................................................
    [Show full text]
  • Spore Density and Diversity of Arbuscular Mycorrhizal Fungi in Medicinal and Seasoning Plants
    Vol. 9(16), pp. 1244-1251, 17 April, 2014 DOI: 10.5897/AJAR2013.8025 Article Number: F5B34FF43959 African Journal of Agricultural ISSN 1991-637X Copyright © 2014 Research Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Full Length Research Paper Spore density and diversity of Arbuscular mycorrhizal fungi in medicinal and seasoning plants Regine Cristina Urcoviche1, Murilo Castelli1, Régio Márcio Toesca Gimenes2 and Odair Alberton1,2* 1Biotechnology Applied to Agriculture, Paranaense University – UNIPAR, Umuarama, Paraná, Brazil. 2Paranaense University – UNIPAR, Umuarama, Paraná, Brazil. Received 3 October, 2013:Accepted 20 February, 2014 Arbuscular mycorrhizal fungi (AMF) set mutualistic symbiosis with most plants. Understanding this association and meet the diversity of AMF in both the medicinal and the seasoning herbs is very important, since these plants have increasingly contributed to improving the quality of human life. The aim of this study was to assess the spore density, taxonomic diversity, and root colonization by AMF in experimental beds of rosemary (Rosmarinus officinalis L.), nasturtiums (Tropaeolum majus), mint (Mentha crispa L.), boldo (Peumus boldus), oregano (Origanum vulgare) and chamomile (Matricaria chamomilla), all planted in the Medicinal Plant Nursery of the Paranaense University - UNIPAR, Umuarama – PR. Soil samples (0 to 10 cm depth) and plant roots were collected in two periods, June and November 2011. Colonization of plant roots by AMF ranged 17 to 48%. The rosemary treatment was highly responsive to the sampling periods, with only 17% of root colonization in June compared with 48% in November. The AMF spore density was higher in June than in November for all species of plants studied.
    [Show full text]