Arbuscular Mycorrhizal (Am) Fungal Inoculum Production Using in Vitro Technique for Revegetation of Degraded Sand Dunes

Total Page:16

File Type:pdf, Size:1020Kb

Arbuscular Mycorrhizal (Am) Fungal Inoculum Production Using in Vitro Technique for Revegetation of Degraded Sand Dunes ARBUSCULAR MYCORRHIZAL (AM) FUNGAL INOCULUM PRODUCTION USING IN VITRO TECHNIQUE FOR REVEGETATION OF DEGRADED SAND DUNES A THESIS SUBMITTED TO S3j GOA UNIVERSITY FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY FACULTY OF LIFE SCIENCES AND ENVIRONMENT BY KIM MARIA RODRIGUES 7 7 3> Research Guide ' PROF. B. F. RODRIGUES UGC-SAP DEPARTMENT OF BOTANY GOAj UA UNIVERSITYUIN1V JfcKSll \ Lf> ' t i t y f TALEIGAO GOA v. Z ^ INDIA May 2017 I Koh Joj'ax'f DECLARATION I hereby declare that the matter embodied in this thesis entitled, “Arbuscular mycorrhizal (AM) fungal inoculum production using in vitro technique for revegetation of degraded sand dunes” is the result of investigations carried out by me, under the supervision of Prof. B. F Rodrigues and it has not previously formed the basis for the award of any degree, diploma, associate ship, fellowship or the other such similar title. Goa University Ms. Kim Maria Rodrigues May 2017 (Candidate) CERTIFICATE This is to certify that the work incorporated in this thesis entitled, “Arbuscular mycorrhizal (AM) fungal inoculum production using in vitro technique for revegetation of degraded sand dunes” submitted by Ms. Kim Maria Rodrigues, constitutes her independent work and the same has not been previously submitted for the award of any other degree, diploma, associate ship, fellowship or the other such title. Goa University (Research Guide) May 2017 Department of Botany Goa University Acknowledgement am sincerely grateful to all the individuals who have kindly given me advice and support in various ways to the point I have reached for the submission of this thesis. As I got the opportunity to start working with ‘Arbuscular Mycorrhizal Fungi’ during my M. Sc. studies under the guidance of my research guide Prof. Bernard Felinov Rodrigues, which eventually led me to join for Ph. D. I would like to express my deep gratitude for his patient supervision. I further thank him for all his meticulous suggestions and helpful discussions that guided me in the right direction. 1 gratelully acknowledge the ‘Innovation in Science Pursuit for Inspired Research (INSPIRE) programme’, Department of Science and Technology (DST), Government of India, New Delhi for the fellowship awarded during the course of my Ph. D. I would also like to thank the Dean, Faculty of Life Sciences and Environment, and Department of Botany, Goa University for granting me the opportunity to cany out my research. 1 also would like to thank Prof. Vijaya Kerkar, Head of the Department of Botany, Goa University. In addition I would like to thank the teaching staff of the Botany Department for their help. In particular, I would like to thank my Vice Chancellors’ nominee Dr. Irene Furtado, Department of Microbiology, Goa University, for her scientific guidance and encouraging comments throughout my study period. My appreciation goes out to the non teaching staff at the Department of Botany, Goa University, for their constant help and cooperation. I owe a great deal of appreciation and gratitude to Dr. Gopal R. Mahajan, Scientist (Soil Sciences) Natural Resource Management Section, ICAR-CCARI, Ela, Old Goa, for plant nutrient analyses and the Director, ICAR-Central Coastal Agricultural Research Institute, Ela, Old Goa for extending help through these facilities. I add a note of thanks to the technical staff at Soil Sciences laboratory, Natural Resource Management Section, ICAR-CCARI, Ela, Old Goa for their help and cooperation. I would also like to thank the Assistant Director of Agriculture, Soil Testing Laboratory, Ela, Old Goa, Soil 1 esting Laboratory, Margao, Goa and Italab House (Goa) PVT. Ltd Industrial Testing and Analytical Laboratories, Margao, Goa for assisting with soil nutrient analysis. Special thanks to Professor B. R. Srinivasan, HOD Department of Chemistry, Goa University and Professor S. N. Dhuri, Department of Chemistry, Goa University for CUN analyses. 1 thank all the research students (past and present) at the Department of Botany and Goa University for their help. To all the members of the ‘Mycorrhiza lab’ for all those useful inputs, healthy discussions, friendship and mutual help; I have really appreciated the wonderful moments. Especial thanks go to my Family and close circle of Friends for their love, tremendous encouragement and support all the time. The root does anchor a plant, but it’s the mycorrhizae that become the main system to absorb water and nutrients from the soil. -Larry Simpson CONTENTS Page No, CHAPTER 1: Introduction................................................ 1-16 CHAPTER 2: Review of Literature............................................... 17-60 CHAPTER 3: To identify the dominant AM fungal species from the sand dune ecosystem (Objective 1)............................... 61-79 3.1: Introduction................................................................................... 61-63 3.2: Materials and M ethods................................................................ 63-68 3.3: R esults............................................................................................ 69-73 3.4: D iscussion..................................................................................... 73-78 3.5: Conclusion..................................................................................... 78-79 CHAPTER 4: To prepare pure culture inoculum using trap and pot cultures (Objective 2 ) .......................................................... 80- 84 4.1: Introduction................................................................................... 80-81 4.2: Materials and M ethods................................................................ 81- 82 4.3: R esults............................................................................................ 83 4.4: D iscussion..................................................................................... 83-84 CHAPTER 5: To prepare and standardize the protocol for in vitro culture technique for dominant AM fungal species 85-98 (Objective 3 ) ....................................................................................... 5.1: Introduction.................................................................................. 85- 86 5.2: Materials and M ethods............................................................... 86- 89 5.3. Results........................................................................... 89-90 ^•4* Discussion........................ 91-97 5.5: Conclusion.................................................................... 9g CHAPTER 6: To develop viable inoculum using suitable carrier for re-inoculation (Objective 4 ) ............................................ 99-115 6.1: Introduction...................................................................................... 99-102 6.2: Materials and Methods................................................................... 102-107 6.3: R esults............................................................................................... 108-110 6.4: D iscussion........................................................................................ 111-114 6.5: Conclusion......................................................................................... 115 CHAPTER 7: To maximize the shelf life of the in vitro prepared inoculum (Objective 5 ) ....................................................... 116-124 7.1: Introduction...................................................................................... 116-117 7.2: Materials and M ethods................................................................... 118-121 7.3: R esults................................................................................................. 121 7.4: D iscussion........................................................................................ 122-123 7. 5 : Conclusion....................................................................................... 123-124 CHAPTER 8: To study the effect of in vitro produced carrier based bio-inocula on selected plant species suitable for U(,5CU 125-140 revegetation of the sand dunes (Objective 6 )................................ 125-127 8.1: Introduction............... 127-133 8.2: Materials and Methods 8.3: R esults....... 133-136 8.4: D iscussion................ 136-139 8.5: Conclusion................ 140 CHAPTER 9: Summary 141-144 R eferences....................... 145-218 Synopsis............................ 219-241 Appendix 242-245 LIST OF TABLES Table No. Title After Page No. 2.1 Consensus classification of the Glomeromycota by Redecker et al. (2013) ................................................... 23 2.2 Arbuscular mycorrhizal (AM) species cultivated on Root Organ Culture (R O C ).............................................................................................. 46 3.1 Physico-chemical properties of sand from selected study sites............... 69 3.2 AM association in sand dune vegetation at Betalbatim (S I)................... 69 3.3 AM association in sand dune vegetation at Colva (S2)........................... 69 3.4 AM association in sand dune vegetation at Benaulim (S3)..................... 70 3.5 AM association in sand dune vegetation at Varca (S4)........................... 70 3.6 AM association in sand dune vegetation at Sinquerim (S5).................... 70 3.7 AM association in sand dune vegetation at Candolim (S6)..................... 70 3.8 AM association in sand dune vegetation at Vagator (S7)....................... 70 3.9 AM association in sand dune vegetation at Moijim (S8).......................
Recommended publications
  • A Checklist of Egyptian Fungi: II
    Microbial Biosystems 1(1): 40–49 (2016) ISSN 2357-0334 http://fungiofegypt.com/Journal/index.html Microbial Biosystems Copyright © 2016 Nafady et al. Online Edition ARTICLE A checklist of Egyptian fungi: II. Glomeromycota Nafady NA1*, Abdel-Azeem AM2 and Salem FM2 1Botany and Microbiology Department, Faculty of Science, Assuit University, Assiut 71516, Egypt- [email protected] 2Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt- [email protected], [email protected] Nafady NA, Abdel-Azeem AM, Salem FM 2016 – A checklist of Egyptian fungi: II. Glomeromycota. Microbial Biosystems 1(1), 40–49 Abstract Information about arbuscular mycorrhizal fungi (AMF) was abstracted based on an intensive search of publications, thesis, and preliminary annotated checklists and compilations. By screening all available sources of information, it was possible to report forty-eight taxa belonging to one class (Glomeromycetes), four orders (Archaeosporales, Diversisporales, Glomerales and Paraglomerales) and six families (Acaulosporaceae, Archaeosporaceae, Entrophosporaceae, Gigasporaceae, Glomeraceae and Pacisporaceae). Order Glomerales accommodates the greatest range of species (28 species), the order Archaeosporales and Paraglomerales accommodate the lowest range (one species each). Key words – AM fungi – checklist – Egypt – Glomus – mycorrhiza – Saint Katherine Introduction The arbuscular mycorrhizal (AM) symbiosis is the most widespread on earth and is defined as the association between the fungi of the phylum Glomeromycota (Schüβler et al. 2001) and most of the terrestrial species ranging from thallophytes to Angiosperms. The morphology of the fungus colonizing plant root tissues is highly elaborated in AM symbiosis. In natural communities, approximately 80% of higher plants were obligately dependent upon fungal associates. AM fungi are believed to be disseminated intercontinentally prior to continental drift, as supported by fossil records of earlier plants (Berch 1986; Stubblefield et al.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi in the Rhizosphere of Musa Spp. in Western Cuba
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 10(1): 176–185 (2020) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/10/1/18 Arbuscular mycorrhizal fungi in the rhizosphere of Musa spp. in western Cuba Furrazola E1, Torres–Arias Y1, Herrera–Peraza RA1, Fors RO2, González– González S3, Goto BT4 and Berbara RLL2 1Instituto de Ecología y Sistemática (IES), La Habana, Cuba 2Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Brazil 3Universidad de La Frontera, Temuco, Chile 4Universidade Federal do Rio Grande do Norte, Natal, Brazil Furrazola E, Torres–Arias Y, Herrera–Peraza RA, Fors RO, González–González S, Goto BT, Berbara RLL 2020 – Arbuscular mycorrhizal fungi in the rhizosphere of Musa spp. in western Cuba. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 10(1), 176–185, Doi 10.5943/cream/10/1/18 Abstract Diversity of arbuscular mycorrhizal fungi (AMF) in banana and plantain fields in western Cuba is here reported. Thirty rhizosphere soil samples were collected and used for direct evaluation of the AMF community and establishment of trap cultures. AMF spores were extracted from the soil samples by wet sieving and decanting, and species were identified based on the morphology of the spores. Overall, 56 AMF morphospecies were differentiated within at least 10 genera. From the total number of morphospecies, 25 were identified up to the species level, and 31 were morphologically different from described species. From field samples, 42 morphospecies were verified, with predominance of the genera Acaulospora and Glomus. However, the most frequent species recovered directly from the field samples were Claroideoglomus etunicatum and Funneliformis geosporum.
    [Show full text]
  • Loss of Arbuscular Mycorrhizal Fungal Diversity in Trap Cultures During Long
    IMA FUNGUS · VOLUME 4 · NO 2: 161–167 doi:10.5598/imafungus.2013.04.02.01 Loss of arbuscular mycorrhizal fungal diversity in trap cultures ARTICLE during long-term subculturing Dora Trejo-Aguilar1, Liliana Lara-Capistrán1, Ignacio E. Maldonado-Mendoza2, Ramón Zulueta-Rodríguez1, Wendy Sangabriel- Conde1, 3, María Elena Mancera-López2, Simoneta Negrete-Yankelevich3, and Isabelle Barois3 1Laboratorio de organismos benéficos. Facultad de Ciencias Agrícolas. Universidad Veracruzana. Gonzalo Aguirre Beltrán S/N. Zona Universitaria. CP 91000. Xalapa, Veracruz, México 2Instituto Politécnico Nacional (IPN). CIIDIR-Sinaloa. Departamento de Biotecnología Agrícola. Boulevard Juan de Dios Bátiz Paredes No. 250. CP 81101. AP280. Guasave, Sinaloa, México; corresponding author e-mail: [email protected] 3Red de Ecología Funcional. Instituto de Ecología A. C. Camino Antiguo a Coatepec No. 351, Congregación del Haya, Xalapa 91070 Veracruz, México Abstract: Long-term successional dynamics of an inoculum of arbuscular mycorrhizal fungi (AMF) associated with Key words: the maize rhizosphere (from traditionally managed agroecosystems in Los Tuxtlas, Veracruz, Mexico), was followed AM fungi in Bracchiaria comata trap cultures for almost eight years. The results indicate that AMF diversity is lost following long- Diversisporales term subculturing of a single plant host species. Only the dominant species, Claroideoglomus etunicatum, persisted Glomerales in pot cultures after 13 cycles. The absence of other morphotypes was demonstrated by an 18S rDNA survey, which preservation confirmed that the sequences present solely belonged toC. etunicatum. Members of Diversisporales were the first to rhizosphere decrease in diversity, and the most persistent species belonged to Glomerales. Article info: Submitted: 3 April 2013; Accepted: 9 October 2013; Published: 25 October 2013.
    [Show full text]
  • Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
    Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels.
    [Show full text]
  • Acaulospora Sieverdingii, an Ecologically Diverse New Fungus In
    Journal of Applied Botany and Food Quality 84, 47 - 53 (2011) 1Agroscope Reckenholz-Tänikon Research Station ART, Ecological Farming Systems, Zürich, Switzerland 2Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic 3Department of Plant Protection, West Pomeranian University of Technology, Szczecin, Poland 4Université de Bourgogne, Plante-Microbe-Environnement, CNRS, UMR, INRA-CMSE, Dijon, France 5International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria 6Université de Lomé, Ecole Supérieure d’Agronomie, Département de la Production Végétale, Laboratoire de Virologie et de Biotechnologie Végétales (LVBV), Lomé, Togo 7International Institute of Tropical Agriculture (IITA), Cotonou, Benin 8University of Parakou, Ecole National des Sciences Agronomiques et Techniques, Parakou, Benin 9Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, Brazil Acaulospora sieverdingii, an ecologically diverse new fungus in the Glomeromycota, described from lowland temperate Europe and tropical West Africa Fritz Oehl1*, Zuzana Sýkorová2, Janusz Błaszkowski3, Iván Sánchez-Castro4, Danny Coyne5, Atti Tchabi6, Louis Lawouin7, Fabien C.C. Hountondji7, 8, Gladstone Alves da Silva9 (Received December 12, 2010) Summary Materials and methods From a survey of arbuscular mycorrhizal (AM) fungi in agro- Soil sampling and spore isolation ecosystems in Central Europe and West Africa, an undescribed Between March 2000 and April 2009, soil cores of 0-10 cm depth species of Acaulospora was recovered and is presented here under were removed from various agro-ecological systems. These were the epithet Acaulospora sieverdingii. Spores of A. sieverdingii are approximately 300 lowland, mountainous and alpine sites in 60-80 µm in diam, hyaline to subhyaline to rarely light yellow and Germany, France, Italy and Switzerland, and 24 sites in Benin have multiple pitted depressions on the outer spore wall similar (tropical West Africa).
    [Show full text]
  • A-Ailable At
    Available Online at http://www.recentscientific.com International Journal of Recent Scientific International Journal of Recent Scientific Research Research Vol. 8, Issue, 2, pp. 15753-15761, February, 2017 ISSN: 0976-3031 Research Article DIVERSITY OF ENDOMYCORRHIZAL FUNGI (A.M.F.) IN THE RHIZOSPHERE OF SUGAR CANE (SACCHARUM OFFICINARUM) GROWN IN MOROCCO Karima SELMAOUI., Mariam ARTIB., Fairouz SEMANE., Soumaya EL GABARDI., Naoual HIBILIK., Ismail EL AYMANI., Mohamed CHLIYEH., Afifa MOURIA., Amina OUAZZANI TOUHAMI,. Rachid BENKIRANE and Allal DOUIRA* Laboratoire de Botanique, Biotechnologie et Protection des Plantes, Département de Biologie, ARTICLE INFOUniversité Ibn Tofail,ABSTRACT Faculté des Sciences, BP. 133, Kénitra, Maroc (Morocco) The identification of the arbuscular mycorrhizal fungi and the evaluation of the mycorrhization level Article History: in the roots were performed basing on the isolated spores from the soil and roots samples taken from th Received 15 November, 2016 the rhizosphere of four sugar cane parcels in the region of Dar Gueddari (North western of th Received in revised form 25 Morocco). December, 2016 The analysis of the results has shown the presence of different characteristic structures of arbuscular rd Accepted 23 January, 2017 endomycorrhizal in the roots of the sugar cane developed in the prospected sites. The th Published online 28 February, 2017 mycorrhization frequency of the sugar cane roots varied from 60% to 100%. The highest intensities of mycorrhization were in the order of 70% in the level of site 2 and 61.53% in the level of site 1 Key Words: and the lowest intensity was noted in the site 4 (13.3%). Otherwise, the observed arbuscular contents Morocco, Sugar cane, Saccharum in the level of four sites were respectively 55.32; 66.12; 40.37; 54.03%.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi in Soil Aggregates from Fields of “Murundus” Converted to Agriculture
    Arbuscular mycorrhizal fungi in soil aggregates from fields of “murundus” converted to agriculture Marco Aurélio Carbone Carneiro(1), Dorotéia Alves Ferreira(2), Edicarlos Damacena de Souza(3), Helder Barbosa Paulino(4), Orivaldo José Saggin Junior(5) and José Oswaldo Siqueira(6) (1)Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, CEP 37200‑000 Lavras, MG, Brazil. E‑mail: [email protected](2) Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo, Avenida Pádua Dias, no 11, CEP 13418‑900 Piracicaba, SP, Brazil. E‑mail: [email protected] (3)Universidade Federal de Mato Grosso, Campus de Rondonópolis, Instituto de Ciências Agrárias e Tecnológicas de Rondonópolis, Rodovia MT 270, Km 06, Sagrada Família, CEP 78735‑901 Rondonópolis, MT, Brazil. E‑mail: [email protected] (4)Universidade Federal de Goiás, Regional Jataí, BR 364, Km 192, CEP 75804‑020 Jataí, GO, Brazil. E‑mail: [email protected] (5)Embrapa Agrobiologia, BR 465, Km 7, CEP 23891‑000 Seropédica, RJ, Brazil. E‑mail: [email protected] (6)Instituto Tecnológico Vale, Rua Boaventura da Silva, no 955, CEP 66055‑090 Belém, PA, Brazil. E‑mail: [email protected] Abstract – The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of “murundus” (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro‑, meso‑, and microaggregates).
    [Show full text]
  • Role of Grazing Intensity on Shaping Arbuscular Mycorrhizal Fungi Communities in Patagonian Semiarid Steppes☆
    Rangeland Ecology & Management 72 (2019) 692–699 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Role of Grazing Intensity on Shaping Arbuscular Mycorrhizal Fungi Communities in Patagonian Semiarid Steppes☆ Natalie Dudinszky a,⁎, M.N. Cabello b,A.A.Grimoldic,d,S.Schalamuke, R.A. Golluscio c,d a Biodiversity and Environmental Research Institute (INIBIOMA)-CONICET, Department of Ecology, National University of Comahue (UNCo)-CRUB, Río Negro, Bariloche, Argentina b Commission of Scientific Research of Buenos Aires Province (CIC), Carlos Spegazzini, Botanical Institute, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina c Department of Animal Production, School of Agriculture, University of Buenos Aires (UBA), Buenos Aires Argentina d Agricultural Plant Physiology and Ecology Research Institute (IFEVA)-CONICET, University of Buenos Aires (UBA), Buenos Aires, Argentina e Faculty of Agricultural and Forestry Sciences (FCAyF), National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina. article info abstract Article history: Arbuscular mycorrhizal fungi (AMF) are vital for maintaining ecosystem structure and functioning and can be af- Received 24 August 2018 fected by complex interactions between plants and herbivores. Information found in the literature about how un- Received in revised form 14 February 2019 gulate grazing affects AMF is in general contradictory but might be caused by differences in grazing intensities Accepted 20 February 2019 (GIs) among studies. Hence we studied how different GIs affect the composition, diversity, and abundance of AMF communities in a semiarid steppe of Patagonia. We predicted that 1) total AMF spore abundance (TSA) Key Words: and diversity would decrease only under intense-grazing levels and 2) AMF species spore abundance would de- arbuscular mycorrhizal fungi disturbance level pend on their life-history strategies and on the GI.
    [Show full text]
  • Redalyc.Diversidad, Abundancia Y Variación Estacional En La
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Álvarez-Sánchez, Javier; Sánchez-Gallen, Irene; Hernández Cuevas, Laura; Hernández- Oro, Lilian; Meli, Paula Diversidad, abundancia y variación estacional en la comunidad de hongos micorrizógenos arbusculares en la selva Lacandona, Chiapas, México Revista Mexicana de Micología, vol. 45, junio, 2017, pp. 37-51 Sociedad Mexicana de Micología Xalapa, México Disponible en: http://www.redalyc.org/articulo.oa?id=88352759005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Scientia Fungorum vol. 45: 37-51 2017 Diversidad, abundancia y variación estacional en la comunidad de hongos micorrizógenos arbusculares en la selva Lacandona, Chiapas, México Diversity, abundance, and seasonal variation of arbuscular mycorrhizal fungi in the Lacandona rain forest, Chiapas, Mexico Javier Álvarez-Sánchez 1, Irene Sánchez-Gallen 1, Laura Hernández Cuevas 2, Lilian Hernández-Oro 1, Paula Meli 3 1 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria 04510, México, D.F. 2 Laboratorio de Micorrizas, Centro de Investigaciones en Ciencias Biológicas, Universidad Autónoma de Tlaxcala. Km 10.5 Carretera San Martín Texmeluca-Tlaxcala s/n, San Felipe Ixtacuixtla 90120, Tlaxcala, México. 3 Natura y Ecosistemas Mexicanos A.C. Plaza San Jacinto 23-D, Col. San Ángel, México DF, 01000, México. Dirección Actual: Escola Superior de Agricultura ‘Luiz de Queiroz’, Departamento de Ciências Florestais, Universidade de São Paulo, Brasil.
    [Show full text]
  • Evolutionary Conservation of a Phosphate Transporter in the Arbuscular Mycorrhizal Symbiosis
    Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis Vladimir Karandashov*†,Re´ ka Nagy*, Sarah Wegmu¨ ller*, Nikolaus Amrhein‡, and Marcel Bucher*§ *Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland; †K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia; and ‡Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Universita¨tsstrasse 2, 8092 Zurich, Switzerland Edited by Robert L. Metzenberg, University of California, Los Angeles, CA, and approved February 23, 2004 (received for review September 22, 2003) Arbuscular mycorrhizae are ancient symbioses that are thought to mosseae (BEG76), Glomus spurcum (W4217), and Paraglomus have originated >400 million years ago in the roots of plants, brasilianum (W4121). Pathogenic fungi used were Rhizopus pioneering the colonization of terrestrial habitats. In these asso- stolonifer var. stolonifer (MUCL20416), Nectria ventricosa ciations, a key process is the transfer of phosphorus as inorganic (MUCL33), Rhizoctonia solani (MUCL30282), and the oomy- phosphate to the host plant across the fungus–plant interface. cete Phytophthora infestans (CRA208). The dark septate root Mycorrhiza-specific phosphate transporter genes and their regu- endophyte Phialocephala fortinii, the binucleate Rhizoctonia sp., lation are conserved in phylogenetically distant plant species, and which is a root parasite that does not cause root-disease symp- they are activated selectively by fungal species from the phylum toms, and the plant growth stimulating root endophyte Pirifor- Glomeromycota. The potato phosphate transporter gene StPT3 is mospora indica (DSM11827) (11, 12) were used as well. expressed in a temporally defined manner in root cells harboring G.
    [Show full text]
  • Diversity of Arbuscular Mycorrhizal Fungi
    Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops Diversidad de comunidades de hongos formadores de micorrizas arbusculares asociados a los cultivos de uchuva (Physalis peruviana L.) Margarita Ramírez-Gómez1*, Urley Pérez-Moncada1, Diana Serralde-Ordoñez1, Andrea Peñaranda-Rolón1, Gabriel Roveda-Hoyos2, and Alia Rodriguez3 ABSTRACT RESUMEN The diversity of arbuscular mycorrhizal fungi (AMF) com- La diversidad de las comunidades hongos formadores de munities in agricultural systems depends on biotic and abiotic micorrizas (HFMA) en sistemas agrícolas depende de fac- factors as well as on cultural practices. This research aimed to tores bióticos y abióticos, así como de prácticas culturales. evaluate the diversity of AMF present in an altitudinal transect La investigación tuvo como propósito evaluar la diversidad cultivated with cape gooseberry (Physalis peruviana L.). A set of de los HFMA presentes en un transecto altitudinal (1500 a 13 soil samples from cape gooseberry plantations located in the 3000 msnm) cultivado con uchuva (Physalis peruviana L.). Colombian Andean mountains in the provinces of Cundina- Se recolectaron 13 muestras compuestas de suelo de planta- marca and Boyaca were collected during dry (0-20 mm/month) ciones de uchuva localizadas en Los Andes colombianos de and rainy (150-330 mm/month) seasons between 1500 and los Departamentos de Cundinamarca y Boyacá, durante las 3000 m a.s.l., in order to establish the relationship between the temporadas seca (0-20 mm/mes) y lluviosa (150-330 mm/mes), altitudinal characteristics and AMF diversity. The evaluation para establecer la relación entre las características altitudinales of the abundance of spores and species and diversity indexes y la diversidad de HFMA.
    [Show full text]
  • Occurrence and Diversity of Arbuscular Mycorrhizal Fungi in Trap Cultures from Soils Under Different Land Use Systems in the Amazon, Brazil
    Brazilian Journal of Microbiology (2009) 40:111-121 ISSN 1517-8382 OCCURRENCE AND DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI IN TRAP CULTURES FROM SOILS UNDER DIFFERENT LAND USE SYSTEMS IN THE AMAZON, BRAZIL Patrícia Lopes Leal1; Sidney Luiz Stürmer2*; José Oswaldo Siqueira3 1Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil; 2Universidade Regional de Blumenau, Departamento de Ciências Naturais, Blumenau, SC, Brasil; 3Universidade Federal de Lavras, Departamento de Ciência de Solo, Lavras, MG, Brasil Submitted: March 18, 2008; Returned to authors for corrections: October 29, 2008; Approved: February 25, 2009. ABSTRACT The aim of this work was to evaluate the occurrence of arbuscular mycorrhizal fungi (AMF) species diversity in soil samples from the Amazon region under distinct land use systems (Forest, Old Secondary Forest, Young Secondary Forest, Agroforestry systems, Crops and Pasture) using two distinct trap cultures. Traps established using Sorghum sudanense and Vigna unguiculata (at Universidade Regional de Blumenau - FURB) and Brachiaria decumbens and Neonotonia wightii (at Universidade Federal de Lavras - UFLA) were grown for 150 days in greenhouse conditions, when spore density and species identification were evaluated. A great variation on species richness was detected in several samples, regardless of the land use systems from where samples were obtained. A total number of 24 AMF species were recovered using both methods of trap cultures, with FURB´s traps yielding higher number of species. Acaulospora delicata, A. foveata, Entrophospora colombiana and two undescribed Glomus species were the most abundant and frequent species recovered from the traps. Number of species decreased in each genus according to this order: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora and Paraglomus.
    [Show full text]