Sexual Dimorphism in Crowned Lemur Scent-Marking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sexual Dimorphism in Crowned Lemur Scent-Marking
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 doi:10.20944/preprints202105.0761.v1 Article Sexual dimorphism in crowned lemur scent-marking. Emily Elwell 1, David Walker 1 and Stefano Vaglio 1,2* 1 Department of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY, United Kingdom 2 Department of Anthropology & Behaviour, Ecology and Evolution Research (BEER) Centre, Durham University, Durham DH1 3LE, United Kingdom * Correspondence: [email protected]; Tel.: +44-0190-232-3328 Simple Summary: Primates are typically thought to use hearing and vision more than the sense of smell. However, lemurs show a complex olfactory repertoire which includes conspicuous scent-marking behaviours. We studied two family groups of crowned lemurs at Colchester and Twycross zoos (UK) by combining behavioural observations and chemical analyses of odour secretions released via scent-marking. Male lemurs scent-marked most frequently, showing three types of behaviours: ano-genital marking for applying their scent on to females; head marking for placing their secretions on or near the mark left by another individual; and wrist marking to deposit their mark in specific meaningful areas of the enclosure. Female lemurs displayed only ano-genital marking primarily on feeding devices. We detected a total of 38 volatile compounds in male ano-genital scent-marks and 26 in female ano-genital odour secretions, including many compounds that have been identified in odour profiles of other primates. In conclusion, we found sexual dimorphism in crowned lemurs. In males head and wrist marking behaviours would play defensive territorial functions, while ano-genital marking may be related to socio-sexual communication; female ano-genital marking could be involved in resource defense. -
In Situ Conservation
NEWSN°17/DECEMBER 2020 Editorial IN SITU CONSERVATION One effect from 2020 is for sure: Uncertainty. Forward planning is largely News from the Little Fireface First, our annual SLOW event was impossible. We are acting and reacting Project, Java, Indonesia celebrated world-wide, including along the current situation caused by the By Prof K.A.I. Nekaris, MA, PhD by project partners Kukang Rescue Covid-19 pandemic. All zoos are struggling Director of the Little Fireface Project Program Sumatra, EAST Vietnam, Love economically after (and still ongoing) Wildlife Thailand, NE India Primate temporary closures and restricted business. The Little Fireface Project team has Investments in development are postponed Centre India, and the Bangladesh Slow at least. Each budget must be reviewed. been busy! Despite COVID we have Loris Project, to name a few. The end In the last newsletter we mentioned not been able to keep up with our wild of the week resulted in a loris virtual to forget about the support of the in situ radio collared slow lorises, including conference, featuring speakers from conservation efforts. Some of these under welcoming many new babies into the the helm of the Prosimian TAG are crucial 11 loris range countries. Over 200 for the survival of species – and for a more family. The ‘cover photo’ you see here people registered, and via Facebook sustainable life for the people involved in is Smol – the daughter of Lupak – and Live, more than 6000 people watched rd some of the poorest countries in the world. is our first 3 generation birth! Having the event. -
Coyote Canis Latrans in 2007 IUCN Red List (Canis Latrans)
MAMMALS OF MISSISSIPPI 10:1–9 Coyote (Canis latrans) CHRISTOPHER L. MAGEE Department of Wildlife and Fisheries, Mississippi State University, Mississippi State, Mississippi, 39762, USA Abstract—Canis latrans (Say 1823) is a canid commonly called the coyote. It is dog-like in appearance with varied colorations throughout its range. Originally restricted to the western portion of North America, coyotes have expanded across the majority of the continent. Coyotes are omnivorous and extremely adaptable, often populating urban and suburban environments. Preferred habitats include a mixture of forested, open, and brushy areas. Currently, there exist no threats or conservation concerns for the coyote in any part of its range. This species is currently experiencing an increasing population trend. Published 5 December 2008 by the Department of Wildlife and Fisheries, Mississippi State University Coyote location (Jackson 1951; Young 1951; Berg and Canis latrans (Say, 1823) Chesness 1978; Way 2007). The species is sexually dimorphic, with adult females distinctly CONTEXT AND CONTENT. lighter and smaller than adult males (Kennedy Order Carnivora, suborder Caniformia, et al. 2003; Way 2007). Average head and infraorder Cynoidea, family Canidae, subfamily body lengths are about 1.0–1.5 m with a tail Caninae, tribe Canini. Genus Canis consists length of about Young 1951). The skull of the of six species: C. aureus, C. latrans, C. lupus, coyote (Fig. 2) progresses through 6 distinct C. mesomelas, C. simensis, and C. adustus. developmental stages allowing delineation Canis latrans has 19 recognized subspecies between the age classes of juvenile, immature, (Wilson and Reeder 2005). young, young adult, adult, and old adult (Jackson 1951). -
Effects of Human Disturbance on the Mongoose Lemur Eulemur Mongoz in Comoros: Implications and Potential for the Conservation of a Critically Endangered Species
Effects of human disturbance on the mongoose lemur Eulemur mongoz in Comoros: implications and potential for the conservation of a Critically Endangered species B AKRI N ADHUROU,ROBERTA R IGHINI,MARCO G AMBA,PAOLA L AIOLO A HMED O ULEDI and C RISTINA G IACOMA Abstract The decline of the mongoose lemur Eulemur mon- conversion of forests into farmland, habitat loss and frag- goz has resulted in a change of its conservation status from mentation, hunting for meat, and direct persecution as agri- Vulnerable to Critically Endangered. Assessing the current cultural pests (Schwitzer et al., ). Shortage of essential threats to the species and the attitudes of the people coexist- resources, poverty and food insecurity often accentuate an- ing with it is fundamental to understanding whether and thropogenic pressures. Human well-being is dependent on how human impacts may affect populations. A question- biodiversity (Naeem et al., ) but many activities deemed naire-based analysis was used to study the impact of agricul- indispensable for human subsistence lead to biodiversity ture and other subsistence activities, and local educational losses (Díaz et al., ; Reuter et al., ). Damage to initiatives, on lemur abundance, group size and compos- crops, livestock or human life by wildlife provides sufficient ition in the Comoros. On the islands of Mohéli and motivation for people to eradicate potential animal compe- Anjouan we recorded lemurs in groups, the size titors (Ogada et al., ) and to reduce the quantity and and composition of which depended both on environmental quality of natural habitats on private and communal lands parameters and the magnitude and type of anthropogenic (Albers & Ferraro, ). -
Rhesus Macaques (Macaca Mulatta) Recognize Group Membership Via Olfactory Cues Alone
Behav Ecol Sociobiol (2015) 69:2019–2034 DOI 10.1007/s00265-015-2013-y ORIGINAL ARTICLE Rhesus macaques (Macaca mulatta) recognize group membership via olfactory cues alone Stefanie Henkel 1,2 & Angelina Ruiz Lambides1,3,4 & Anne Berger5 & Ruth Thomsen1,6,7 & Anja Widdig1,3 Received: 9 April 2015 /Revised: 18 September 2015 /Accepted: 21 September 2015 /Published online: 31 October 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract The ability to distinguish group members from con- paradigm to investigate whether rhesus macaques (Macaca specifics living in other groups is crucial for gregarious spe- mulatta) can discriminate between body odors of female cies. Olfaction is known to play a major role in group recog- group members and females from different social groups. nition and territorial defense in a wide range of mammalian We conducted the study on the research island Cayo Santiago, taxa. Although primates have been typically regarded as Puerto Rico, in the non-mating season and controlled for kin- microsmatic (having a poor sense of smell), increasing evi- ship and familiarity using extensive pedigree and demograph- dence suggests that olfaction may play a greater role in pri- ic data. Our results indicate that both males and females in- mates’ social life than previously assumed. In this study, we spect out-group odors significantly longer than in-group carried out behavioral bioassays using a signaler-receiver odors. Males licked odors more often than females, and older animals licked more often than younger ones. Furthermore, individuals tended to place their nose longer towards odors Communicated by E. Huchard when the odor donor’s group rank was higher than the rank of Electronic supplementary material The online version of this article their own group. -
Inspection Report
United States Department of Agriculture Customer: 2562 Animal and Plant Health Inspection Service Inspection Date: 08-SEP-14 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 2562 33-C-0001 001 PEORIA PARK DISTRICT 08-SEP-14 Count Species 000001 Cattle/cow/ox/watusi 000003 Red-necked wallaby 000002 Slender-tailed meerkat 000004 Cotton-top tamarin 000003 Mandrill *Male 000002 Grevys zebra 000001 Gerenuk 000002 Reeve's muntjac 000001 European polecat 000001 Kinkajou 000002 Black-and-rufous elephant shrew 000001 Maned wolf 000003 Black-handed spider monkey 000003 Thomsons gazelle 000001 Prehensile-tailed porcupine 000021 Common mole-rat 000003 Cape Porcupine 000002 Takin 000004 Southern three-banded armadillo 000002 Lion 000001 California sealion 000004 Eastern black and white colobus 000002 African wild ass 000005 Tiger 000004 Goat 000002 Mongoose lemur 000003 Red River Hog 000002 White rhinoceros 000002 Hoffmanns two-toed sloth 000001 Sugar glider 000002 Giraffe 000003 Parma wallaby 000022 Greater spear-nosed bat 000001 Llama 000002 Chinchilla 000002 Ring-tailed lemur 000005 European rabbit 000125 Total United States Department of Agriculture Customer: 2562 Animal and Plant Health Inspection Service Inspection Date: 12-NOV-15 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 2562 33-C-0001 001 PEORIA PARK DISTRICT 12-NOV-15 Count Species 000001 Northern tree shrew 000001 Cattle/cow/ox/watusi 000003 Red-necked wallaby 000005 Slender-tailed meerkat 000004 Cotton-top tamarin 000002 Mandrill -
Exploiting Interspecific Olfactory Communication to Monitor Predators
Ecological Applications, 27(2), 2017, pp. 389–402 © 2016 by the Ecological Society of America Exploiting interspecific olfactory communication to monitor predators PATRICK M. GARVEY,1,2 ALISTAIR S. GLEN,2 MICK N. CLOUT,1 SARAH V. WYSE,1,3 MARGARET NICHOLS,4 AND ROGER P. PECH5 1Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand 2Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand 3Royal Botanic Gardens Kew, Wakehurst Place, RH17 6TN United Kingdom 4Centre for Wildlife Management and Conservation, Lincoln University, Canterbury, New Zealand 5Landcare Research, PO Box 69040, Lincoln, 7640 New Zealand Abstract. Olfaction is the primary sense of many mammals and subordinate predators use this sense to detect dominant species, thereby reducing the risk of an encounter and facilitating coexistence. Chemical signals can act as repellents or attractants and may therefore have applications for wildlife management. We devised a field experiment to investigate whether dominant predator (ferret Mustela furo) body odor would alter the behavior of three common mesopredators: stoats (Mustela erminea), hedgehogs (Erinaceus europaeus), and ship rats (Rattus rattus). We predicted that apex predator odor would lead to increased detections, and our results support this hypothesis as predator kairomones (interspecific olfactory messages that benefit the receiver) provoked “eavesdropping” behavior by mesopredators. Stoats exhib- ited the most pronounced responses, with kairomones significantly increasing the number of observations and the time spent at a site, so that their occupancy estimates changed from rare to widespread. Behavioral responses to predator odors can therefore be exploited for conserva- tion and this avenue of research has not yet been extensively explored. -
In the Mood Deer Have a Way of Advertising Their Wares and the Whereabouts– Scent, Sounds, and Body Language
A buck simulates reproductive response with flehman or lip curling to expose his vomeronasal organ to scent of a female’s urination. (frame from Quality Deer Management Assoc. video) In the Mood Deer have a way of advertising their wares and the whereabouts– scent, sounds, and body language J. Morton Galetto, CU Maurice River Last October I wrote an article about deer that included some aspects of their mating habits. It described mate guarding and the male deer or buck’s propensity to focus on following a female in estrus so as to insure he is the lucky suitor. During rut or the breeding season, when males spar competitively for reproductive rights over females, deer are on the move. The season begins in October and its height in our region is November 10- 20. Females that are not successfully fertilized will come into estrus a second time 28 days later, offering a second chance for them to produce young. All this moving around makes deer and drivers especially prone to road collisions. Bucks are particularly active during sunset and early morning. So slow down and stay alert. In last year’s story we offered lots of advice in this regard. White-tail deer are the local species here in Southern NJ. I thought it might be fun to talk about their indicators of lust – well, fun for me anyway. Deer employ three major methods of communications: scents, vocalizations, and body language. Deer are ungulates, meaning they are a mammal with a cloven hoof on each leg, split in two parts; you could describe them as toes or digits. -
Magical Madagascar June 19 – July 1, 2017 Anjajavy Extension July 1 – July 4, 2017 Magical Madagascar June 19 – July 1, 2017
Magical Madagascar June 19 – July 1, 2017 Anjajavy extension July 1 – July 4, 2017 Magical Madagascar June 19 – July 1, 2017 We invite you to be part of this exclusive and remarkable adventure through Madagascar, one of the most extraordinary places on Earth. There is no other trip to Madagascar like this one. In addition to the many splendors of that unique island country, you will experience exclusive areas not open to tourists. The Duke Lemur Center has been working in Madagascar for 30 years and we will have access to rarely visited areas, Duke connected conservation projects and people. You will meet with conservation and research experts, providing a truly unique experience. This trip is perfect for first time Madagascar visitors as well as for those returning to Madagascar for a second or third trip! Madagascar is home to all of the world’s lemurs (some 100+ species) and over half of the world’s chameleons, in addition to more than 170 species of frogs. Every year scientists discover new species of plants and animals in Madagascar’s deserts and forests. There is no question Madagascar is a nature lover's dream and an exceptional photographic destination. The animals we will see in the protected areas are habituated and easily approached, making for terrific photographic opportunities. Our itinerary is designed to cover some of the island’s highlights, including six different eco-systems with a diversity of wildlife and photographic subjects. We have chosen these six stops to showcase the incredible diversity in landscape flora and fauna common to each of these areas. -
Large Lemurs: Ecological, Demographic and Environmental Risk Factors for Weight Gain in Captivity
animals Article Large Lemurs: Ecological, Demographic and Environmental Risk Factors for Weight Gain in Captivity Emma L. Mellor 1,* , Innes C. Cuthill 2, Christoph Schwitzer 3, Georgia J. Mason 4 and Michael Mendl 1 1 Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK; [email protected] 2 School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; [email protected] 3 Dublin Zoo, Phoenix Park, Dublin 8, D08 WF88, Ireland; [email protected] 4 Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; [email protected] * Correspondence: [email protected] Received: 29 June 2020; Accepted: 12 August 2020; Published: 18 August 2020 Simple Summary: Excessive body mass, i.e., being overweight or obese, is a health concern. Some lemur species are prone to extreme weight gain in captivity, yet for others a healthy body condition is typical. The first aim of our study was to examine possible ecological explanations for these species’ differences in susceptibility to captive weight gain across 13 lemur species. Our second aim was to explore demographic and environmental risk factors across individuals from the four best-sampled species. We found a potential ecological explanation for susceptibility to captive weight gain: being adapted to unpredictable wild food resources. Additionally, we also revealed one environmental and four demographic risk factors, e.g., increasing age and, for males, being housed with only fixed climbing structures. Our results indicate targeted practical ways to help address weight issues in affected animals, e.g., by highlighting at-risk species for whom extra care should be taken when designing diets; and by providing a mixture of flexible and fixed climbing structures within enclosures. -
Mammalian Pheromones – New Opportunities for Improved Predator Control in New Zealand
SCIENCE FOR CONSERVATION 330 Mammalian pheromones – new opportunities for improved predator control in New Zealand B. Kay Clapperton, Elaine C. Murphy and Hussam A. A. Razzaq Cover: Stoat in boulders in the Tasman River bed, Mackenzie Basin. Photo: John Dowding. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright August 2017, New Zealand Department of Conservation ISSN 1177–9241 (web PDF) ISBN 978–1–98–851436–9 (web PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Lynette Clelland. Publication was approved by the Director, Threats Unit, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 1 1. Introduction 2 1.1 The potential roles of pheromones in New Zealand predator control 2 1.2 Aim of this review 4 2. Pheromone identification and function in mammalian predator species 5 2.1 Mice 5 2.2 Rats 7 2.3 Rodent Major Urinary Proteins (MUPs) 9 2.4 Cats 10 2.5 Mustelids 11 2.6 Possums (with reference to other marsupials) 13 3. Odour perception and expression 14 3.1 How do animals perceive odours? 14 3.2 Influence of the MHC 16 4. -
Olfactory Communication in the Ferret (Mustela Furo L.) and Its Application in Wildlife Management
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. OLFACTORY COMMUNICATION IN THE FERRET (MUSTELA FURO L.) AND ITS APPLICATION IN WILDLIFE MANAGEMENT A Thesis Prepared in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Zoology at Massey University Barbara Kay Clapperton 1985 �;·.;L��:"·;�� �is Copyrigj;lt Fonn Title:·J.;:E,:£j;esis: O\fgc:..�O("j CoW\I"'h.JA"lC,citQC\ � �� '�'Jd" � (�tJ.o.kgL.) � -\� C\�ic..Q;"er.. \h wA�·�. (1) ta.W-:> I give permission for my thesis to be rrede a���;�d�� .. -; ':: readers in the Massey University Library under conditi¥?� . C • determined by the Librarian. ; �dO n�t�sh my..,):hesi�o be�de�ai�e � _ _ re er/l.thout""my wmtten c6nse� for _ -<-L_ nths. ' ... ' � (2 ) �l.--.::�;. I � t � thej>'is, ov& c0er. rrej0Se s� ¥ I :.. an �r n�t ' ut ¥1h undef'condrtion srdeterdU.n6§. � t e rarl. I do not wish my thesis, or a copy, to be sent to another institution without my written consent for 12 nonths. (3 ) I agree that my thesis rrey be copied for Library use.: . �� ... Signed �,t. .... : B K Clappe n ;" Date (� �v � ; .. \, The cct1m�t of this thesis belongs to the author. Readers must sign t��::�arre in the space below to show that they recognise this. lmy· · are asked to add their perm:ment address.