Respiratory Physiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Correlation Between Tidal Volume Measured by Spirometry and Impedance Pneumography
New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Fall 10-31-1994 Correlation between tidal volume measured by spirometry and impedance pneumography Krithika Seshadri New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Seshadri, Krithika, "Correlation between tidal volume measured by spirometry and impedance pneumography" (1994). Theses. 1696. https://digitalcommons.njit.edu/theses/1696 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to -
Job Hazard Analysis
Identifying and Evaluating Hazards in Research Laboratories Guidelines developed by the Hazards Identification and Evaluation Task Force of the American Chemical Society’s Committee on Chemical Safety Copyright 2013 American Chemical Society Table of Contents FOREWORD ................................................................................................................................................... 3 ACKNOWLEDGEMENTS ................................................................................................................................. 5 Task Force Members ..................................................................................................................................... 6 1. SCOPE AND APPLICATION ..................................................................................................................... 7 2. DEFINITIONS .......................................................................................................................................... 7 3. HAZARDS IDENTIFICATION AND EVALUATION ................................................................................... 10 4. ESTABLISHING ROLES AND RESPONSIBILITIES .................................................................................... 14 5. CHOOSING AND USING A TECHNIQUE FROM THIS GUIDE ................................................................. 17 6. CHANGE CONTROL .............................................................................................................................. 19 7. ASSESSING -
Title: Drowning and Therapeutic Hypothermia: Dead Man Walking
Title: Drowning and Therapeutic Hypothermia: Dead Man Walking Author(s): Angela Kavenaugh, D.O., Jamie Cohen, D.O., Jennifer Davis MD FAAP, Department of PICU Affiliation(s): Chris Evert Children’s Hospital, Broward Health Medical Center ABSTRACT BODY: Background: Drowning is the second leading cause of death in children and is associated with severe morbidity and mortality, most often due to hypoxic-ischemic encephalopathy. Those that survive are often left with debilitating neurological deficits. Therapeutic Hypothermia after resuscitation from ventricular fibrillation or pulseless ventricular tachycardia induced cardiac arrest is the standard of care in adults and has also been proven to have beneficial effects that persist into early childhood when utilized in neonatal birth asphyxia, but has yet to be accepted into practice for pediatrics. Objective: To present supportive evidence that Therapeutic Hypothermia improves mortality and morbidity specifically for pediatric post drowning patients. Case Report: A five year old male presented to the Emergency Department after pool submersion of unknown duration. He was found to have asphyxial cardiac arrest and received bystander CPR, which was continued by EMS for a total of 10 minutes, including 2 doses of epinephrine. CPR continued into the emergency department. Upon presentation to the ED, he was found to have fixed and dilated pupils, unresponsiveness, with a GCS of 3. Upon initial pulse check was found to have return of spontaneous circulation, with sinus tachycardia. His blood gas revealed 6.86/45/477/8/-25. He was intubated, given 2 normal saline boluses and 2 mEq/kg of Sodium Bicarbonate. The initial head CT was normal. -
CARBON MONOXIDE: the SILENT KILLER Information You Should
CARBON MONOXIDE: THE SILENT KILLER Information You Should Know Carbon monoxide is a silent killer that can lurk within fossil fuel burning household appliances. Many types of equipment and appliances burn different types of fuel to provide heat, cook, generate electricity, power vehicles and various tools, such as chain saws, weed eaters and leaf blowers. When these units operate properly, they use fresh air for combustion and vent or exhaust carbon dioxide. When fresh air is restricted, through improper ventilation, the units create carbon monoxide, which can saturate the air inside the structure. Carbon Monoxide can be lethal when accidentally inhaled in concentrated doses. Such a situation is referred to as carbon monoxide poisoning. This is a serious condition that is a medical emergency that should be taken care of right away. What Is It? Carbon monoxide, often abbreviated as CO, is a gas produced by burning fossil fuel. What makes it such a silent killer is that it is odorless and colorless. It is extremely difficult to detect until the body has inhaled a detrimental amount of the gas, and if inhaled in high concentrations, it can be fatal. Carbon monoxide causes tissue damage by blocking the body’s ability to absorb enough oxygen. In fact, poisoning from this gas is one of the leading causes of unintentional death from poison. Common Sources of CO Kerosene or fuel-based heaters Fireplaces Gasoline powered equipment and generators Charcoal grills Automobile exhaust Portable generators Tobacco smoke Chimneys, furnaces, and boilers Gas water heaters Wood stoves and gas stoves Properly installed and maintained appliances are safe and efficient. -
Measurement of the Respiratory Quotient of Peat
Utah State University DigitalCommons@USU Hydroponics/Soilless Media Research 8-10-2012 Measurement of the Respiratory Quotient of Peat Jake Nelson Follow this and additional works at: https://digitalcommons.usu.edu/cpl_hydroponics Part of the Plant Sciences Commons Recommended Citation Nelson, Jake, "Measurement of the Respiratory Quotient of Peat" (2012). Hydroponics/Soilless Media. Paper 5. https://digitalcommons.usu.edu/cpl_hydroponics/5 This Article is brought to you for free and open access by the Research at DigitalCommons@USU. It has been accepted for inclusion in Hydroponics/Soilless Media by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Measurement of the respiratory quotient of peat Jake Nelson 8/10/2012 BIOL 5800 Undergraduate Research Summer 2010 Introduction Respiratory quotient (RQ) is the ratio of CO produced to O consumed by an organism. Complete respiration 2 2 of glucose will give an RQ of 1 as described by the formula C H O +nO →nCO +nH O. The respiration of n 2n n 2 2 2 molecules with lower oxygen content, such as lipids, give RQ values of less than one, whereas in cases of anaerobic metabolism, an increase in biomass or the respiration of substances such as humic, oxalic and citric acids the respiratory quotient can be greater than one. In complex systems such as soil, Dilly (2003) found that the RQ varied dramatically, and changed within the same soil under varying conditions. Similarly, Hollender et al. (2003) found RQ was informative in determining the underlying metabolic mechanisms, such as nitrification processes. Dilly (2004), studied the effects of various organic compounds on RQ, and found that beech forest soils amended with cellulose or humic acid maintained RQ values greater than one for more than 20 days after application. -
Pressure-Controlled Ventilation in Children with Severe Status Asthmaticus*
Feature Articles Pressure-controlled ventilation in children with severe status asthmaticus* Ashok P. Sarnaik, MD, FAAP, FCCM; Kshama M. Daphtary, MD; Kathleen L. Meert, MD, FAAP; Mary W. Lieh-Lai, MD, FAAP; Sabrina M. Heidemann, MD, FAAP Objective: The optimum strategy for mechanical ventilation in trolled ventilation, median pH increased to 7.31 (6.98–7.45, p < a child with status asthmaticus is not established. Volume-con- .005), and PCO2 decreased to 41 torr (21–118 torr, p < .005). For trolled ventilation continues to be the traditional approach in such patients with respiratory acidosis (PCO2 >45 torr) within 1 hr of children. Pressure-controlled ventilation may be theoretically starting pressure-controlled ventilation, the median length of time more advantageous in allowing for more uniform ventilation. We until PCO2 decreased to <45 torr was 5 hrs (1–51 hrs). Oxygen describe our experience with pressure-controlled ventilation in saturation was maintained >95% in all patients. Two patients had children with severe respiratory failure from status asthmaticus. pneumomediastinum before pressure-controlled ventilation. One Design: Retrospective review. patient each developed pneumothorax and subcutaneous emphy- Setting: Pediatric intensive care unit in a university-affiliated sema after initiation of pressure-controlled ventilation. All pa- children’s hospital. tients survived without any neurologic morbidity. Median duration Patients: All patients who received mechanical ventilation for of mechanical ventilation was 29 hrs (4–107 hrs), intensive care status asthmaticus. stay was 56 hrs (17–183 hrs), and hospitalization was 5 days Interventions: Pressure-controlled ventilation was used as the (2–20 days). initial ventilatory strategy. The optimum pressure control, rate, Conclusions: Based on this retrospective study, we suggest and inspiratory and expiratory time were determined based on that pressure-controlled ventilation is an effective ventilatory blood gas values, flow waveform, and exhaled tidal volume. -
A Cephalopod Approach to Rethinking About the Importance of the Bohr and Haldane Effects·
Pacific Science (1982), vol. 36, no. 3 © 1983 by the University of Hawaii Press. All rights reserved A Cephalopod Approach to Rethinking about the Importance of the Bohr and Haldane Effects· G. LYKKEBOE2 and K. JOHANSEN2 ABSTRACT: This study concerns the physiological implications of the Bohr and Haldane effects and the buffer values in the blood from the cephalopods Nautilus pompilius, Octopus macropus, Sepia latimanus, Nototodarus sloani philippinensis, and Sepioteuthis lessoniana. All species studied except one (Nautilus) have Bohr and Haldane coefficients numerically higher than unity, and the two effects were found to be nearly identical in all cases, in accord with the theoretical prediction of Wyman (1964). However, the functional Haldane coefficient was significantly lower than the Haldane coefficient in two cases (Sepia and Sepioteuthis). Buffer values were highest in the two species with the lowest oxygen requirement (Nautilus and Octopus), whereas the three fast swim mers studied (Nototodarus, Sepia, and Sepioteuthis) display comparatively low buffer values. It is concluded that the large Bohr effects seen in four of the five species may have their primary effect on oxygen loading in the gills. THE OXYGEN AFFINITY ofcephalopod blood is Since the Bohr effect is generally acredited pH-sensitive in all reported cases. However, physiological significance in respiratory blood for no other group of animals does the pH gas transport, variations in it that are related sensitivity ofthe O 2 binding, expressed by the to behavior, habitat, or systemic factors Bohr coefficient (Lllog P50/LlpH), show such a should be easily discernible in cephalopods. large variability between species (P50 denotes The present study compares blood respi the oxygen tension at half02 saturation ofthe ratory properties and discusses their possible blood). -
The Post-Mortem Appearances in Cases of Asphyxia Caused By
a U?UST 1902.1 ASPHYXIA CAUSED BY DROWNING 297 Table I. Shows the occurrence of fluid and mud in the 55 fresh bodies. ?ritfinal Jlrttclcs. Fluid. Mud. Air-passage ... .... 20 2 ? ? and stomach ... ig 6 ? ? stomach and intestine ... 7 1 ? ? and intestine X ??? Stomach ... ??? THE POST-MORTEM APPEARANCES IN Intestine ... ... 1 Stomach and intestine ... ... i CASES OF ASPHYXIA CAUSED BY DROWNING. Total 46 9 = 55 By J. B. GIBBONS, From the above table it will be seen that fluid was in the alone in 20 LIEUT.-COL., I.M.S., present air-passage cases, in the air-passage and stomach in sixteen, Lute Police-Surgeon, Calcutta, Civil Surgeon, Ilowrah. in the air-passage, stomach and intestine in seven, in the air-passage and intestine in one. As used in this table the term includes frothy and non- frothy fluid. Frothy fluid is only to be expected In the period from June 1893 to November when the has been quickly recovered from months which I body 1900, excluding three during the water in which drowning took place and cases on leave, 15/ of was privilege asphyxia examined without delay. In some of my cases were examined me in the due to drowning by it was present in a most typical form; there was For the of this Calcutta Morgue. purpose a bunch of fine lathery froth about the nostrils, all cases of death inhibition paper I exclude by and the respiratory tract down to the bronchi due to submersion and all cases of or syncope was filled with it. received after into death from injuries falling The quantity of fluid in the air-passage varies the water. -
Respiratory Physiology for the Anesthesiologist
REVIEW ARTICLE Deborah J. Culley, M.D., Editor ABSTRACT Respiratory function is fundamental in the practice of anesthesia. Knowledge of basic physiologic principles of respiration assists in the proper implemen- tation of daily actions of induction and maintenance of general anesthesia, Respiratory Physiology delivery of mechanical ventilation, discontinuation of mechanical and pharma- cologic support, and return to the preoperative state. The current work pro- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/130/6/1064/455191/20190600_0-00035.pdf by guest on 24 September 2021 for the Anesthesiologist vides a review of classic physiology and emphasizes features important to the anesthesiologist. The material is divided in two main sections, gas exchange Luca Bigatello, M.D., Antonio Pesenti, M.D. and respiratory mechanics; each section presents the physiology as the basis ANESTHESIOLOGY 2019; 130:1064–77 of abnormal states. We review the path of oxygen from air to the artery and of carbon dioxide the opposite way, and we have the causes of hypoxemia and of hypercarbia based on these very footpaths. We present the actions nesthesiologists take control of the respiratory func- of pressure, flow, and volume as the normal determinants of ventilation, and Ation of millions of patients throughout the world each we review the resulting abnormalities in terms of changes of resistance and day. We learn to maintain gas exchange and use respiration compliance. to administer anesthetic gases through the completion of (ANESTHESIOLOGY 2019; 130:1064–77) surgery, when we return this vital function to its legitimate owners, ideally with a seamless transition to a healthy post- operative course. -
Respiratory Support
Intensive Care Nursery House Staff Manual Respiratory Support ABBREVIATIONS FIO2 Fractional concentration of O2 in inspired gas PaO2 Partial pressure of arterial oxygen PAO2 Partial pressure of alveolar oxygen PaCO2 Partial pressure of arterial carbon dioxide PACO2 Partial pressure of alveolar carbon dioxide tcPCO2 Transcutaneous PCO2 PBAR Barometric pressure PH2O Partial pressure of water RQ Respiratory quotient (CO2 production/oxygen consumption) SaO2 Arterial blood hemoglobin oxygen saturation SpO2 Arterial oxygen saturation measured by pulse oximetry PIP Peak inspiratory pressure PEEP Positive end-expiratory pressure CPAP Continuous positive airway pressure PAW Mean airway pressure FRC Functional residual capacity Ti Inspiratory time Te Expiratory time IMV Intermittent mandatory ventilation SIMV Synchronized intermittent mandatory ventilation HFV High frequency ventilation OXYGEN (Oxygen is a drug!): A. Most infants require only enough O2 to maintain SpO2 between 87% to 92%, usually achieved with PaO2 of 40 to 60 mmHg, if pH is normal. Patients with pulmonary hypertension may require a much higher PaO2. B. With tracheal suctioning, it may be necessary to raise the inspired O2 temporarily. This should not be ordered routinely but only when the infant needs it. These orders are good for only 24h. OXYGEN DELIVERY and MEASUREMENT: A. Oxygen blenders allow O2 concentration to be adjusted between 21% and 100%. B. Head Hoods permit non-intubated infants to breathe high concentrations of humidified oxygen. Without a silencer they can be very noisy. C. Nasal Cannulae allow non-intubated infants to breathe high O2 concentrations and to be less encumbered than with a head hood. O2 flows of 0.25-0.5 L/min are usually sufficient to meet oxygen needs. -
Effects of Anaesthesia Techniques and Drugs on Pulmonary Function
Review Article Effects of anaesthesia techniques and drugs on pulmonary function Address for correspondence: Vijay Saraswat Dr. Vijay Saraswat, Department of Anaesthesiology, Apollo Hospitals, Nashik, Maharashtra, India Apollo Hospitals, Nashik, Maharashtra, India. E‑mail: drvsaraswat@gmail. ABSTRACT com The primary task of the lungs is to maintain oxygenation of the blood and eliminate carbon dioxide through the network of capillaries alongside alveoli. This is maintained by utilising ventilatory reserve capacity and by changes in lung mechanics. Induction of anaesthesia impairs pulmonary functions by the loss of consciousness, depression of reflexes, changes in rib cage and haemodynamics. All drugs used during anaesthesia, including inhalational agents, affect pulmonary functions directly by acting on respiratory system or indirectly through their actions on other systems. Volatile anaesthetic agents have more pronounced effects on pulmonary functions compared to intravenous induction agents, leading to hypercarbia and hypoxia. The posture of the patient also leads to major changes in pulmonary functions. Anticholinergics and neuromuscular blocking agents have little effect. Analgesics and Access this article online sedatives in combination with volatile anaesthetics and induction agents may exacerbate Website: www.ijaweb.org their effects. Since multiple agents are used during anaesthesia, ultimate effect may be DOI: 10.4103/0019‑5049.165850 different from when used in isolation. Literature search was done using MeSH key words ‘anesthesia’, -
HANDOUT #1 CONCEPT INTRODUCTION PRESENTATION: PERFUSION Topic Description Definition of Perfusion the Passage of Oxygenated Capi
HANDOUT #1 CONCEPT INTRODUCTION PRESENTATION: PERFUSION Topic Description Definition of Perfusion The passage of oxygenated capillary blood through body tissues. Peripheral perfusion is passage (flow) of blood to the extremities of the body. Central perfusion is passage (flow) of blood to major body organs, including the heart and lungs. Scope of Perfusion Perfusion can be viewed on a continuum as adequate on one end and inadequate, decreased, or impaired on the other. Decreased Perfusion can range from minimal to severe. Ischemia refers to decreased Perfusion, while infarction is complete tissue death due to severe decreased Perfusion. Risk Factors/Populations at Risk for Examples of risk factors or populations at risk Impaired Perfusion for impaired Perfusion can be categorized as modifiable (can be changed) and nonmodifiable (cannot be changed) Modifiable factors include: • Obesity • Lack of physical activity/sedentary lifestyle • Smoking Nonmodifiable factors include age, gender, and race/ethnicity. Groups at risk for impaired Perfusion include those who are of advanced age (due to less elastic arterial vessels as a result of aging) and those who are African American and Hispanic. These racial/ethnic groups are most at risk for chronic diseases that can affect Perfusion such as diabetes mellitus, hypertension, hyperlipidemia, and peripheral vascular disease. The cause of these variations is not known, but dietary and environmental factors may contribute to the higher incidence of chronic disease in these groups. Newborns and infants who have congenital heart anomalies are also at risk for impaired central Perfusion. Many of these defects can be surgically repaired to regain adequate Perfusion. Physiologic Consequences of Impaired Consequences of impaired Perfusion vary Perfusion depending on the degree of impairment.