Affinities of Prototheria and Metatheria Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Affinities of Prototheria and Metatheria Pdf Affinities of prototheria and metatheria pdf Continue Matthew Wund; Anna Bess Sorin; Phil Myers Subclass Prototheria contains mammalian egg layings, which are the most ancestral forms in the Mammalia class. There are only three species grouped into two families and one order, Monotremata. Despite fewer species than most mammals, prototerians are so unique among mammals that there is no doubt that they represent a separate and ancient branch of the Mammian family tree. However, it is not clear how monotrems are associated with the other two main lines of mammals, marsupials (Metateria) and placental (Euteria). Some evidence supports the hypothesis that prototerians form a hoard with marsupials, while other evidence suggests that the prototerians are the sister of a hoard containing both marsupials and placental. (Heckner, 1990; Janke, et al., 1996; Janke, et al., 1997; Killian, et al., 2001; Novak, 1991; Vaughan, et al., 2000) Prototherians probably separated from the line leading to other mammals sometime in Mesozoic. They retain many of the symbols of their therapeutic ancestors (e.g., the complex thoracic belt, laying eggs rather than carrying living young, limbs oriented to the shoulder bone and femur held sideways to the body, and cloaca). The skull of monotrems is almost avian in appearance, with a long grandstand and smooth appearance. Modern monotrems have no teeth like adults; The seams are hard to see; The grandstand is elongated, beak-like, and covered with a leather shell; and there are no lacrimal bones. Monotremes have several important mammalian characters, however, including fur (but they lack vibration), four chamber hearts, one tooth bone, three middle ear bones, and the ability to lactate. (Heckner, 1990; Novak, 1991; Vaughan, et al., 2000) Monotremes are limited to Australia and New Guinea. Their fossil records are very poor; the earliest fossils attributed to this group are from the early Cretaceous period. Fossils from Argentina indicate that monotrems were more widespread at the beginning of their history. (Heckner, 1990; Novak, 1991; Vaughan, et al., 2000) Prototherians or terrestrial (Tachyglossidae) or mainly aquatic (Ornithorhynchidae). Their terrestrial habitats include deserts, sandy plains, rocky areas and forests in both lowlands and mountains. Platypus live in lakes, ponds and streams; they take shelter in burrows along the shores and spend most of their time feeding in the water. (Heckner, 1990; Novak, 1991) Temperate tropical tropical freshwater deserts or savannah dunes or meadow forest shrubs of forest mountains of lakes and ponds of rivers and streams Besides the absence of teeth, lacrimals and obvious seams, protozerians have a number of skeletal characteristics. On turtles, jugals are reduced or absent, a thin bone denture with only the remainder of the coronaoid process, angle does not bend medially (unlike marsupials), auditory bulls are absent (part of the middle ear is enclosed by tympanic rings), and much of the brain wall is composed of petrosals rather than alisphenoid (unlike all other modern mammals). Post-screenically, the skeleton of prototerians is also unique among mammals. It is a fascinating mosaic of primitive characteristics inherited from the therapists, but not found in any other living mammal, and modifications, probably related to the buried habits of modern prototeries. Their shoulder girdles are complex, including the standard components of modern mammals (shoulder and collarbone), but also additional elements including coracoid, epicracoid and interclavik. The spatula, however, is simplified without having a persicle pit. The shoulder belt is much tighter attached to the armpit than in other mammals. The femur and humeral bone are held roughly parallel to the ground when the animal walks, more in the fashion of therapsids and most modern reptiles than as modern mammals. The ribs are on the cervical (neck) vertebrae, as well as on the thoracic (thoracic) vertebrae; In all other modern mammals, they are limited to the thoracic area. (Heckner, 1990; Novak, 1991; Vaughan, et al., 2000) Another interesting skeletal characteristic of the prototerians is the large epipobic bones in the pelvis. Epipabic bones were originally thought to be associated with the presence of the bag, but they are found in both men and women. They are also found in all kinds of marsupials, whether the bag is present or not (not all marsupials have a bag). It is now believed that epipubic bones are the remnant of the erapside skeleton, providing members of this group with additional attachments for abdominal muscles to support the weight of the hind limbs. (Heckner, 1990; Novak, 1991) Prototerians are endothermic, but they have unusually low metabolic rates and maintain a lower body temperature than most other mammals. (Heckner, 1990; Novak, 1991) All male prototerians have ankle spurs that are supposed to be used in combat and defense. In one family (Ornithorhynchidae), a groove along the spur carries poison secreted by adjacent glands. (Heckner, 1990; Novak, 1991) endothermic homoyothermic bilateral symmetry is poisonous Little is known about the marriage systems of the Prototerians. They are lonely most of the year, coming together just for mating. During the mating season, duck duck platypus are in pairs, but despite these observations, platypus is unlikely to be monogamous, because males are not associated with females after scooping up, and they do not provide any parental care. Female short-nosed prickly echidnas were observed with several males at the same time, which can reflect polygins or polyandria. Even less can be concluded about marriage systems prickly echidnas because so little is known about their basic behavior and biology. (Heckner, 1990; Novak, 1991) Prototerians are seasonal breeders. Typically, the breeding season lasts from 1 to 3 months from July to October. At least one species (duck payers) perform several complex courtship behaviors before copulation. (Heckner, 1990; Novak, 1991) Eggs laid with monotrems, small (diameter from 13 to 15 mm) and covered with leathery shells. The number of egg layings is small, usually from 1 to 3, and they are placed in the mother's bag. They contain a large yolk that concentrates on one end of the egg, very similar to the yolk of a bird's egg. Only the left ovary is functional in platypus, but both produce eggs in echidna. Like birds' eggs, monotrem eggs are incubated and hatched outside the mother's body. Incubation lasts about 12 days. Young people who are tiny and at a very early stage of development when they hatch, break out of the eggs using a milk tooth. They are protected in a temporary bag in echidnas, but not platypus. They are fed milk produced by the breasts; Milk is released onto the skin in the bag and sucked or splashed by the infants. Swelling occurs when the young are 16 to 20 weeks old. (Heckner, 1990; Novak, 1991; Vaughan, et al., 2000) Parental taxation of male prototherians seems to consist entirely of acquiring companions and fertilizing a woman's eggs. All other investments and parental care are provided by women. Young people are born in the extreme state of Altris and need considerable care and protection from their mothers. Like mammals, females produce milk and care for their young. Echidnas develop a brood bag on the abdomen in which eggs and hatched youngsters develop for almost two months. The young are weary about three months. Platypuses do not have a brood bag, and instead lay eggs in deep, complex burrows on the banks of creeks and ponds. The young develop in a hole and get tired after 3 months. (Heckner, 1990; Novak, 1991) it is known that the provision of altritial pre-fertilization protects pre-match/birth support that protects the pre- enlightened/bearning provision protecting the Small, in relation to the natural life expectancy of the prototerians; however, they can live several decades in captivity. In at least one case, the short-legged echidna lived for 50 years. (Heckner, 1990; Novak, 1991) Prototerians are mostly solitary animals and at least one species (Tachyglossus aculeatus) is territorial. Activity patterns vary by species and even among T. aculeatus populations; prototeria can be diuretic, baptismal or night. Echidnas are completely terrestrial and eat mostly ants, termites and worms while platypus spend most of their feeding time in water for a wider range of invertebrates. All three species exceptional diggers, using powerful powerful Dig shelters or quickly run away from predators. In addition to digging their way out of trouble, echidnas can roll up and erect their spikes as a protective mechanism. If food conditions are insufficient, prototerians may enter temporary numbness or longer periods of hibernation when winter food is scarce. (Heckner, 1990; Novak, 1991; Vaughan, et al., 2000) Hearing, olfaction, touch, and vision are all important to some extent in prototherians. Hearing and vision are well developed in platypus and moderately well developed in the ehidna. The sense of touch is perhaps most important for the platypus, which is looking at the bottom of the stream for food or ehids, which is rooted through the ground for termites or worms. Platypus bills and echidna snouts are extremely sensitive organs that are essential for effective feeding. Platypuses can even use electrical stimuli to find prey. Olfaction is well developed in echidnas and can be used in individual recognition. Prototypes sometimes produce a few simple vocalizations, but their function is unknown. (Heckner, 1990; Novak, 1991) Visual tactile acoustic acoustic acoustic chemical All prototerian carnivores are carnivorous, with their diet consisting of various invertebrates. Platypuses feed into benthos lakes and creeks, using their sensitive accounts to find prey. They are common predators, while echidnas specialize in either ants and termites (Tachyglossus) or worms (Zagloss). Both species of echidna are powerful diggers and use their claws and snouts to take root across the earth to find food.
Recommended publications
  • Marsupials As Models for Research
    CSIRO PUBLISHING Introduction www.publish.csiro.au/journals/ajz Australian Journal of Zoology, 2006, 54, 137–138 Marsupials as models for research Lynne SelwoodA,B and Graeme CoulsonA ADepartment of Zoology, The University of Melbourne, Vic. 3010, Australia. BCorresponding author. Email: [email protected] Marsupials are worth studying for their intrinsic value alone. rather than by trying to determine what happens when the They are one of the three major extant mammal types, conceptuses are implanted in the uterus, as in the mouse. The Prototheria (monotremes), Metatheria (marsupials) and Renfree and Shaw group has skilfully exploited this in the Eutheria, and have provided important information about the tammar wallaby, and provided further experimental advan- evolution of mammals. They represent the major mammalian tages by developing techniques for gonad sex reversal and group on the Australian continent, and their study makes an female reproductive tract sex reversal in the neonates important contribution to our natural heritage. Such studies (Renfree et al. 2006). Using marsupials, the development of are necessary in order to stem the further loss of marsupial the scrotum, mammary glands, pouch and processus vagi- diversity due to extinction of species. In addition, the study nalis are shown to be sexually dimorphic before the testis of marsupial species has provided new insights into old prob- differentiates, and hence are independent of testicular hor- lems, because of their value as models to study a variety of mones. These studies have been extended into the molecular totally different fields. level. The study of marsupials can be seen as an example of the Studies on life history strategies of Antechinus showed importance of basic research.
    [Show full text]
  • Mammals at Woodland Park Zoo Pre-Visit Information
    Mammals at Woodland Park Zoo Pre-visit Information If you are planning a zoo field trip and wish to have your students focus on mammals during their visit, this pre- visit sheet can help them get the most out of their time at the zoo. We have put together an overview of key concepts related to mammals, a list of basic vocabulary words, and a checklist of mammal species at Woodland Park Zoo. Knowledge and understanding of these main ideas will enhance your students’ zoo visit. OVERVIEW: There are over 5,000 species of mammals currently identified worldwide, inhabiting a number of different biomes and exhibiting a range of adaptations. Woodland Park Zoo exhibits a wide variety of mammal species (see attached checklist) in several different areas of the zoo. A mammal field trip to the zoo could focus on the characteristics of mammals (see “Concepts” below), comparing/contrasting different mammals or learning about biomes and observing the physical characteristics of mammals in different biomes. CONCEPTS: Mammals share the following physical characteristics: • Fur or hair • Endothermic, often called warm-blooded. Endothermic animals maintain a constant internal body temperature rather than adjusting to the temperature of their surroundings as ectothermic animals (such as reptiles and amphibians) do. • Mammary glands, which are used to feed milk to young Mammals, like all plants and animals, have five basic needs to survive—food, water, shelter, air and space. They inhabit every continent on the planet and range in size from Kitti’s hog-nosed bat (also called bumblebee bat) at 0.07 ounces (2 grams) to the blue whale at 100 tons (approximately 90,000 kilograms).
    [Show full text]
  • Evolution of Nervous Systems and Brains 2
    Evolution of Nervous Systems and Brains 2 Gerhard Roth and Ursula Dicke The modern theory of biological evolution, as estab- drift”) is incomplete; they point to a number of other lished by Charles Darwin and Alfred Russel Wallace and perhaps equally important mechanisms such as in the middle of the nineteenth century, is based on (i) neutral gene evolution without natural selection, three interrelated facts: (i) phylogeny – the common (ii) mass extinctions wiping out up to 90 % of existing history of organisms on earth stretching back over 3.5 species (such as the Cambrian, Devonian, Permian, and billion years, (ii) evolution in a narrow sense – Cretaceous-Tertiary mass extinctions) and (iii) genetic modi fi cations of organisms during phylogeny and and epigenetic-developmental (“ evo - devo ”) self-canal- underlying mechanisms, and (iii) speciation – the ization of evolutionary processes [ 2 ] . It remains uncer- process by which new species arise during phylogeny. tain as to which of these possible processes principally Regarding the phylogeny, it is now commonly accepted drive the evolution of nervous systems and brains. that all organisms on Earth are derived from a com- mon ancestor or an ancestral gene pool, while contro- versies have remained since the time of Darwin and 2.1 Reconstruction of the Evolution Wallace about the major mechanisms underlying the of Nervous Systems and Brains observed modi fi cations during phylogeny (cf . [1 ] ). The prevalent view of neodarwinism (or better In most cases, the reconstruction of the evolution of “new” or “modern evolutionary synthesis”) is charac- nervous systems and brains cannot be based on fossil- terized by the assumption that evolutionary changes ized material, since their soft tissues decompose, but are caused by a combination of two major processes, has to make use of the distribution of neural traits in (i) heritable variation of individual genomes within a extant species.
    [Show full text]
  • Eutheria (Placental Mammals)
    Eutheria (Placental Introductory article Mammals) Article Contents . Introduction J David Archibald, San Diego State University, San Diego, California, USA . Basic Design . Taxonomic and Ecological Diversity Eutheria includes one of three major clades of mammals, the extant members of which are . Fossil History and Distribution referred to as placentals. Phylogeny Introduction have supernumerary teeth (e.g. some whales, armadillos, Eutheria (or Placentalia) is the most taxonomically diverse etc.), in extant placentals the number of teeth is at most of three branches or clades of mammals, the other two three upper and lower incisors, one upper and lower being Metatheria (or Marsupialia) and Prototheria (or canine, four upper and lower premolars, and three upper Monotremata). When named by Gill in 1872, Eutheria and lower molars. Except for one fewer upper molar, a included both marsupials and placentals. It was Huxley in domestic dog retains this pattern. Compared to reptiles, 1880 that recognized Eutheria basically as used today to mammals have fewer skull bones through fusion and loss, include only placentals. McKenna and Bell in their although bones are variously emphasized in each of the Classification of Mammals, published in 1997, chose to three major mammalian taxa. use Placentalia rather than Eutheria to avoid the confusion Physiologically, mammals are all endotherms of varying of what taxa should be included in Eutheria. Others such as degrees of efficiency. They are also homeothermic with a Rougier have used Eutheria and Placentalia in the sense relatively high resting temperature. These characteristics used here. Placentalia includes all extant placentals and are also found in birds, but because of anatomical their most recent common ancestor.
    [Show full text]
  • Geographic Range
    1 Geographic Range Mammals can be found on all continents, in all oceans, and on many oceanic islands of the world. Habitat Different species of mammals have evolved to live in nearly all terrestrial and aquatic habitats on the planet. Mammals inhabit every terrestrial biome, from deserts to tropical rainforests to polar icecaps. Many species are arboreal, spending most or all of their time in the forest canopy. One group (bats) have even evolved powered flight, which represents only the third time that this ability has evolved in vertebrates (the other two groups being birds and extinct Pterosaurs). Many mammals are partially aquatic, living near lakes, streams, or the coastlines of oceans (e.g., seals, sea lions, walruses, otters, muskrats, and many others). Whales and dolphins (Cetacea) are fully aquatic, and can be found in all oceans of the world, and some rivers. Whales can be found in polar, temperate, and tropical waters, both near shore and in the open ocean, and from the water's surface to depths of over 1 kilometer. (Nowak, 1991; Reichholf, 1990a; Vaughan, Ryan, and Czaplewski, 2000) These animals are found in the following types of habitat: temperate ; tropical ; polar ; terrestrial ; saltwater or marine ; freshwater . Terrestrial Biomes: tundra ; taiga ; desert or dune ; savanna or grassland ; chaparral ; forest ; rainforest ; scrub forest ; mountains ; icecap. Aquatic Biomes: pelagic ; reef ; lakes and ponds; rivers and streams; coastal ; brackish water . Wetlands: marsh , swamp , bog . Other: urban ; suburban ; agricultural ; riparian ; estuarine ; intertidal or littoral . ___________________________________________________________________________ Source: Wund, M. and P. Myers. 2005. "Mammalia" (On-line), Animal Diversity Web. Accessed October 15, 2009 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Mammalia.html.
    [Show full text]
  • 978-985-567-379-9.Pdf
    МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА БИОЛОГИИ БИОЛОГИЯ BIOLOGY Контрольные работы для слушателей подготовительного отделения иностранных учащихся, обучающихся на английском языке Минск БГМУ 2016 УДК 57 (811.111)-054.6 (075.8) ББК 28.70 (81.2 Англ-923) Б63 Рекомендовано Научно-методическим советом университета в качестве контрольных работ 16.12.2015 г., протокол № 4 А в т о р ы: В. Э. Бутвиловский, В. В. Григорович, Е. А. Романовский, А. В. Бутвиловский Р е ц е н з е н т ы: канд. мед. наук, доц. О. Н. Ринейская; канд. биол. наук, доц. А. В. Колб Биология : контрольные работы для слушателей подготовительного отделе- Б63 ния иностранных учащихся обуч. на англ. яз. = Biology : tests for english studying international students of preparatory department / В. Э. Бутвиловский [и др.]. – Минск : БГМУ, 2016. – 92 с. ISBN 978-985-567-379-9. Содержит контрольные работы к итоговым занятиям по всему программному материалу для поступающих в ВУУ. Контрольные работы составлены по образцу билетов вступительного эк- замена для иностранных граждан в УО БГМУ (в темах «Человек и его здоровье» и «Многообра- зие органического мира», «Основы цитологии» и «Основы генетики» по 10 вариантов контроль- ных работ). Предназначены для слушателей подготовительного отделения иностранных учащихся, обу- чающихся на английском языке УДК 57 (811.111)-054.6 (075.8) ББК 28.70 (81.2 Англ-923) Учебное издание Бутвиловский Валерий Эдуардович Григорович Виктор Васильевич Романовский Евгений Александрович Бутвиловский Александр Валерьевич БИОЛОГИЯ BIOLOGY Контрольные работы для слушателей подготовительного отделения иностранных учащихся, обучающихся на английском языке На английском языке Ответственный за выпуск В. Э. Бутвиловский Переводчики А. В. Бутвиловский, В.
    [Show full text]
  • 2017-2018 G360402 15 12 Зи Plx Свободный Разговорный
    УП: g360402_15_12_ Зи.plx стр. 4 1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ (МОДУЛЯ) УП: g360402_15_12_ Зи.plx стр. 3 Визирование РПД для исполнения в очередном учебном году Председатель МК __ __________ 2018 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2018-2019 учебном году на заседании кафедры Департамент по экономико-правовому и гуманитарному образованию Протокол от __ __________ 2018 г. № __ Зав. кафедрой Визирование РПД для исполнения в очередном учебном году Председатель МК __ __________ 2019 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2019-2020 учебном году на заседании кафедры Департамент по экономико-правовому и гуманитарному образованию Протокол от __ __________ 2019 г. № __ Зав. кафедрой Визирование РПД для исполнения в очередном учебном году Председатель МК __ __________ 2020 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2020-2021 учебном году на заседании кафедры Департамент по экономико-правовому и гуманитарному образованию Протокол от __ __________ 2020 г. № __ Зав. кафедрой Визирование РПД для исполнения в очередном учебном году Председатель МК __ __________ 2021 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры Департамент по экономико-правовому и гуманитарному образованию Протокол от __ __________ 2021 г. № __ Зав. кафедрой Учебная дисциплина (модуль) "Свободный разговорный английский" предназначена для обучения магистров по направлению подготовки 36.04.02 Зоотехния (уровень магистратуры). Дисциплина «Свободный разговорный английский» является дисциплиной по выбору в вариативной части гуманитарного и социально-экономического цикла (Б1.В.ДВ.1.1) подготовки студентов по направлению 36.04.02 Зоотехния (уровень магистратуры). Дисциплина реализуется в Департаменте по экономико-правовому и гуманитарному образованию ФГБОУ ВО "Якутской ГСХА".
    [Show full text]
  • Diagnosis of the Class Mammalia
    FAUNA of AUSTRALIA 14. DIAGNOSIS OF THE CLASS MAMMALIA WILLIAM A. CLEMENS 1 14. DIAGNOSIS OF THE CLASS MAMMALIA 2 14. DIAGNOSIS OF THE CLASS MAMMALIA INTRODUCTION These days, the production of new definitions of the Class Mammalia appears to be a healthy cottage industry. The products vary according to the different philosophies of classification espoused by their authors and the applications for which they are intended. Here, I shall discuss classifications that may be appropriate for two different types of inquiries: First are definitions of the Class for the purposes of comparing members of the Mammalia with members of other groups of comparable rank, especially Reptilia or Aves. Assessment of the fidelity with which a classification represents patterns and rates of evolution is particularly important when studies emphasise comparison of characters of modern members of the classes. Second, other definitions have been proposed for the purpose of circumscribing the Mammalia and distinguishing its membership from the animals that usually are dubbed the ‘mammal-like reptiles’. These commonly are based on a foundation made up of the living mammals – monotremes, marsupials and eutherians. Then, on different criteria, related prehistoric species are included. In some, membership is strictly defined to include only modern mammals, their last common ancestor and members of all extinct lineages derived from that common ancestor. Other definitions have been variously designed to recognise the origin of a mammalian grade of evolution, typus or Bauplan with a specific character or suite of characters arbitrarily chosen to define membership. A survey of the classifications produced by these different approaches shows that in both the apparent common ancestors of all living mammals usually are included in the Class.
    [Show full text]
  • 17. Morphology and Physiology of the Metatheria
    FAUNA of AUSTRALIA 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA T.J. DAWSON, E. FINCH, L. FREEDMAN, I.D. HUME, MARILYN B. RENFREE & P.D. TEMPLE-SMITH 1 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA 2 17. MORPHOLOGY AND PHYSIOLOGY OF THE METATHERIA EXTERNAL CHARACTERISTICS The Metatheria, comprising a single order, Marsupialia, is a large and diverse group of animals and exhibits a considerable range of variation in external features. The variation found is intimately related to the animals' habits and, in most instances, parallels that are found in the Eutheria. Useful general references to external characteristics include Pocock (1921), Jones (1923a, 1924), Grassé (1955), Frith & Calaby (1969), Ride (1970) and Strahan (1983). Body form In size, the marsupials range upwards from the Long-tailed Planigale, Planigale ingrami, a small, mouse-like animal weighing only around 4.2 g, with a head- body length of 59 mm and a tail 55 mm long. At the other extreme, there are large kangaroos, such as the Red Kangaroo, Macropus rufus, in which the males may weigh as much as 85 kg and attain a head-body length of 1400 mm and a tail of 1000 mm. Body shape also varies greatly. The primarily carnivorous marsupials, the dasyurids (for example, antechinuses, dunnarts, quolls, planigales and others), are small to medium sized quadrupeds with subequal limbs. The tail is relatively slender and generally about half the length of the body. The omnivorous peramelids show increased development of the hind limbs in keeping with their rapid bounding locomotion. Saltatory or hopping forms (for example kangaroos and wallabies), carry the hind limb specialisation to an extreme, with a concomitant reduction of the forelimbs (Fig.
    [Show full text]
  • 599-599.9 20161117 Ddc23
    599 599 599 *Mammalia Class here Eutheria Class here mammals, placental mammals, warm-blooded vertebrates Class interdisciplinary works on species of domestic mammals in 636 For Aves, see 598 See Manual at 599 SUMMARY 599.144–.163 [Head and beneficial mammals] .2 Marsupialia and Monotremata .3 Miscellaneous orders of Eutheria .4 Chiroptera .5 Cetacea and Sirenia .6 Ungulates .7 Carnivora .8 Primates .9 Homo sapiens .22 *Macropodidae Including rat kangaroos, tree kangaroos Class here wallabies .222 *Macropus Including gray kangaroos, wallaroos Class here comprehensive works on kangaroos Class rat kangaroos, tree kangaroos in 599.22 .222 3 *Macropus rufus Class here red kangaroo .232 *Phalangeridae Including brush-tailed possums, scaly-tailed possum Class here Phalanger Class here cuscuses .24 *Vombatidae Class here wombats .25 *Phascolarctidae Class here koala * *Add as instructed under 592–599 1 599 Dewey Decimal Classification 599 .26 *Peramelina Class here Peramelidae Class here bandicoots .27 *Marsupicarnivora and Paucituberculata Including Caenolestidae, Dasyuridae, Microbiotheriidae Including marsupial cats, marsupial mice, marsupial moles, marsupial rats, monito del monte, numbat, shrew opossums, Tasmanian devil, Tasmanian tiger, Tasmanian wolf, thylacine Subdivisions are added for Marsupicarnivora and Paucituberculata together, for Marsupicarnivora alone .276 *Didelphidae Class here American opossums See also 599.23 for Australasian possums .29 *Monotremata Including Ornithorhynchidae, Tachyglossidae Including echidnas, platypus,
    [Show full text]
  • Subclass Prototheria
    Main Points 1) Diversity, Phylogeny, and Systematics -- Subclasses Prototheria and Theria -- Infraclass Metatheria (Marsupialia), Orders Monotremata through Dasuyuromorphia 2) Modern distributions of prototherians and metatherians -- adaptive radiations -- example: Wallace’s line and continental vs. oceanic islands 3) Reproductive strategies in dasyuromorphs -- example: the evolution of semelparity Prereading: Mon Sep 16 = Wong Weds 18 Sep = Sykes et al 2014 Terms: diagnostic, oviparous, cloaca, altricial, marsupium, adaptive radiation, continental island, oceanic island, hallux, monotypic, derived, iteroparity, semelparity 1 Evolutionary Distinctiveness of Class Mammalia evolutionary distinctiveness high low Holt et al. 2013. 2 Evolutionary Distinctiveness of Class Mammalia evolutionary distinctiveness high low Holt et al. 2013. 3 Six Zoogeographic Regions 4 Subclass Prototheria Gomez et al. 5 2016. Subclass Prototheria Subclass Prototheria Prototheria Gomez et al. 6 2016. Subclass Prototheria, Order Monotremata Taxonomy: 5 species Distribution: Australasian, in coastal, southeastern Australia and New Guinea (echidnas only) western long-beaked short-beaked echidna echidna duck-billed platypus 7 Subclass Prototheria, Order Monotremata Taxonomy: 5 species Distribution: Australasian, in coastal, southeastern Australia and New Guinea (echidnas only) Diagnostic characters: 1) oviparous 2) mammary glands lacking nipples 3) no pinnae 4) no teeth 5) cloaca 8 Subclass Prototheria, Order Monotremata short-beaked echidna nose poking 9 Subclass
    [Show full text]
  • Morphological Evidence Supports Dryolestoid Affinities for the Living Australian Marsupial Mole Notoryctes
    Reviewing Manuscript Morphological Evidence supports Dryolestoid affinities for the living Australian Marsupial Mole Notoryctes Federico Agnolin, Nicolas Roberto Chimento Recent discoveries demonstrated that the southern continents were a cradle for the evolutionary radiation of dryolestoid mammals at the end of the Cretaceous. Moreover, it becomes evident that some of these early mammals surpassed the K/T boundary in South America, at least. Notoryctes is a poorly known living mammal, currently distributed in the s t deserts of central Australia. Due to its extreme modifications to fossoriality and peculiar n i anatomy, the phylogenetic relationships of this genus were debated in the past, but most r P recent authors agree in its marsupial affinities. A comparative survey of the anatomy of e Notoryctes reveals the poorly sustained marsupial affinities for the genus and striking r P plesiomorphies for a living mammal. Surprisingly, Notoryctes exhibits similarities with dryolestoids. Dryolestoids were a diverse and mainly mesozoic mammalian group phylogenetically nested between the egg-lying monotremes and derived therians. In particular, Notoryctes share a number of shared features with the extinct dryolestoid Necrolestes, from the Miocene of Patagonia. Both taxa conform a clade of burrowing and animalivorous dryolestoids that survived other members of their lineage probably due to their peculiar habits. Accordingly, Notoryctes constitutes a “living-fossil” from the supposedly extinct dryolestoid radiation, extending the biochron of the group more than 20 million years to the present day. The intermediate phylogenetic position of Notoryctes has the pivotal potential to shed light on crucial anatomical, physiological, ecological, and evolutionary topics in the deep transformation from egg-lying to placental mammals.
    [Show full text]