Quick viewing(Text Mode)

Morphological Evidence Supports Dryolestoid Affinities for the Living Australian Marsupial Mole Notoryctes

Morphological Evidence Supports Dryolestoid Affinities for the Living Australian Marsupial Mole Notoryctes

Reviewing Manuscript

Morphological Evidence supports Dryolestoid affinities for the living Australian Notoryctes

Federico Agnolin, Nicolas Roberto Chimento

Recent discoveries demonstrated that the southern continents were a cradle for the evolutionary radiation of dryolestoid at the end of the . Moreover, it becomes evident that some of these early mammals surpassed the K/T boundary in , at least. Notoryctes is a poorly known living , currently distributed in the s

t of central . Due to its extreme modifications to fossoriality and peculiar n i , the phylogenetic relationships of this were debated in the past, but most r

P recent authors agree in its marsupial affinities. A comparative survey of the anatomy of e Notoryctes reveals the poorly sustained marsupial affinities for the genus and striking r

P plesiomorphies for a living mammal. Surprisingly, Notoryctes exhibits similarities with dryolestoids. Dryolestoids were a diverse and mainly mammalian group phylogenetically nested between the -lying and derived therians. In particular, Notoryctes share a number of shared features with the extinct dryolestoid Necrolestes, from the of . Both taxa conform a of burrowing and animalivorous dryolestoids that survived other members of their lineage probably due to their peculiar habits. Accordingly, Notoryctes constitutes a “living-” from the supposedly extinct dryolestoid radiation, extending the biochron of the group more than 20 million to the present day. The intermediate phylogenetic position of Notoryctes has the pivotal potential to shed light on crucial anatomical, physiological, ecological, and evolutionary topics in the deep transformation from egg-lying to placental mammals. This finding, together with the Australian monotremes, constitutes the second example of early mammals that survived in well after the KT boundary.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1 Morphological evidence supports Dryolestoid affinities for the living Australian

2 Notoryctes

3 Federico L. Agnolin1,2 and Nicolás R. Chimento2*

4

5 1 Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Ángel Gallardo 470

6 (C1405BDB), Buenos Aires, . [email protected] s t

n 7 i r

P 8 2 Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y e r

P 9 Antropología, CEBBAD -Universidad Maimónides, Hidalgo 775 (C1405BDB), Buenos Aires,

10 Argentina. [email protected]

11

12

13

14 *Corresponding author

15

16 Brief title. Notoryctes, a living Dryolestoidea

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

17

18 INTRODUCTION

19 The “marsupial mole” genus Notoryctes is a genus that includes two of aberrant

20 mammals currently distributed in the deserts of inner Australia (Nowak, 1999). Notoryctes has

21 long been considered as an example of a highly modified burrowing mammal (Stirling, 1891;

22 Warburton, 2003; Archer et al. 2010); however, its behavior and biology are nearly unknown, as

s 23 occurs with key characters of internal and external anatomy (Johnson and Walton, 1989). Due to t n i 24 its extreme modifications to fossoriality and peculiar anatomy, Notoryctes affinities were debated r

P 25 at past, but since the study of Gadow (1892) most authors considered it as an aberrant marsupial. e r 26 Its divergent morphology, and absence of related make the relationships of Notoryctes P

27 with other obscure, and its unique anatomy prompted the creation of its own

28 marsupial Notoryctemorphia (Archer, 1984). Its affinities within marsupials have remained

29 elusive, although authors include it among Australian marsupial , mainly by biogeographic

30 reasons (Szalay, 1982; 1994; Woodburne & Case, 1996; Springer et al., 1998; Horovitz and

31 Sanchez Villagra, 2003; Horovitz et al., 2009; Asher et al., 2004; Beck et al. 2008). As recognized

32 by most authors, fossorial adaptations mask the phylogenetic relationships of Notoryctes.

33 However, since Gadow (1982) article only some isolated voices (Cope, 1892; Turnbull, 1971)

34 called attention about the plesiomorphic of Notoryctes anatomy. Interesting enough,

35 Notoryctes was repeatedly compared and sometimes phylogenetically tied with the extinct

36 mammal Necrolestes, from the Miocene of Patagonia (Cope, 1892; Turnbull, 1971; Asher and

37 Sánchez-Villagra, 2005; Asher et al., 2007; Ladevèze et al., 2009). It is worth to mention that

38 Necrolestes, long thought to be a marsupial (e.g., Patterson, 1952; Patterson and Pascual, 1972;

39 Pascual and Ortíz Jaureguizar, 2007; Ladevèze et al., 2009) was recently reinterpreted as a non-

40 therian dryolestoid mammal (Chimento et al., 2012; Rougier et al., 2012). Because of the

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

41 similarities shared by Notoryctes and Necrolestes, we ask wether the Australian Marsupial Mole

42 Notoryctes is also a member of Dryolestoidea.

43 With the aim to test such hypothesis we review in the following pages the features previously

44 employed to include Notoryctes within Marsupialia, as well as the gross osteological traits of this

45 taxon. Moreover, for the first time, Notoryctes is included in a comprehensive cladistic

46 morphological analysis published up to date, inclusing fossil and living mammals, in order to test

47 the phylogenetic position of Notoryctes within Mammalia. s t n i 48 r P e 49 Previous ideas about phylogenetic affinities of Notoryctes. In the original description, and r

P 50 based on a poorly preserved specimen, Stirling (1888) described Notoryctes as a primitive

51 mammal, probably related to monotremes, and showing interesting plesiomorphies in its

52 , shared with the symmetrodontan . Later, Stirling (1891)

53 described in detail Notoryctes and considered it as an aberrant marsupial. Ogilby (1892) indicated

54 that Notoryctes shows several intermediate features between monotremes and marsupials, and

55 suggested that it may occupy an intermediate condition between these two major taxa. Latter

56 Gadow (1892), based on a detailed comparative analysis on the anatomy of Notoryctes,

57 recognized that the existence of permanent marsupium and a medially tilted angular process of

58 the , both characters that definitely include this genus within marsupials. This criterion

59 was followed by the vast majority of authors with some exceptions. Cope (1892) interpreted

60 Notoryctes as closely related to the eutherian insectivores Chrysochloroidea, based on similarities

61 of the dentition. He considered Notoryctes as a link uniting eutherians and metatherians, but only

62 distantly related to monotremes. Cope (1892) stated that the tritubercular molars of Notoryctes

63 points to its “primitive type”. More recently, Turnbull (1971) emphasized the peculiarities of the

64 dentition in Notoryctes and related it to Necrolestes, as well as some zalambdodontan eutherian

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

65 insectivores, creating the Order Zalambdadonta. Necrolestes is an enigmatic mammal from

66 Miocene beds of Southern Patagonia that is the size of a shrew and exhibits fossorial adaptations

67 in combination with cranial, postcranial, and dental features that are remarkably plesiomorphic

68 for a therian mammal (Chimento et al., 2012). Since the XIX century, Necrolestes and Notoryctes

69 were compared in detail by several authors, who noted the striking similarities between both

70 genera (Cope, 1892; Scott, 1905; Leche, 1907; Abel, 1928; Patterson, 1958; Turnbull, 1971;

71 Sánchez Villagra and Asher, 2005; Asher et al., 2007; Ladéveze et al., 2008). Recently, Chimento s t 72 et al. (2012) and Rougier et al. (2012) tested the phylogenetic affinities of Necrolestes, and n i r 73 concluded that this mammal must be included within the extinct clade Dryolestoidea (but see P

e 74 Averianov et al., 2013). r P 75 Although the great majority of recent authors support metatherian affinities for Notoryctes,

76 the position of Notoryctes within lacks a consensus. Szalay (2006), in his detailed

77 morphological studies about marsupial tarsus, included Notoryctes among derived

78 australidelphians of the clade , as the sister group of the , a criterion

79 previously envisaged by Dollo (1899) and Bensley (1903). Similarly, Horovitz and Sánchez-

80 Villagra (2003; Sánchez-Villagra et al., 2007; Asher et al., 2004) included Notoryctes as the

81 sister-group of Peramelidae, and both conformed the sister clade to Diprotodontia. In a similar

82 way, Sánchez-Villagra (2001) recovered Notoryctes as the sister group of the clade Dromiciops +

83 Diprotodontia.

84 Gadow (1892) proposed dasyurid affinities for the marsupial mole on the basis of

85 morphological grounds. Bensley (1903) indicate that Notoryctes present an interesting question

86 on its molariform morphology: as to whether the modifications represent a more primitive phase

87 or is the result of special development proceeding from the type represented the Dasyurida or

88 Peramelidae. However, he was inclined to support peramelian affinities for the marsupial mole.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

89 Finally, Woodburne and Case (1996) proposed that Notoryctes was nearly related to the putative

90 extinct marsupial clade Yalkapariodontidae, being both included within the clade

91 Notoryctemorphia. However, Woodburne and Case (1996) do not include evidence supporting

92 this taxonomic group.

93 Due to its unique characters, some authors indicated that affinities of the marsupial mole

94 within metatherians cannot be stated with certainty. Archer (1976), on the basis of basicranial

95 characters, concluded that Notoryctes was of uncertain position within marsupials, and on this s t

n 96 basis, proposed its own marsupial order: Notorycterimorphia. i r

P 97 Regarding molecular data, several sources of information have concluded that Notoryctes was e r

P 98 part of the crown Marsupialia, although most analyses have produced incongruent results

99 concerning the placement of the marsupial mole within metatherians (Asher et al., 2004). Several

100 studies have favored the association of Notoryctes with (Springer et al., 1997;

101 Amrine-Madsen et al., 2003; Nilsson et al., 2004; Phillips et al., 2006; Beck, 2008; Beck et al.

102 2008; Meredith et al., 2007, 2008, 2011), lending support nto an unresolved grouping of

103 Dasyuromorphia, Notoryctes, and Peramelia (Amrine-Madsen et al., 2003). Analyses based on

104 nuclear and mitochondrial genes found Notoryctes as the sister taxon to Dasyuromorphia, with

105 the sister taxon to that clade (e.g., Amrine-Madsen et al., 2003; Nilsson et al.,

106 2004, 2010; Phillips et al., 2006; Beck, 2008; Beck et al. 2008; Meredith et al., 2008). Other trees

107 based on DNA (Springer et al., 1997; Asher et al., 2004) recovered the Notoryctes +

108 Dasyuromorphia clade but not the Peramelemorphia. Some support for an association of

109 Peramelemorphia, Dasyuromorphia, and Notoryctemorphia has emerged from previous analyses

110 of nuclear genes (Amrine-Madsen et al., 2003; Meredith et al., 2008) and combined

111 mitochondrial and nuclear DNA genes (Phillips et al., 2006; Beck, 2008; Phillips and Pratt,

112 2008), and morphological analysis (Archer et al., 2010), but only with marginal support.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

113 Moreover, caryological evidence suggested that Notoryctes is related neither with Peramelidae

114 nor , but with (Calaby et al., 1974).

115 In a detailed analysis, Cardillo et al. (2004) indicated that the position of Notoryctes within

116 australidelphians remains uncertain (Kirsch et al., 1997; Lapointe and Kirsch, 2001). Cardillo et

117 al. (2004) pointed out that it is possible that the relationships among major groups of marsupials

118 analyzed in their article have been blurred by additional stochastic error and conflicting signals

119 associated with the inclusion of Notoryctes, which produces very low tree resolution. Nilsson et s t

n 120 al. (2004), Phillips et al. (2006), and Meredith et al. (2008) in their respective analyses pointed i r 121 out that the placement of Notoryctes within marsupials was inconstant and weakly supported. It is P e r 122 worth mentioning here that immunological studies by Baverstock et al. (1990) have confirmed P 123 the lack of special close relationship between Notoryctes and any other known marsupial.

124 The lack of consensus among different studies regarding the phylogenetic position of

125 Notoryctes within marsupials is usually explained due to the deep adaptations shown by this

126 mammal to burrowing mode of life. The same concept has been applied by several authors in

127 order to understand the bizarre anatomy of Notoryctes; nevertheless, present analysis indicates

128 that numerous features may be reinterpreted as plesiomorphies rather than adaptative responses to

129 a specific lifestyle. A plausible possibility is that the unstable molecular phylogenetic results may

130 indicate that Notoryctes does not belong to Marsupialia. In fact, the absence of molecular data in

131 fossil taxa phylogenetically intermediate between Monotremata and Metatheria (e.g.,

132 Dryolestoidea, , ) may be in part, responsible of the unstable

133 position of Notoryctes in different cladograms. This topic, however, is not discussed here in

134 depth, because is not the aim of the present paper, which mainly consists on a detailed

135 morphological analysis.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

136 In this regard, it is worth mentioning that most phylogenetic analysis in which Notoryctes was

137 included were restricted to marsupial and stem-metatherian mammals, excluding more basal

138 mammaliform taxa. Notoryctes is here included, for the first time, within a comprehensive

139 cladistic analysis of living and fossil mammals in order to resolve its phylogenetic affinities.

140

141 MATERIALS AND METHODS s t 142 Nomenclature. We follow Sereno (2006) in the definition of main clades within n i r 143 mammaliamorphs, i.e. , Mammalia, , Monotremata, Theriiformes, P e 144 , Metatheria, Marsupialia, , . Within Dryolestoidea we partially follow r

P 145 the systematic arrangement employed by Rougier et al. (2011). It is worth mentioning here that in

146 Rougier et al. (2011) article they consistently misspell Meridiolestida under the name

147 Meridiolestoidea. We consider that the later name is a typescript error, and thus, an invalid name.

148 Reviewed specimens. The following Notoryctes typhlops specimens were examined, and

149 main bibliographic sources in which the specimens were previously mentioned are cited in

150 parentheses.

151 -Notoryctes typhlops. ZMB (Zoologisches Museum Berlin, Germany) 35694, complete

152 skeleton.

153 -Notoryctes typhlops. BMNH (The Natural History Museum of London, )

154 39.4210, left mandible.

155 -Notoryctes typhlops. ZIUT (Zoologisches Institut Universitat Tübingen, Germany) SZ10068,

156 complete skull.

157

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

158 SOME INTRODUCTORY COMMENTS ABOUT THE ANATOMY OF NOTORYCTES

159 Dental morphology and homology in Notoryctes. Cusp homology and morphology is

160 traditionally considered as the main source to distinguish different mammaliform clades, being

161 cusp morphology a key diagnostic character for each mammalian group. As in other zalambdodont

162 mammals, the homology of the cusps in Notoryctes molariforms is a matter difficult to assess

163 (Asher and Sánchez Villagra, 2005; Archer et al., 2010). Recent authors considered the main labial

164 cusp of the upper molariforms of Notoryctes as the metacone, mainly because this cusp is usually s t

n 165 more developed than the paracone in marsupials (Archer et al. 2010). Probably the main argument i r 166 in support of the later identification is based on the assumption that Notoryctes is a member of P e r 167 Metatheria, a group of therians in which the main central cusp is the metacone. Those authors also P 168 proposed the main lingual cusp of the teeth as the protocone, because Notorcytes was considered

169 without any doubt as a therian mammal (Asher and Sánchez Villagra, 2005; Archer et al., 2010).

170 However, based on the position of cusps and wear facets a different arrangement can be

171 proposed. At first sight in Notoryctes, contrasting with therian mammals, the upper molars have

172 the principal lingual cusp of the molariforms unusually large, whereas in tribosphenic mammals

173 the reverse condition occurs, being the labial cusp (i.e., the paracone in eutherians, and the

174 metacone in metatherians) the largest of the upper teeth (Gelfo and Pascual, 2001). In

175 tribosphenians the main lingual cusp is the protocone, which typically occludes in the talonid

176 basin (see Averianov and Lopatin, 2008). In Notoryctes and meridiolestidans there is no talonid

177 basin (Gelfo and Pascual, 2001; Chimento et al., 2012; Rougier et al., 2012). The lack of

178 occlusion of the main cusp in a talonid basin in Notoryctes does not matches the indirect

179 homology criterion of Butler (1978), and thus the main lingual cusp in upper molariforms of

180 Notoryctes cannot be considered as a protocone.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

181 Moreover, this cusp in Notoryctes and dryolestoids differs from the protocone (and also

182 metacone/paracone) of therians in being located at nearly the same line than the main lingual

183 cusp, in having two shearing surfaces (prevallid and postvallid facets), and especially differs from

184 the metacone on its more central location on the teeth, occluding far from the paracristid

185 (Clemens and Lillegraven, 1986). This combination of characters is present in the main cusp of

186 non-therian mammals, which is commonly named as stylocone, a cusp that is secondarily reduced

187 in therian mammals (Kielan Jaworowska et al. 2004). Thus, although the dentition of Necrolestes s t 188 is zalambdodont, it is clear that it does not have the occlusal cusp relationships characterizing n i r 189 zalambdodont tribosphenidans (Patterson 1958; Asher and Sánchez-Villagra 2005; Asher et al. P

e 190 2007) (see Figure 1). r P 191 Regarding the main lingual cusp of Notoryctes, if the upper molariform arcade is reconstructed

192 to occlude with the lower dental arcade, the lingual cusp of the upper molars will result adjacent to

193 the lower ectoflexid of the respective more posterior lower molars, and clearly not close to the

194 paracristid. On the contrary, the metacones of therian mammals occlude closer to the paracristid of

195 the more posterior lower molars (Clemens and Lillegraven, 1986; Asher et al. 2007). Because the

196 main cusp of the upper molars of Notoryctes does not occlude near the paracristid, it must be

197 concluded that it is not a metacone, even accepting a metatherian affiliation for Notoryctes. In this

198 way, the main lingual cusp of upper molariforms of Notoryctes must be considered as the

199 paracone following our interpretation. Identification of remaining cusps follows automatically

200 upon the identification of these primary cusps. The general morphology of Notoryctes cusp

201 morphology and disposition is similar to that of meridiolestidan dryolestoids, as for example

202 Cronopio (Rougier et al., 2011), Necrolestes (Chimento et al., 2012; Rougier et al., 2012), and

203 (Bonaparte, 1990). Such resemblance concerns with the simplicity in crown

204 morphology, conforming a simple triangle with three main cusps. In sum, the upper cusp

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

205 homologies of Notoryctes clearly matches the plesiomorphic mammaliform condition present in

206 several extinct taxa, specially dryolestoids, rather than the derived and more complex morphology

207 seen in tribosphenic therian mammals (Kielan Jaworowska et al. 2004) (Figure 2).

208 On the other hand, the lower dentition of Notoryctes also fits the plesiomorphic

209 mammaliform pattern: the molariforms have a trigonid forming an obtuse angle with the

210 protoconid at its apex. The paraconid is situated anterior to the protoconid, and the metaconid has

211 a more lingual position. The paraconid is slightly higher than the metaconid, and both are lower s t

n 212 than the protoconid (Clemens and Lillegraven, 1986). i r

P 213 Although several living zalambdodont mammals exhibit superficially similar e r

P 214 morphology and cusp disposition to that of Notoryctes, all the taxa show protocone-talonid

215 occlusion. In the insectivore eutherian Chrysochloris, the talonid is reduced, resembling

216 Notoryctes and the dryolestoid condition. However, in Chrysochloris the main upper cusp

217 occludes between protocristids of adjacent molars, indicating that this cusp is, in fact, the

218 protocone (Asher and Sánchez Villagra, 2005). Due to the absence of a protocone on upper

219 molars, most dental characters that are usually employed to diagnose Theria are absent in

220 Notoryctes, as for example the extent and development of pre- and post-protocristae, as well as

221 molar cuspid and conule arrangement (Luo et al., 2002; Kielan Jaworowska et al., 2004) (Figure

222 3).

223 Our interpretation of tooth morphology and cusp homologies in Notoryctes has deep

224 consequences regarding the recognition of dental synapomorphies of Theria and Metatheria.

225 Reinterpretation of the dental formula of Notoryctes. The dental formula and tooth number

226 in Notoryctes shows a high intraspecific variation. In fact, its dental formula varies among i 3-

227 4/3-2, c 1/1-0, pm 1-3/1-3, and m 4/4 (see Stirling, 1891; Gadow, 1892; Spencer, 1896; Thomas,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

228 1920; Turnbull, 1971). Traditionally, it has been regarded that metatherian dental formula

229 typically is P3/3, M4/4 (Gadow, 1892), whereas in Eutheria this formula was plesiomorphically

230 P5/5, M3/3 (McKenna, 1975; Novaceck, 1986). In consequence, following such reasoning, and

231 assuming metatherian affinities for Notoryctes, most previous authors proposed a tooth count for

232 the marsupial mole that matches the metatherian typical formula (e.g., Gadow, 1892; Thomas,

233 1920; Ashr and Sánchez Villagra, 2005; Archer et al., 2011). They considered that the last

234 premolar was a tooth showing a linear cusp disposition, wereas the M1 was the first triangulated s t 235 postcanine tooth. In fact, according with that interpretation, in all living and extinct metatherians n i r 236 there is no triangulated premolar (see Averianov et al. 2010). However, evidence of tooth P

e 237 replacement for Notoryctes is still wanting, and thus the identity of molariforms provided by r

P 238 previous authors may be regarded only as tentative.

239 On the other hand, if we adopt the phylogenetic hypothesis here proposed, the dental formula

240 of Notoryctes may be reinterpreted in a different way. In the vast majority of therians, the

241 metatherian P3 and eutherian P4 (homologous teeth sensu McKenna, 1975) are always placed

242 below the infraorbital foramen (Averianov et al. 2010). In Notoryctes the infraorbital foramen is

243 located above the molariform tooth that was identified by previous authors as the first upper

244 molar. This may sustain the interpretation of such tooth as the last upper premolar.

245 In meridiolestidans, at least, the last premolar shows triangulated cusps (e.g. Peligrotherium,

246 Coloniatherium, Mesungulatum, Cronopio, Necrolestes; Páez Arango, 2008; Rougier et al., 2011,

247 2012; Chimento et al., 2012), difficults distinction of last premolars from anterior molars. In this

248 regard, in basal dryolestoids (e.g., Guimarotodus, Krebsotherium, ; Martin, 1999) as

249 well as meridiolestidans (e.g., Cronopio, Peligrotherium; Páez Arango, 2008; Rougier et al.,

250 2011) the wider and taller of the molariforms in the upper tooth row is recognized as the P3.

251 From M1 to through M3 the size decreases continuously, being all true molars smaller than the

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

252 last premolar; in the same line, Martin (1997) indicated that the molars of dryolestids are

253 mesiodistally shorter than the last two premolars. In addition, in both Cronopio and

254 Peligrotherium the labial margin of the true molars are mesiodistally narrower than the last

255 premolar (Páez Arango, 2008; Rougier et al., 2011), and the parastylar and metastylar areas are

256 more expanded.

257 In Notoryctes the first molariform is wider and taller than other molariforms, and the last

258 three teeth decreases in size continuously front to back. In addition, this tooth shows an extended s t

n 259 mesiodistal labial margin and expanded parastylar and metastylar areas. This combination of i r 260 characters suggests that this element may be considered as the P3 and not the M1 as advocated by P e r 261 previous authors. The triangulated condition of the crown in this dental piece does not contradict P 262 the condition of the last upper premolar of meridiolestidan dryolestoids (Figure 4).

263 On this basis we reinterpret here the basic dental formula of Notoryctes as i 4/3, c 1/1, pm

264 3/3, and m 3/3. This dental count is also congruent with dryolestoid dental formula.

265 Reinterpretation of the sternum in Notoryctes. The pectoral girdle and sternum of

266 Notoryctes were regarded as unique among living mammals, a fact noted since its original

267 description by Stirling (1891; Warburton, 2003). Peculiar characters include very robust and

268 expanded first thoracic ribs (a feature shared with other fossorial taxa, such as dasypodid

269 xenarthrans), thin and curved , and an enlarged additional mesoscapular segment, among

270 other features (Warburton, 2003). In the present paper we include novel interpretations regarding

271 the pectoral girdle of the marsupial mole. Warburton (2003) considered the sternum of

272 Notoryctes as composed by a a manubrium, 6-5 sternebrae, and a cartilaginous xiphisternum. The

273 first sternal piece, interpreted as the manubrium by Warburton (2003) shows some unique

274 features allowing a different interpretation. In mammals the manubrium was defined as a sternal

275 piece that has anteriorly two lateral processes called the manubrial wings, and behind them the

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

276 articular surfaces for the costal cartilages of the first pair of thoracic ribs. Posteriorly, the second

277 pair of ribs articulates with both the caudal margin of the manubrium and the first sternebra of the

278 mesosternum (Campbell, 1939; Reed, 1951). In fact, the manubrium in most living and extinct

279 taxa (e.g. Pseudotribos, Ornithorhynchus, Tachyglossus, , ,

280 Akidolestes, Didelphis; Hu et al., 1997; Luo et al. 2007; Chen and Luo, 2013) is connected on its

281 anterior corner by the first thoracic rib. In Notoryctes the first sternal piece differs from the

282 manubrium in having the articulation with the first thoracic rib on its posterior corner (Stirling, s t 283 1891), a feature that resembles in this aspect the of basal taxa, such as monotremes, n i r 284 Pseudotribos, Akidolestes and Jeholodens (Ji et al., 1999, Luo et al. 2007; see discussion in Chen P

e 285 and Luo, 2013). In addition, is similar to non-therian interclavicle in being strongly keeled and in r

P 286 having a dorsoventrally flat and transversely expanded body. In this way, this element is here

287 tentatively identified as a well-developed interclavicle, a plesiomorphic condition for mammals,

288 absent in therians and reduced in multituberculates (Sereno, 2006; Luo et al. 2007). The gross

289 morphology of this element is very similar to that described for the eutriconodont Jeholodens (Ji

290 et al. 1999).

291 The second sternal element (considered as the first sternebra by most authors) is here

292 reinterpreted as the manubrium. This bone resembles the manubrium of therian taxa, in being

293 strongly keeled, in having a dorsoventrally low and expanded body, and in showing the articular

294 surface for the first thoracic rib on its anteriormost corner (Reed, 1951).

295 If the present interpretation is followed, the morphology of the sternum in Notoryctes is

296 strikingly plesiomorphic, looking very similar to that of basal non-therian mammals. This has

297 profound implicances in the analysis and interpretation of Notoryctes skeletal morphology and

298 phylogenetic relationships.

299

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

300 DISCUSSION

301 As noted by most previous authors, several adaptative features may mask some important

302 traits of Notoryctes anatomy. In fact, Notoryctes shares with fossorial mammals, particularly

303 chrysochloroids, features that may be regarded as related to fossoriality, including oblique

304 scapular glenoid, reduced supraspinous fossa on scapula, enlarged epicondyles on distal humerus,

305 large lesser tuberosity on proximal humerus, fused cervicals, double scapular , and ulna with

306 large and medially oriented olecranon. Additional similarities with chrysochloroids include s t

n 307 simple teeth, and especially lower molariforms without talonid. The unique morphology of i r 308 Notoryctes led some authors to propose that most of its anatomy was modified in relation to its P e r 309 digging habits. However, Notoryctes is strongly different from other living fossorial mammals P 310 (including chrysochloroids, talpids, , and xenarthrans) in skull and ear anatomy, as well as

311 tarsal and carpal conformation. Since Gadow (1892) authors recognize several therian,

312 metatherian and marsupialian synapomorphies in Notoryctes skeleton. As follows we review

313 dental and osteological evidence employed to sustain metatherian affinities for Notoryctes.

314 Review of metatherian features mentioned for Notoryctes. Although Notoryctes has been

315 usually considered a metatherian, it is devoid of several characters that are distinctive of

316 metatherians and marsupials. In addition, several features present in Notoryctes that were

317 frequently thought to diagnose Metatheria, have been also recently documented among South

318 American dryolestoids (e.g., Peligrotherium, Cronopio, Necrolestes), and consequently, the

319 condition of these features as unambiguous metatherian or marsupialian synapomorphies is not

320 clear.

321 Recently, Vullo et al. (2009; see also , 1975), listed a combination of characters that may

322 be useful to diagnose stem-marsupialian teeth: 1) presence of similarly sized and well separated

323 paracone and metacone, 2) wide stylar shelf, 3) occurrence of stylar cusps C and D, 4) well-

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

324 developed protocone, 5) hypoconulid lingually approximated to the entoconid, 6) presence of

325 cristid obliqua defining a shallow hypoflexid, 7) low protoconid, 8) weak ectocingulum and cusps

326 C and D, 9) presence of a distinct, long and transversely oriented postmetacrista, 10) presence of

327 a prominent mesiolingual flank of paraconid. In contrast with metatherians, Notoryctes lacks a

328 well developed metacone on upper molars, lacks cusps C and D, protocone, hypoconulid,

329 entoconid, and a cristid oblique. With regards to character 7, Notoryctes differs from the

330 widespread metatherian condition in having very tall and broad protoconid, which represents the s t 331 largest cusp of lower molariform crowns (Asher and Sánchez-Villagra, 2005). Finally, presence n i r 332 of a distinct, long and transversely oriented postmetacrista (character 9), and presence of a P

e 333 prominent mesiolingual flank of paraconid (character 10) are present in Notoryctes, but also in a r

P 334 large variety of dryolestoid meridiolestidans, including Leonardus, Cronopio, Necrolestes,

335 Mesungulatum, and Peligrotherium (Bonaparte, 1986; Pascual and Gelfo, 2001; Chornogubsky,

336 2011; Rougier et al. 2011; Chimento et al., 2012). Moreover, a wide stylar shelf (character 2) is

337 not only present in metatherians, but also dryolestoids, and the majority of basal mammalian taxa

338 (Kielan Jaworowska et al., 2004) (see Figures 2-3).

339 In sum, details of tooth cusps in Notoryctes do not sustain marsupial or metatherian affinities

340 for this genus.

341 Several cranial, dental, and postcranial features have been regarded in previous literature as

342 shared between Notoryctes and Metatheria. The most complete morphological analysis that

343 includes Notoryctes among metatherians is that proposed by Horovitz and Sánchez-Villagra

344 (2003), in which they include all osteological characters nesting Notoryctes among marsupials

345 cited by previous authors (see also Asher et al. 2004; Beck et al., 2008). The features employed to

346 sustain the phylogenetic affinities of Notoryctes were detailed by Horovitz and Sánchez-Villagra

347 (2003) and these traits (the same as Asher et al. 2004) are commented below.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

348 1) Dental formula composed by 7 postcanine tooth families, presence of 4 upper molars, and

349 3 upper premolars (see Rougier et al., 1998). These characters are related to the dental formula

350 typical of metatherians, in which the dentition frequently shows P3/3, M4/4 (Gadow, 1892;

351 although this formula is variable among marsupials, and the basalmost metatherian

352 has pm 4/4, m 4/4; Luo et al. 2003). In Notoryctes the formula is variable among different

353 individuals of the same species, being: i 3-4/3-2, c 1/1-0, pm 1-3/1-3, and m 4/4 (see Stirling,

354 1891; Gadow, 1892; Spencer, 1896; Thomas, 1920; Turnbull, 1971). Moreover, our analysis s t 355 suggests that Notoryctes has a minimal molariform formula of P3/3, M3/3, being different from n i r 356 that of metatherians, but similar to meridiolestidans (Rougier et al. 2008, 2009, 2011). In P

e 357 addition, in dryolestoids the dental formula is variable, including taxa with PM2 M4 (e.g., r

P 358 Peligrotherium, Araeodon, Archaeotrigon; Prothero, 1981; Páez Arango, 2008; Kielan-

359 Jaworowska et al. 2004). In this way, characters regarding tooth formula are not usefull to sustain

360 purported metatherian or marsupialian affinities for Notoryctes.

361 2) Procumbent first upper premolar separated by diastema (Rougier et al., 1998). Contrasting

362 with most metatherians the first upper premolar of Notoryctes consist on a reduced, non-

363 procumbent, and poorly developed peg-like tooth (see Stirling, 1891).

364 3) Lower i2 staggered (see detailed discussion in Hershkovitz, 1995; Horovitz and Sánchez-

365 Villagra, 2003). This feature is clearly absent in Notoryctes, in which the i2 is highly reduced and

366 non-staggered (Stirling, 1891).

367 4) “Marsupial” dental replacement. As explained above, due o the absence of collection

368 specimens and published data, the dental replacement of Notoryctes is still totally unknown.

369 5) Medial inflection of angular process. A medially inflected angular process of the dentary

370 was usually regarded as an unambiguous metatherian synapomorphy by most authors (see

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

371 discussion in Sánchez-Villagra and Smith, 1997), and was one of the main arguments employed

372 by Gadow (1892) in order to sustain marsupial affinities for Notoryctes. However, the distribution

373 of such feature is not clear. In some Cretaceous therians, a medially inflected angular process has

374 been reported (e.g., , , Asioryctes, Barunlestes; Lillegraven, 1969;

375 Kielan-Jaworowska, 1975). On this basis, Marshall (1979) proposes that the inflected angle was

376 probably present in the therian ancestor of marsupials and placentals, and was latter lost in

377 different lines of eutherians (see also Lillegraven, 1969). In addition, a medially inflected angular s t 378 process on the dentary has been reported in the basal cladotherian Vincelestes (Bonaparte and n i r 379 Rougier, 1987; Bonaparte and Migale, 2010), and in some australosphenidans (e.g., , P

e 380 Henosferus; Martin and Rauhut, 2005; Rougier et al., 2007). Recently, Chimento et al. (2014) r

P 381 reported presence of inflected angular process in Gondwanatherian mammals. Regarding

382 dryolestoids, a medially inflected angular process has been reported in the meridiolestidan genera

383 Cronopio and Peligrotherium (Páez Arango, 2008; Rougier et al. 2011), and also in Necrolestes

384 (Asher et al., 2007). Due to its distribution, this feature has been recently reinterpreted as

385 plesiomorphic for mammals by some authors (Martin and Rauhut 2005; Chimento et al., 2014),

386 and consequently it may not be considered as an unambiguous character sustaining the inclusion

387 of Notoryctes within Metatheria.

388 6) Palatal process of premaxilla reaches canine alveolus or is immediately posterior to it; In

389 Notoryctes the palatal process of the premaxilla does not reaches the canine alveolous, a

390 condition shared with basal mammals, such as Vincelestes (Bonaparte and Rougier, 1987) and the

391 dryolestoids , Drescheratherium, and Peligrotherium (Krebs, 1993, 1998; Paéz

392 Arango, 2008).

393 7) Absence of stapedial artery sulcus on petrosal. The absence of stapedial artery in adult

394 individuals has been also reported for Notoryctes (Wible et al, 2001; Ladevèze, 2008). However,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

395 Ladevèze et al. (2007) indicated the absence of such artery in the dryolestoid Necrolestes. In this

396 way, this character may be variable considered as sustaining metatherian or dryolestoid affinities

397 for Notoryctes.

398 Braincase features previously thought to diagnose Metatheria are present in Notoryctes, but

399 also in meridiolestidans (e.g., Peligrotherium, Reigitherium, Coloniatherium, Cronopio,

400 Necrolestes; Rougier et al., 2009; 2011; 2012; Chimento et al., 2012). These include petrosal

401 sinus located between petrosal, basisphenoid, and basioccipital, extrabullar location of internal s t

n 402 carotid artery, loss of stapedial artery, and presence of caudal tympanic recess (see Ladevèze, i r 403 2004; Ladevèze et al., 2008). In this way, presence of these characters cannot be considered as P e r 404 unambiguous evidence nesting Notoryctes within Metatheria (Figure 5). P

405 There are several described synapomorphies present on distal tarsals that are shared by

406 Notoryctes and metatherians. Among them, the medially expanded navicular facet of astragalus

407 conforming a convex trochlea, with coalescense of astragalar and sustentacular facets of the

408 calcaneum (Luo et al., 2003; Szalay, 2006), presence of expanded medial plantar tubercle on

409 astragalus (Luo et al., 2003; Szalay, 2006), calcaneum with oblique and strengthened

410 calcaneocuboid contact in a mobile transtarsal joint (Luo et al. 2003), calcaneal sustentacular

411 facet with dorsal mesiolateral orientation (Horovitz and Sánchez-Villagra, 2003), and absence of

412 tibial posterior shelf (Horovitz and Sánchez-Villagra, 2003). It must be mentioned that most of

413 these characters are of problematic distribution and may be more widespread than previously

414 thought, as was discussed in detail by Szalay and Sargis (2006). In spite of that, due to

415 incomplete preservation, the absence or presence of these characters in dryolestoidean foot is still

416 uncertain. In this way, tarsal morphology may not be usefull in order to sustain or reject

417 metatherian apomorphies of Notoryctes, and may be regarded as uncertain until new dryolestoid

418 material become available.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

419

420 Review of marsupialian features mentioned for Notoryctes. In their detailed analysis,

421 Horovitz and Sánchez Villagra (2003) listed the following cranial and postcranial apomorphies

422 shared by Marsupialia and Notoryctes:

423 1) Transverse canal foramen anterior to carotid foramen (see also Rougier et al. 1998).

424 Although this condition is seen in Notoryctes (Ladevèze et al., 2007), it is also present in the

s 425 dryolestoid Necrolestes (Asher et al. 2007). In sum, this character may be variously considered as t n i 426 sustaining metatherian or dryolestoid affinities for Notoryctes. r P e 427 2) Presence of a well developed tympanic wing of alisphenoid. Notoryctes shows a well- r

P 428 developed tympanic wing of alisphenoid, a well-known synapomorphy of Marsupialia (Springer

429 et al., 1997; Rougier et al., 1998; Wroe et al., 2000; Luo et al., 2002; Horovitz and Sánchez-

430 Villagra, 2003; Asher et al., 2004). This stands as the only derived unambiguous character shared

431 by marsupials and Notoryctes.

432 3) Palatal vacuities present in both palatine and maxillary bones. This feature, frequently

433 reported as diagnostic of Marsupialia, is absent in Notoryctes, in which the palate is solid and

434 lacks any sign of vacuities (Stirtling, 1891) (see Figure 1).

435 4) Humerus with subequal proximal extension of capitulum and trochlea (see Chester et al.

436 2012). In contrast to other metatherians, in Notoryctes the capitulum plesiomorphically extends

437 farther proximally than the trochlea (Warburton, 2003), a condition seen also in the dryolestoids

438 Henkelotherium and Necrolestes (Vázquez-Molinero et al. 2001; Asher et al. 2007) (Figure 6).

439 5) Distal process of ulna spherical. A distal spherical styloid process on the ulna is also

440 present in the dryolestoids Henkelotherium and Necrolestes (Krebs, 1991; Asher et al. 2007;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

441 Chimento et al., 2012), and was recently described for the spalacotheriid Akidolestes (Chen and

442 Luo, 2012). It is worth mentioning here that a spherical styloid process on the ulna has also been

443 illustrated for the basal eutherian (Luo et al. 2003). Present analysis indicates that that

444 styloid process on distal ulna (character 220-1) may be better considered as a synapomorphy

445 nesting Notoryctes within Dryolestoidea (Figure 6).

446

s 447 Review of australidelphian features mentioned for Notoryctes. Many authors (Szalay, t n i 448 1982; Springer et al., 1998; Beck et al., 2008) have agreed in the australidelphian affinities of r

P 449 Notoryctes. The recent studies of Horovitz and Sánchez-Villagra (2003) and Ladevèze et al. e r

P 450 (2008) resulted in the recognition of several derived characters diagnostic for , the

451 marsupial clade that purportedly includes Notoryctes. At following we analyze such characters in

452 some detail.

453 1) Vertebral centrum of C5 shorter than T1 (Horovitz and Sánchez-Villagra, 2003). This trait

454 cannot be checked in Notoryctes, due to its extreme modifications due to fusion seen in cervical

455 vertebrae from the second to the sixth (Warburton, 2003).

456 2) Medial epicondyle of humerus small (Horovitz and Sánchez-Villagra, 2003). In contrast to

457 australidelphian marsupials, as explained above, Notoryctes shows very well-developed and

458 expanded ectepicondylar and entepicondylar processes on distal humerus (Warburton, 2003)

459 (Figure 6).

460 3) Lateral extension of the capitulum of the humerus absent (Horovitz and Sánchez-Villagra,

461 2003). In Notoryctes, as occurs in the dryolestoid Necrolestes the capitulum (or radial condyle) is

462 subcilindrical and well laterally extended (Asher et al. 2007), differing from the transverselly

463 compressed condition seen in australidelphian marsupials (Horovitz and Sánchez-Villagra, 2003).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

464 4) Prepollex absent (Horovitz and Sánchez-Villagra, 2003). As occurs in australidelphians, a

465 prepollex is absent in Notoryctes (Character 4). However, this structure is also absent in

466 Ornithorhynchus (Ji et al. 2002), eutriconodontans (e.g., Jeholodens, Zhangheotherium; Hu et al.

467 1998; Ji et al. 1999), and multituberculates (Kielan Jaworowska and Gambaryan, 1994).

468 Regrettably, the detailed morphology of the hand is unknown in any dryolestoid, and as a

469 consequence, the presence or absence of a prepollex cannot be corroborated in this mammalian

470 clade. s t

n 471 5) Three lower incisors (Horovitz and Sánchez-Villagra, 2003). As indicated above, the i r 472 number of incisive pieces is variable among individuals of Notoryctes, from 2 to 3. In P e r 473 Coloniatherium and an indeterminate lower , the only known meridiolestidans for which the P 474 lower incisive number is known, there 3 elements (Forasiepi et al., 2012). In remaining

475 dryolestoids, the lower incisive number is invariably 4, the plesiomorphic number for mammals

476 (see Kielan Jaworowska et al. 2004). In this way, the number of lower incisives of

477 asutralidelphians and Notoryctes also occurred in meridiolestidans, and thus, cannot be

478 considered as an unambiguous australidelphian character for Notoryctes.

479 6) Maximum (palatal portion) length/width ratio less or equal to 1.5 (Horovitz and

480 Sánchez-Villagra, 2003). Although a high maxillar ratio is present in some therians and

481 Vincelestes (Horovitz and Sánchez-Villagra, 2003), Horovitz and Sánchez-Villagra (2003)

482 considered this feature as diagnostic of Australidelphia, being also shared by Notoryctes.

483 However, it must be pointed out that a similar ratio is present in the dryolestoids Necrolestes

484 (Asher et al. 2007), and Peligrotherium (Páez Arango, 2008), being unknown in remaining

485 members of the clade. In this way, the proportions of the palatal portion of the maxilla are not a

486 unique apomorphy uniting australidelphians with Notoryctes.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

487 7) Ossicular axis 10-20° (Horovitz and Sánchez-Villagra, 2003). This characters is unknown

488 in available Notoryctes specimens (Horovitz and Sánchez-Villagra, 2003).

489 8) Well-developed rostral and caudal tympanic processes fused in a petrosal plate (Ladevèze

490 et al. 2008). In Notoryctes and australidelphians a protrudent and fused caudal and rostral

491 tympanic processes conforming a petrosal plate are present (Ladevèze et al. 2008). In basal

492 mammals, including dryolestoids, both processes are separated and do not conform a petrosal

493 plate. In this way, this character may stand as a possible australidelphian apomorphy that is s t

n 494 unambiguously shared with Notoryctes. However, present analysis suggests that the acquisition i r 495 of such plate may be a convergent phenomenom between both taxa (Figure 5). P e r

P 496 9) Presence of a stylomastoid foramen (Ladevèze et al. 2008). A stylomastoid foramen is not

497 unique to Notoryctes and australidelphians, but is also present in the dryolestoids Henkelotherium

498 (Ruf et al., 2009), Necrolestes (Ladèveze et al. 2008), and Peligrotherium (Páez Arango, 2008).

499 In this way, existence of stylomastoid foramen appears to be more widespread than proposed by

500 Horovitz and Sánchez-Villagra (2003).

501 Several characters proposed to unite Australidelphians and Notoryctes are unknown in all

502 dryolestoids, including absence in the astragalus of an astragalonavicular facet connection with

503 the sustentacular facet, calcaneum with merged calcaneal sustentacular facet and posterior

504 calcaneoastragalar facets, calcaneum sustentacular facet does not reaches anterior end, and

505 cuboid medial plantar process forms a groove (Horovitz and Sánchez-Villagra, 2003). These

506 characters have not been preserved in any meridiolestidan and dryolestoid, and thus are difficult

507 to interpret regarding the phylogenetic position of Notoryctes. However, absence of continuous

508 atragalonavicular facet connection with the sustentacular facet, and calcaneus with merged

509 sustentacular and astragalar facets have been observed in some basal mammals, such as

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

510 multituberculates and “symmetrodontans” (Luo and Yi, 2005; Yuan et al., 2013), suggesting that

511 at least some of these tarsal features may be widespread basal mammal conditions.

512 In sum, Notoryctes exhibits sparse characters with metatherian clades. Among uniquely

513 shared characters are: presence of a well developed tympanic wing of alisphenoid and

514 alisphenoid bulla (synapomorphy of Marsupialia), and a well-developed rostral and caudal

515 tympanic processes fused in a petrosal plate (synapomorphy of Australidelphia).

s 516 t n i r 517 Plesiomorphies shared by Notoryctes and basal mammals. It is worth mentioning here that P e 518 Notoryctes exhibits a set of plesiomorphic characters absent in living therians, but which are r

P 519 present in other basal mammals. Several plesiomorphic characters are related with the limb

520 morphology of Notoryctes, and some authors propose that all these peculiarities may be

521 explained as adaptations to the burrowing behaviour of Notoryctes (e.g., Warburton, 2003; Asher

522 et al. 2007). However, most of these traits are lacking in other therian fossorial mammals (i.e.

523 , Rodentia, , Soricidae), or are only present in selected therian genera.

524 Nevertheless, each of these characters is analyzed in detail below, and its potential significance

525 are remarked.

526 1- Absence of the protocone in the upper molars (Character 100-0). Although the

527 zalambdodont dentition of Notoryctes is difficult to interpret, the total absence of talonid basin in

528 this genus indicates that the main lingual cusp of molariforms cannot be identified as the

529 protocone. In tribosphenic mammals the main lingual cusp of upper molars is the protocone,

530 which typically occludes on the talonid basin of lower molars, a derived condition diagnosing the

531 clade , that is even present in modified zalambdodont mammals (with the single

532 exception of Chrysochloris; Patterson, 1956; Kielan Jaworowska et al. 2004; see also Fox, 1975;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

533 Butler, 1990; Cifelli, 1993; Sigogneau-Rusell, 2003; Luo et al., 2007). Thus, although the

534 dentition of Notoryctes is zalambdodont, it does not have the cusp relationships characterizing

535 zalambdodont tribosphenidans (Patterson 1958; Asher and Sánchez-Villagra 2005; Asher et al.

536 2007). On the other hand, as supported above, in Notoryctes the main lingual cusp is represented

537 by the stylocone (= centrocone of Bonaparte, 2002), a condition that frequently occurs non-

538 tribosphenic mammals, including dryolestoids (see Bonaparte, 1990) (Figures 1-2).

539 On the basis of the phylogenetic analysis here performed we interpret the absence of a s t

n 540 protocone in Notoryctes as a truly plesiomorphic character, that excludes this genus from i r 541 Tribosphenida. P e r 542 2- Talonid absent (Character 85-0). The absence of talonid in Notoryctes was considered as P 543 a highly distinctive character since its original description (Stirling, 1891; see also Bensley, 1903),

544 and its absence was early considered by Cope (1862) as indicating the plesiomorphic nature of

545 Notoryctes. The talonid is a neoformation diagnostic of tribosphenic mammals (Patterson, 1956;

546 Fox, 1975; Butler, 1990; Cifelli, 1993; Sigogneau-Russell 1998, 2003; Luo et al., 2002; Kielan-

547 Jaworowska et al. 2004), although many authors have supported the presence of a “pseudotalonid”

548 in the mesial margin of the teeth of different non-tribosphenic mammalian groups (Kermack et al.

549 1987; Luo et al. 2001a; Luo et al. 2007; Luo 2007). In these basal taxa a true talonid is totally

550 absent, and its existence has been considered as a key character in the line towards living

551 mammals (Kielan Jaworowska et al. 2004). In dryolestoids, the talonid is absent, and in basal taxa,

552 only a small-sized shelf carrying a small cusp is present at the distal rear of the molariforms (e.g.,

553 Henkelotherium, Foxraptor, Crusafontia, Dryolestes; Schultz and Martin 2011). In more derived

554 dryolestoids, including all meridiolestidans (e.g., Leonardus, Cronopio, Necrolestes; Bonaparte

555 1990; Asher and Sanchez-Villagra 2005; Chornogubsky 2011; Rougier et al. 2011) the talonid is

556 totally absent, a condition interpreted as a derived feature of meridiolestidans (Rougier et al. 2011;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

557 Chimento et al., 2012). It is worthy to mention that in mesungulatoids the distal margin of the

558 molariforms develops a very large cingulum that appears to be not homologous with the therian

559 talonid (Bonaparte, 1986, 1990, 2002). On the contrary, in basal therians a talonid is invariably

560 present, including most zalambdodontan taxa (Asher and Sánchez Villagra, 2007), with the single

561 exception of the genus Chrysochloris (Asher and Sánchez Villagra, 2007). Moreover, in

562 metatherians there exists a tendence towards the broadening of the talonid basin (Cifelli, 1993).

563 Due to the basal position of Notoryctes in the present phylogenetic analysis, the absence of a s t 564 talonid basin is here considered as a truly plesiomorphic character, and not as an apomorphic n i r 565 reversal, as opposed to Asher et al. (2007). (see Figures 1, 3). P

e 566 3- Anterior lamina on the petrosal (Character 336-0). In Notoryctes there exists a r

P 567 relatively well-developed anterior lamina of bone in the anterolateral corner of the petrosal, being

568 represented by a small flange of bone (see Ladevèze et al. 2008, fig. 4B).

569 In basal mammaliaforms, including morganucodontids, triconodonts, multituberculates, and

570 Vincelestes a well-developed anterior lamina of the petrosal contributes to the side wall of the

571 braincase (Wible 1990; Rougier, 1992; Wible and Hopson, 1993; Lucas and Luo, 1993; Hopson

572 and Rougier, 1993). This lamina appears to be present in living monotremes, although its

573 homology was doubted by some authors (Wible, 1990). In dryolestoids the middle and inner ear

574 anatomy is only known in a bunch of taxa. The anterior lamina is well developed in the derived

575 mesungulatoid Peligrotherium (Páez Arango, 2008) and possibly Necrolestes (Rougier et al.,

576 2012), and Cronopio (Rougier et al. 2011), recalling the condition seen in basal mammaliaforms.

577 The strong reduction of this lamina has been considered as a synapomorphy exclusive of

578 Theria, uniting eutherians and metataherians (Wible, 1990). However, selected basal eutherians

579 (e.g., Prokennalestes; Wible et al., 2001) and metatherians (e.g., didelphids, peramelids,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

580 , Andinodelphys; Ladevèze, 2008) show the persistence, albeit reduced, of an

581 anterior petrosal lamina. (see Figure 5).

582 Thus, on the basis of present analysis, the retention of an anterior lamina in Notoryctes

583 represents a plesiomorphic condition absent in most (but not all) living and extinct therian

584 mammals.

585 4- Lateral lamina on the petrosal (Character 337-0,1,2). In Notoryctes a lateral trough and

s 586 small lateral flange are present along the lateral margin of the promontorium in the petrosal bone t n i 587 (see Ladevèze et al. 2008, fig. 4B). The lateral lamina is anteriorly extended and it is in near r

P 588 contact with the anterior lamina of the petrosal. e r

P 589 In non-mammaliaform a very well-developed anterolateral osseous crest is present

590 on the petrosal (Ladevèze, 2008). This crest is termed as the lateral trough, and it is usually

591 further developed as a lateral flange, that partially protects the lateral head vein (Rougier et al.

592 1992). This lateral flange is well-developed in several basal mammals, including

593 morganucodontids, multituberculates, triconodontans, and Vincelestes (Rougier et al. 1992; Wible

594 and Hopson, 1993). In dryolestoids the distribution of the lateral flange is only known in sparse

595 taxa. In Peligrotherium and Cronopio a large lateral flange lateral to the promontorium has been

596 reported (Páez Arango, 2008; Rougier et al. 2011). In other taxa, including Coloniatherium and

597 Henkelotherium the lateral flange is present but poorly preserved, and thus, the exact shape and

598 extent cannot be determined (Rougier et al. 2009; Ruf et al. 2009). In the dryolestoid Necrolestes

599 the lateral flange and its associated lateral trough are highly reduced (Ladevèze et al. 2008).

600 Among living mammals the only clades retaining the lateral flange are the monotremes

601 (Hopson and Rougier, 1993), and some basal eutherians (e.g., Prokennalestes; Wible et al., 2001)

602 and basal metatherians in which the lateral trough is still present, although highly reduced in

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

603 exposure (e.g., Andinodelphys, Pucadelphys, ; Ladevèze, 2008; Ladevèze et al. 2008).

604 The absence of a lateral flange and trough is diagnostic of therian mammals, being absent in most

605 eutherians and metatherians (Wible, 1990; Wible and Hopson, 1993).

606 In this way, the retention in Notoryctes of a lateral lamina and trough are plesiomorphies

607 shared by other basal mammals, including dryolestoids.

608 5-Petrosal with wide and well-raised stapedial fossa (Character 362-2). In Notoryctes the

s 609 caudal tympanic process forms the posterolateral wall of the enormous stapedial fossa, which t n i 610 houses the stapedius muscle (Ladevèze et al. 2008). The stapedial fossa is deep, subcircular, and r

P 611 positioned posteromedial to the fenestra vestibule (Ladevèze et al. 2008). This fossa is absent in e r

P 612 most cynodonts, trithelodontids, and monotremes (Fischer, 1978), being present in more derived

613 mammaliaforms (Wible and Hopson, 1993). The existence of a very wide and deep stapedial

614 fossa has been reported in several taxa, including Vincelestes (Rougier et al. 1992) and

615 dryolestoids (e.g., Necrolestes, Coloniatherium, Dryolestes; Asher et al. 2007; Rougier et al.

616 2009; Luo et al., 2012), and has been regarded as a plesiomorphic character shared by most non-

617 therian mammals (Rougier et al., 2009). Although in living taxa this fossa is usually small and

618 poorly defined, it is enlarged in some basal eutherians (e.g., Prokennalestes, Asioryctes,

619 leptictids; Wible et al., 2001).

620 The presence of both tensor tympanic muscle and stapedius muscle in Marsupialia seems to

621 be universal (Mason, 2006; Ladevèze et al. 2008). However, the stapedial fossa in most

622 marsupials is much smaller, shallower, and less defined than that exhibited by Notoryctes and

623 basal mammaliaforms (see Ladevèze et al. 2008). In addition, this fossa is also small-sized in

624 most eutherians, including fossorial forms (see Mason, 2003; 2006), and never reaches the large

625 size exhibited by Notoryctes and.dryolestoids (see Ladevèze et al. 2008).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

626 In this way, we interpret that the very deep and large size of the stapedial fossa of Notoryctes

627 is a true primitive shared character with non-therian mammaliaforms.

628 6-Petrosal with large and deep epitympanic recess (Rougier et al., 2008). The

629 epitympanic recess consists on the portion of the tympanic cavity dorsal to the incudo-malleolar

630 articulation (Klaauw 1931). Notoryctes exhibits a relatively large and ovoidal epitympanic recess,

631 despite the fact that the ear bones are reduced (Ladevèze et al. 2008). The epitympanic recess of

632 Notoryctes shows very well-defined margins, in contrast with most extinct and living s t

n 633 metatherians (see Ladevèze et al. 2008), but resembling the condition present in some i r 634 dryolestoids, such as Coloniatherium (Rougier et al. 2009). It is worth mentioning that P e r 635 peramelids, among marsupials show a large and dep epitympanic fossa, similar to Notoryctes P 636 (Archer, 1976).

637 The presence of an epitympanic recess is found in multituberculates, dryolestoids,

638 “symmetrodonts”, Vincelestes, and selected therians (Rougier et al. 1996; Hurum et al. 1996;

639 Rougier et al. 2009; Ladevèze et al., 2010). More recently the existence of a large and deep

640 epitympanic recess was proposed as a plesiomorphic mammaliaform character (Rougier et al.

641 2009). In sum, although we did not include this character in our numerical phylogenetic analysis,

642 due to imposibilities to quantify it properly (Wible et al., 2001), we consider that the presence of

643 a deep and wide epitympanic recess is a plesiomorphic mmamaliaform character, as proposed by

644 previous authors (Wible, 1990; Rougier et al. 2009), and that its presence in Notoryctes may

645 represents a truly primitive condition. (Figure 5).

646 7-Low stapedial ratio (Character 375-1). The stapedial ratio is calculated as length/width of

647 oval window or footplate (Segall, 1970). In Notoryctes the stapedial ratio is low (approximately

648 1.57), a value that is similar to that of the dryolestoid Necrolestes and didelphid marsupials

649 (Ladevèze et al. 2008). This value, indicating a nearly subcircular footplate was considered

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

650 plesiomorphic for mammals (Rougier et al. 1998; Wible et al. 2001). In most eutherians the

651 footplate is elliptical, with a stapedial ratio higher than 1.8 (Segall, 1970; Wible et al. 2001;

652 Ekdale et al., 2004; Ladevèze et al. 2008), although in “zhelestids” this ratio ranges from 1.6

653 through 1.8 (Ekdale et al., 2004). In metatherians and monotremes this condition is highly

654 variable, but stapedial ratios range from 1.6 through 1.8 (Segall, 1970). The morphology of the

655 distal end of the stapes is correlated with the contour of the fenestra vestibuli, which in life

656 accommodates the footplate of the stapes. In correlation with footplate stapes contour, the s t 657 existence of a subcircular fenestra vestibuli, is currently considered as a primitive morphology, n i r 658 present among basal mammals (e.g., Vincelestes, Coloniatherium, Cronopio, multituberculates; P

e 659 Wible, 1990; Rougier et al. 1992, 2009, 2011) and retained by a bunch of therians (Archibald r

P 660 1979; Rougier et al. 2009). As a concluding remark, we concur with Rougier and collaborators

661 (2009) in that the presence of a subcircular to oval footplate of stapes (and concomitantly a

662 subcircular fenestra vestibule) are plesiomorphic characters shared by most non-therian mammals

663 and Notoryctes.

664 8-Incus and malleus tightly contacted by a straight connection (Character 366-0). The

665 morphology of the middle ear ossicles is known in a reduced sample of fossil mammals; thus, its

666 evolution and character polarization is still problematic. As for example, ear ossicles are

667 unknown for dryolestoids or symmetrodontans. Mason (2001) indicated that the middle ear

668 ossicles of Notoryctes exhibit a peculiar morphology not matched by any living or extinct therian.

669 Among these features, Mason (2001) pointed out the immobile straight connection between the

670 incus and the malleus bones. This condition contrasts with that of therians, in which the incus and

671 malleus meet in saddle-shaped groove-and-ridge facet, so that the malleus can push the incus

672 (and stapes) inwards (Hurum et al. 1996; Kielan Jaworowska et al., 2004). In the monotremes

673 (e.g., Ornithorhynchus, Tachyglossus) the incus and malleus are articulated by means of a nearly

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

674 flat and straight surface, a putative plesiomorphic condition for mammals (Zeller, 1993; Meng

675 and Wyss, 1995; Rougier et al., 1996). Present analysis suggests that the straight connection

676 between the incus and malleus is a plesiomorphic -like condition retained by

677 Notoryctes.

678 9-Incus with reduced posterior process and lenticular apophysis (Character 369-0). In

679 Notoryctes the incus bone is highly reduced (Mason, 2001). This ossicle shows a very short

680 posterior process, and a strongly reduced lenticular apophysis. s t n i 681 In living therians the incus shows two well-developed processes: a ventral process (the r

P 682 lenticular apophysis), and a posterior process. In non-mammalian cynodonts, as well as e r

P 683 morganucodontids, the posterior process is highly reduced or absent, whereas the lenticular

684 apophysis is totally absent, and it is only present as a stalked portion of bone in

685 morganucodontids (Luo and Crompton, 1994). Monotremes retain reduced processes, although in

686 Tachyglossus a small-sized lenticular process is present (Allin and Hopson, 1992; Zeller, 1993). A

687 similar condition to that of monotremes has been reported for some eutriconodontan taxa (Luo et

688 al. 2007; Meng et al. 2011). In multituberculates (e.g., Chulsanbaatar, Lambdopsalis; Meng and

689 Wyss, 1995; Hurum et al. 1996) the posterior process is well-developed, resembling the condition

690 of living therians. However, the lenticular apophysis is strongly reduced, and in this aspect

691 multituberculates resemble the plesiomorphic mammaliamorph condition. Regrettably, the incus

692 is not preserved in dryolestoids and symmetrodontans, and thus, direct comparisons with

693 Notoryctes are scarse.

694 Previously, a simple incus was considered as a character uniting monotremes with

695 multituberculates (Meng and Wyss, 1995), although it was later reinterpreted as plesiomorphic

696 for mammals (Rougier et al., 1996). In addition, the plesiomorphic nature of a reduced posterior

697 process in the incus is supported by embryological studies, which found that in the first

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

698 developmental stages of didelphids the posterior process is reduced and its length gradually

699 increases with the age of the individual (Allin and Hopson, 1992; Rowe, 1996). In sum, a simple

700 incus with a reduced lenticular process is a plesiomorphic morphology retained in Notoryctes.

701 10-Poorly coiled (Character 314-4). Notoryctes presents an extremely robust and

702 stout cochlear canal, which exhibits a poorly coiled cochlea (1.6 spiral turns; Ladevèze et al.

703 2009). In basal mammaliamorphs, including morganucodontids, monotremes, symmetrodontans,

704 and Vincelestes the cochlea is straight or coiled less than a turn (Rougier, 1992; Wible and s t

n 705 Hopson, 1993; Kielan Jaworowska et al. 2004; Ruf et al. 2009; Luo et al. 2011). In dryolestoids i r 706 the cochlea is partially (e.g., Henkelotherium and Dryolestes three fourths of a turn; Ruf et al. P e r 707 2009; Luo et al. 2011) to fully (e.g., Reigitherium, Cronopio, Peligrotherium, Coloniatherium, P 708 more than 1 turn; Necrolestes, 1.1 turn; Ladevèze et al. 2007; Rougier et al. 2009) coiled. Most

709 therians have strongly coiled cochlea, and no living therian has fewer than one and a half turns

710 (Gray, 1908; Wible et al. 2001). Among them, low coiling values include sirenians, erinaceine

711 insectivores, and vombatid marsupials, which approximate to the 1.5 cochlear turns (Ladevèze et

712 al. 2009). In very basal extinct Cretaceous eutherians the cochlea coils only 1 turn (e.g.

713 Prokennalestes, Daulestes, , , zhelestids; Wible et al., 2001, 2009;

714 Ekdale et al. 2004). In sum, Notoryctes retains of the plesiomorphic mammaliaform condition, as

715 also shown by derived meridiolestidan dryolestoids, and sparse therian genera (Ladevèze et al.

716 2009). (Figure 7).

717 11-Presence of septomaxilla (Character 427-1). Notoryctes shows a septomaxillary

718 ossification dorsal to the premaxilla, a remarkable feature not reported before for this mammal. In

719 Notoryctes, although the septomaxilla is present at the dorsolateral corner of the snout,

720 conforming part of the posteroventral rim of the external nares and exhibiting a very large lateral

721 facial exposure, as typically occurs in basal mammalian taxa (e.g., dryolestoids, monotremates;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

722 Wible et al. 1990). In Notoryctes this bone interrumpts the premaxilla and reduces its contact

723 with the nasals, resembling Vincelestes, Cronopio, and Peligrotherium among other non-therian

724 mammals (Rougier, 1993; Páez Arango, 2008; Rougier et al, 2012) (Figure 8). The septomaxilla

725 is totally absent in therians (Wible et al. 1990; Rowe, 1993; Archer et al., 1994), with the single

726 exception of a reduced structure in the basal genus Acristatherium (Hu et al. 2010). Presence of

727 septomaxilla has been reported for some living xenarthrans (see Wible et al. 1990); however, in

728 these mammals the purported septomaxilla is a minute intranarial ossification without facial s t 729 exposure (see Wible et al. 1990). n i r 730 The presence of a large and laterally exposed septomaxilla constitutes a plesiomorphic trait of P e r 731 Notoryctes that is shared with basal taxa, including dryolestoids and Vincelestes. (Figure 9). P

732 12-Reduced triquetrum, hamate, scaphoid, and trapezium (Characters 221-0, 222-0,

733 224-1, 223-1). In Notoryctes the carpus was analyzed in some detail by Stirling (1891) and

734 Szalay (2006). This carpus is highly modified, and strong fusions between several bones have

735 been reported. Close inspection on Notoryctes carpus is important, because recent analyses on

736 fossil therians indicate that carpal bones are among the foremost anatomical section that allow

737 phylogenetic distinction between marsupials and placentals (Luo et al. 2003; 2011). In the

738 basalmost metatherian Sinodelphys, the hamate is hypertrophied (being much larger than the

739 triquetrum), the triquetrum is twice the size of the lunate, and the scaphoid is enlarged (more than

740 one and a half the size of lunate), a combination of apomorphies diagnostic of Metatheria (Ji et al.

741 2002; Luo et al. 2003). On the other hand, in eutherians the hammate, triquetrum, and scaphoid

742 are plesiomorphically small (Ji et al., 2002; Luo et al. 2011), whereas the trapezium is

743 apomorphically elongate, being taller than wide (Ji et al. 2002). Carpal morphology of

744 Notoryctes does not fit neither the metatherian nor the eutherian molds. In Notoryctes the hamate

745 is dorsoventrally compressed and disc-like (Szalay, 2006), contrasting with the dorsoventrally

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

746 expanded and transversely compressed condition diagnostic of metatherians (Luo et al., 2003;

747 Szalay, 2006; Character 222-1). In Notoryctes the triquetrum is beam-shaped and reduced in size,

748 being different from the enlarged condition interpreted as synapomorphic for Metatheria by Luo

749 and collaborators (Luo et al., 2003; but see Szalay, 2003 for a different view). The scaphoid, in

750 Notoryctes is strongly fused with the triquetrum, and its morphology is difficult to discern

751 (Szalay, 2006). However, as was noted previously (Stirling, 1891) the scaphoid in Notoryctes is

752 relatively reduced in total size, and does not duplicate the size of the lunate. s t

n 753 On the other hand, in most eutherians including the basal form Eomaia, the carpus is derived i r 754 in having a very enlarged, dorsoventrally extended and transverselly compressed trapezium P e r 755 (Kielan Jaworowska, 1977; Ji et al., 2002; Luo et al. 2003; Character 223-0). On the contrary, in P 756 basal mammals (e.g., monotremes, triconodontans; Ji et al., 2002), most metatherians (Ji et al.,

757 2002; Szalay, 2006), as well as in Notoryctes (Szalay, 2006), the trapezium is plesiomorphically

758 small and beam-shaped (Character 223-1).

759 It is worth to mention that in several extinct mammals the arrangement of the carpals is not

760 well known, and its morphology is totally unknown among dryolestoids. However, the reduced

761 size of the triquetrum, hamate, scaphoid, and trapezium in Notoryctes matches the plesiomorphic

762 pattern seen in basal mammals, including monotremes, triconodontans, and symmetrodontans

763 (Figure 10).

764 13-Cuboid dorsoventrally low and subtriangular in contour (Ji et al., 2002). In

765 Notoryctes the cuboid is subequal to the navicular (Character 278-0) and is subtriangular in shape

766 (Szalay, 2006). In contrast, therian mammals the cuboid is dorsoventrally extended, and

767 subrectangular in shape (Ji et al. 2002). In metatherians, including Sinodelphys, the cuboid is

768 relatively large, but is narrower than the navicular, which is transversely expanded (Luo et al.,

769 2003; Character 278-1). In non-therian mammals, as for example in monotremes,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

770 multituberculates and Jeholodens, the cuboid is irregular or subtriangular in contour, and this

771 condition has been regarded as plesiomorphic for mammals (Ji et al., 2002; Luo et al., 2003). The

772 small, subtriangular cuboid of Notoryctes resembles the condition of basal mammals and

773 contrasts with tha of therians.

774 14-Metatarsal V in wide contact with the calcaneum (Character 282-1, 283-0).

775 Notoryctes is metatarsal V exhibits an enlarged projection that contacts along the lateral surface

776 of the calcaneum (Stirling, 1891; Szalay, 2006). In contrast, in therian mammals the cuboid is s t

n 777 dorsoventrally extended (Luo et al., 2003). The enlargement of the enlarged cuboid precludes a i r 778 contact between metatarsal V and calcaneum, a condition that is considered as synapomorphic of P e r 779 therian mammals (Ji et al. 2002). P

780 In basal mammals, such as multituberculates (Kielan Jaworowska and Gambaryan, 1994), the

781 eutriconodont Jeholodens (Ji et al., 1999), the symmetrodont Akidolestes (Li and Luo, 2006), and

782 monotremes (Szalay, 2006), the condition is similar to Notoryctes in that the metatarsal V

783 exhibits a wide contact with the distal portion of the calcaneus (see Szalay and Sargis, 2006).

784 (Figure 11).

785 15-Sternal ribs (Horovitz and Sánchez-Villagra, 2003). In therian mammals each sternal

786 rib articulates with two subsequent sternebrae of the sternum (Character 35-1 in Horovitz and

787 Sánchez Villagra, 2003). However, in monotremes (Horivitz and Sánchez Villagra, 2003) and in

788 multituberculates (Kielan Jaworowska and Gambaryan, 1994) each sternal rib articulates with a

789 single sternebra, a condition clearly different from that of therians.

790 In Notoryctes the articulation of sternum with the sternal ribs is similar to that of monotremes,

791 constituting a possible plesiomorphic feature for this mammal. (Figure 12).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

792 16-Scapular glenoid oblique and facing posteriorly (Character 205-1). In Notoryctes the

793 glenoid of the scapula is oblique and posteriorly oriented (Warburton, 2003). In the monotremes,

794 as well as non-mammaliaform cynodonts, the scapular glenoid is subparallel to the scapular main

795 axis (Sereno and McKenna, 1995; Martinelli et al. 2007), a condition related with sprawling

796 posture (Kielan Jaworowska et al. 2004). In dryolestoids (i.e., Henkelotherium, Necrolestes;

797 Krebbs, 1991; Asher et al. 2007), and other basal taxa, sucha as multituberculates,

798 symmetrodontans, and triconodonts (Sereno and McKenna, 1995; Gambaryan and Kielan s t 799 Jaworowska, 1997; Hu et al., 1997; Luo and Wible, 2006; Hu et al., 2005; Li and Luo, 2006; n i r 800 Chen and Luo, 2013) the glenoid is not subparallel, but oblique and posteriorly oriented (Luo et P

e 801 al. 2007). In therian mammals the glenoidal portion of the scapula is located perpendicular to the r

P 802 main axis of the scapula which precludes a transverse movement of the (Sereno and

803 McKenna, 1995; Gambaryan and Kielan Jaworowska, 1997; Sereno, 2006). This condition is

804 present in most therians, including fossorial forms such as Talpa and Scapanus (Reed, 1951;

805 Warburton, 2003). The conformation of the scapular glenoid in therians is related to an

806 apomorphic parasagittal gate, which is derived with respect to the sprawling locomotion in non-

807 therian mammaliaforms (see Sereno and McKenna, 1995; Gambaryan and Kielan Jaworowska,

808 1997; Sereno, 2006).

809 The orientation of the glenoid, together with other limb characters, are related to a semi-

810 parasagittal condition seen in Notoryctes which osteologically possess an intermediate limb

811 posture between monotremes and therians, a condition that has been advocated previously for the

812 dryolestoid Henkelotherium (Vázquez-Molinero et al. 2001).

813 17-Scapula with supraspinous fossa weakly developed (Character 195-1) and narrower

814 than the infraspinous fossa (Character 196-0). In Notoryctes the supraspinous fossa is

815 restricted to a small flattened area near the dorsal margin of the scapula, because the scapular

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

816 spine originates closer to the cranial border of the scapula, a feature shared with basal mammals

817 (e.g., monotremes, multituberculates, Fruitafossor; McKenna, 1961; Luo and Wible, 2005),

818 Necrolestes, and some fossorial soricoid (e.g., Sorex, Nesotrichus; Reed, 1951) and chrysochlorid

819 therians (Asher et al., 2007; Asher and Avery, 2010). On the other hand, the existence of an

820 expanded supraspinous fossa that extends along the anterior margin of the scapular blade, that is

821 much wider than the infraspinous fossa, is a conformation considered as related to the parasagittal

822 gait acquired by therian mammals, including most fossorial forms, such as xenarthrans and s t 823 diverse hystricomorphs (Sereno, 2006). n i r 824 In the development and conformation of scapular fossae Notoryctes resembles basal P e r 825 mammals and some fossorial forms rather than strictly parasagittal therians. In spite that under P 826 the present phylogenetic analysis, the scapular conformation of Notoryctes may be regarded as

827 plesiomorphic, remarkable similarities with some fossorial taxa may indicate that such

828 morphology may be better representing adaptative response for fossoriality rather than a truly

829 plesiomorphic character.

830 18-Distal end of humerus with enlarged distal epicondyles (Character 217-0). Notoryctes

831 shows a very robust and expanded distal humeral end, with enlarged and transversely protrudent

832 distal epicondyles (Warburton, 2003). This morphology is also present in some fossorial therians

833 (e.g., Chrysochloris, Talpa; Asher and Avery, 2010). In a large array of basal eucynodonts, as well

834 as morganucodontids (e.g., ; Jenkins and Parrington, 1976) and “triconodonts”

835 (e.g., Yanoconodon, Volaticotherium; Luo et al., 2007; Meng et al. 2011) the distal entepicondyle

836 and ectepicondyle of the humerus are dorsoventraly and transversely expanded (Martinelli et al.

837 2007). In monotremes the distal end of the humerus is also transversely expanded (Pridmore et

838 al., 2005), and this condition is also present in several basal mammals, including docodonts,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

839 Fruitafossor, Pseudotribos and dryolestoids (e.g., Necrolestes, Henkelotherium; Vázquez-

840 Molinero et al., 2001; Asher et al., 2007)(Luo and Wible, 2006; Ji et al., 1999; Luo et al. 2007).

841 On the other hand, in more derived taxa, including multituberculates and therian mammals

842 the distal end of the humerus is transversely compressed and the epicondyles are weakly

843 developed and reduced in size (Sereno and McKenna, 1995; Sereno, 2006). In most living

844 burrowing and fossorial mammals (e.g., Scapanus, Neurotrichus; Reed, 1951) the epicondyles are

845 enlarged but in a dorsoventral , being transverselly compressed as seen in other therians. s t n i 846 Under the present phylogenetic analysis, the condition of the distal end of the humerus in r

P 847 Notoryctes may be possible considered as plesiomorphic. However, its occurrence in selected e r

P 848 living therians with burrowing adaptations suggest that such morphology may be better represent

849 an adaptative response for fossoriality rather than a truly plesiomorphic character. (Figure 6).

850 19-Proximal end of humerus with large lesser tuberosity (Character 211-0). In

851 Notoryctes, the proximal end of the humerus is strongly similar to that of the dryolestoid

852 Necrolestes; in both genera the lesser trochanter is plesiomorphically large and rounded, subequal

853 in size to the greater trochanter (Warburton, 2003; Asher et al. 2007).

854 In terrestrial with sprawling posture the lesser trochanter on the proximal end of

855 humerus is enlarged and medially expanded (Gambaryan and Kielan Jaworowska, 1997). In basal

856 eucynodonts, monotremes and morganucodontids the lesser trochanter is subequal or larger than

857 the major trochanter (Gambaryan and Kielan Jaworowska, 1997; Hu et al. 1997; Pridmore et al.

858 2005; Martinelli et al. 2007; but see Sereno, 2006). This morphology is also present in some

859 living burrowing mammals, including Chrysochloris, Scapanus, and Nerotrichus (Reed, 1951;

860 Gambaryan and Kielan Jaworowska, 1997; Asher and Avery, 2010). On the contrary, in

861 multituberculates (Sereno, 2006), Vincelestes (Rougier, 1993), and most therians, the greater

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

862 tubercle is much larger and more expanded than the lesser trochanter (Gambaryan and Kielan

863 Jaworowska, 1997).

864 The large size of the lesser trochanter in Notoryctes may possible represent a plesiomorphic

865 condition, however, its occurrence in living fossorial therians suggest that such morphology may

866 also represent an adaptative response for their mode of life. (Figure 6).

867 20-Distal end of humerus without a cylindrical trochlea for ulnar articulation

s 868 (Character 215-0). In Notoryctes the distal condyles are well-separated each other by a deep and t n i 869 narrow intercondylar groove and do not conform a continuous articular surface (see Warburton, r

P 870 2003, Figure 6). In Notoryctes the ulnar condyle is bulbous, and is far from the radial condyle, the e r

P 871 latter being transversely expanded and dorsoventrally flattened (Warburton, 2003).

872 In basal mammals, such as monotremes, morganucodontids, and triconodontans the condyles

873 are bulbous and separated each other by a wide and deep intercondylar notch (Gambaryan and

874 Kielan Jaworowska, 1997; Hu et al. 1997; Luo and Wible, 2005). In multituberculates

875 (Gambaryan and Kielan Jaworowska, 1997; Chester et al., 2010) and basal dryolestoids (e.g.,

876 Henkelotherium; Vázquez-Molinero et al., 2001) the distal condyles of humerus are still bulbous

877 and well-differentiated, but they are placed close each other, approaching a hinge-like condition

878 (see Sereno, 2006). In the burrowing dryolestoid Necrolestes a cylindrical trochlear-like condition

879 is present, being convergently acquired with that seen in therian taxa (Asher et al., 2007;

880 Chimento et al., 2012).

881 In living therians, as well as multituberculates, the humerus and elbow joint are positioned

882 close to the body wall, resulting in a parasagittal gait (Sereno and McKenna, 1995; Luo et al.,

883 2002; Sereno 2006). This condition is indicated among other features by the presence of a hinge-

884 like morphology of the elbow joint at the distal end of the humerus, that is further developed in

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

885 therians conforming a trochlear joint with enhanced flexion-extension capabilities (Jenkins, 1973;

886 Sereno, 2006). Such trochlea posteriorly ends in a deep olecranal fossa (Reed, 1951). This

887 horizontally oriented cylindrical trochlea is formed due to the joining of distal condyles (Sereno

888 and McKenna, 1995; Gambaryan and Kielan Jaworowska, 1997).

889 As a concluding remark, the distal humeral condyles of Notoryctes look truly plesiomorphic

890 when compared with that of therian mammals.

s 891 21-Proximal end of femur with low greater trochanter (Li and Luo, 2006). In Notoryctes t n i 892 the proximal end of the femur is transversely expanded and anteroposteriorly compressed, and r

P 893 shows a short and robust femoral neck and a robust and low greater trochanter (Warburton, 2003; e r

P 894 Figure 6).

895 In monotremes, the basal symmetrodont Akidolestes and “triconodonts” (e.g., Yanoconodon,

896 Jeholodens, ; Ji et al., 1999; Hu et al., 2005; Luo et al., 2007; Chen and Luo, 2013)

897 the proximal end of the femur exhibits the following combination of plesiomorphies: reduced

898 femoral neck, low and broad femoral trochanter, and lesser trochanter distally located and well-

899 separated from the femoral head (Li and Luo, 2006; see also Worthy et al., 2006). The proximal

900 end of the femur in these taxa is transversely expanded, and conforms a typical “winged” aspect

901 (Vázquez-Molinero et al., 2001). This combination of characters is related with a sprawling mode

902 of locomotion (Chester et al., 2012) and is present in the vast majority of eucynodont taxa, as

903 well as morganucodontids, triconodontans, symmetrodontans, docodontans, and Vincelestes

904 (Gambaryan and Averianov, 2001; Meng et al., 2006; Ji et al., 1999; Li and Luo, 2006; Martinelli

905 et al., 2007; Chester et al. 2012). On the contrary, in therians the femur has a high and vertically

906 oriented greater trochanter, a distinctive neck offset from the shaft, and lesser trochanter near the

907 femoral head, a combination of traits related to parasagittal gait (Li and Luo, 2006). This

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

908 conformation is present in most therians, including fossorial forms, such as Scapanus and

909 Neurotrichus (Reed, 1951).

910 In dryolestoids (e.g., Necrolestes, Henkelotherium; Krebbs, 1991; Asher et al. 2007) the

911 proximal end of the femur is anteroposteriorly compressed and transversely expanded, showing a

912 winged appearance, a condition similar to basal mammals. In these taxa the greater trochanter is

913 low and robust, showing a transversely expanded base. In addition, in dryolestoids the lower

914 trochanter is located near the femoral head (Character 241-1) a condition shared with therian s t

n 915 mammals (Li and Luo, 2006). i r

P 916 In sum, the conformation of the proximal end of the femur of Notoryctes matches the e r

P 917 plesiomorphic morphology present in basal mammals.

918 22-Hypertrophied parafibular process in the fibula (Character 249-1). The parafibula is a

919 plesiomorphic mammalian trait consisting of a large independent ossification located near the

920 fibular diaphysis, that extensively fuses to the shaft in adult multituberculates, monotremes, the

921 spalacotheroid Akidolestes (Luo and Ji, 2005) and the basal multituberculate Rugosodon (Yuan et

922 al., 2013). Such hypertrophied parafibular process is correlated with the sprawling posture,

923 because it constrains the knee to be permanently flexed (Pridmore, 1985). In extinct dryolestoids

924 the fibula is only known in the genera Necrolestes and Henkelotherium (Krebbs, 1991; Asher et

925 al., 2007). In both taxa the parafibular process is highly expanded and laminar, and in the case of

926 Necrolestes is proyected well beyond the proximal margin of the fibula (Asher et al., 2007). The

927 absence or reduction of such parafibular process has been regarded as a derived feature for

928 therians (Li and Luo, 2006).

929 In Notoryctes, as occurs in dryolestoids and other basal mammals the parafibular process is

930 laminar, strongly developed and proximally projected, departing from the condition seen in

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

931 eutherians and metatherians (Warburton, 2003; see details in Barnett and Napier, 1953). (Figure

932 6).

933 The combination of a femur with a low femoral head, short and robust neck, distally

934 positioned lower trochanter, asymmetrical distal femur, and hypertrophied parafibular process of

935 tibia are correlated with a sprawling posture, suggesting a strongly flexed knee for Notoryctes

936 (Jenkins and Parrington, 1975; Li and Luo, 2006; Chen and Luo, 2013).

s 937 23-Fully ossified patella (Character 288-1). In Notoryctes an enlarged patella with a keel t n i 938 showing well-developed muscle site attachments is present, a feature that constrasts with r

P 939 metatherians (Warburton, 2003). As noted by Reese (2001) a cartilaginous disc-like patella is e r

P 940 diagnostic of metatherians (Kielan Jaworowska et al. 2004). In fact, in all known fossil and living

941 metatherians the patella is unossified, with the single exception of peramelids, in which a reduced

942 and flattened sesamoid structure is present (Warburton, 2003; Kielan Jaworowska et al. 2004). In

943 basal mammals, including monotremes, multituberculates, the zhangheotheriid Zhangheotherium,

944 and Vincelestes a patella is well developed and ossified (Rougier, 1993; Luo and Ji, 2005),

945 whereas in others (e.g., triconodontans, most symmetrodontans) a patella is absent. Regrettably,

946 most dryolestoids not preserved a patella, and thus, its presence is still mater of debate. However,

947 as pointed out by Asher et al. (2007) the presence of a small patellar surface on the distal femur

948 of Necrolestes may suggest the existence of an ossified patella in this dryolestoid. In spite of its

949 patchy distribution, a well-ossified patella appears to be the plesiomorphic condition for

950 mammals (Kielan-Jaworowska et al., 2004).

951 In sum, presence of a well-developed patella in Notoryctes possibly represents a

952 plesiomorphy shared with basal mammals.

953

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

954 PHYLOGENETIC RESULTS

955 Phylogenetic analysis. We present here a cladistic analysis of mammaliaform higher-level

956 relationships mostly based on the studies published by Luo et al. (2007) with the modifications

957 made by Chimento et al. (2012). The data set was compiled including most characters

958 traditionally used to diagnose Dryolestoidea, Metatheria, Marsupialia, and Australidelphia. The

959 data matrix is composed of 458 characters distributed among 114 taxa (Appendix 1,2). Characters

960 1-445 follow Luo et al. (2007) and characters 446-458 were added in the present analysis from s t

n 961 different data sources (i.e., Bonaparte, 1990; Chornogubsky, 2011; Rougier et al., 2011; i r 962 Chimento et al., 2012). Codification of characters for Necrolestes follows mostly Chimento et al. P e r 963 (2012) and Rougier et al. (2012). Most features regarding braincase characters of Reigitherium, P 964 Peligrotherium and Cronopio follows the codifications of Páez Arango (2008) and Rougier et al.

965 (2011). Postcranial characters of Peligrotherium tropicalis follow the codifications of Rougier et

966 al. (2011). Additional postcranial osteological data for Notoryctes was extracted from Warburton

967 (2003). The metatherian (29) and eutherian (26) taxa included in the analysis represent the major

968 radiations with which Notoryctes was compared by previous authors, in order to test its

969 phylogenetic position within a clear phylogenetic context.

970 The phylogenetic analysis was performed using TNT 1.1 (Goloboff et al., 2008). All

971 characters were equally weighted and treated as unordered. Heuristic searches were performed

972 after 1,000 pseudoreplicates of WAG+TBR search strategy, with 10 random addition sequences

973 after each search and 100 trees were saved at each replicate. The phylogenetic analysis resulted in

974 the recovery of 20 Most Parsimonious Trees (MPTs), of 2443 steps, with a consistency index of

975 0.31, and a retention index of 0.77. (Figure 13)

976 The strict consensus tree recovered Notoryctes as the sister-group of the dryolestoid

977 Leonardus and Necrolestes. The inclusion of Notoryctes as a Metatheria was found in suboptimal

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

978 trees of 2479 length, being 37 extra-steps. Inclusion within Marsupialia is 57 steps longer. This

979 clearly indicates a more robust position of Notoryctes among dryolestoids, rather than

980 Marsupialia. Additional analyses have yielded different tree lengths for dissimilar position of

981 Notoryctes: Notoryctes + Prototribosphenida tree of 2455 length; Notoryctes + Eutheria tree of

982 2499 length; Notoryctes + tree of 2501 length; Notoryctes + Australidelphia tree of

983 2492 length; Notoryctes + Dasyuromorpha tree of 2490 length; and Notoryctes +

984 Peramelimorphia tree of 2486 in length. s t

n 985 With the aim to test the robusticity of tree topology, we calculated the Templeton test and i r 986 Bremer support for each node. Nesting of Notoryctes within Dryolestoidea is very strongly P e r 987 supported (Bremer support =6), and its position within Meridiolestida is well supported (Bremer P 988 support =6), thus conforming a robust phylogenetic signal (Fig. 3).

989 Bootstrap analysis under parsimony was performed in order to test nodal support (see Xu and

990 Pol, 2013). Analysis here conducted resulted in a relatively high support for dryolestoidean (54

991 %) and very robust support for meridiolestidan (76 %) affinities for Notoryctes.

992 The presence of several dryolestoid-like features, and plesiomorphic traits along the skull and

993 postcranial skeleton, together with poorly documented synapomorphies uniting Notoryctes with

994 Metatheria or even Theria, suggest that the phylogenetic position of Notoryctes is far from being

995 well understood. Based on the analysis here performed, we conclude that Notoryctes is part of a

996 dryolestoid radiation and constitutes the sister-group of the genera Leonardus and Necrolestes. At

997 following we discuss in detail the dryolestoid and meridiolestidan synapomorphies that are

998 present in Notoryctes and that allow its referral to this mammalian clade.

999

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1000 Synapomorphies nesting Notoryctes within Dryolestoidea and Meridiolestida. Present

1001 analysis prompted to recognize three different diagnostic features that constitute synapomorphies

1002 uniting Notoryctes and Dryolestoidea.

1003 136(1)-Distal metacristid absent on lower molariforms (Figure 14). The talonid (or

1004 pseudotalonid) of lower molars in mammals usually exhibits a ridge uniting the entoconid with

1005 the metaconid cusp of the trigonid (Fox 1975; Kielan-Jaworowska et al. 2004). This ridge is

1006 termed as the distal metacristid (Kielan-Jaworowska et al. 2004). In Notoryctes a talonid is totally s t

n 1007 absent in molariforms, and consequently, a distal metacristid cannot be recognized (see Asher and i r 1008 Sánchez-Villagra, 2005). P e r

P 1009 Basal mammaliaforms, including australosphenidans lack a true talonid and metacristid, and

1010 this conformation is currently considered as plesiomorphic for the entire clade (Kielan

1011 Jaworowska et al., 2004). On the other hand this ridge is present in several basal mammals,

1012 including “peramurids”, Kielantherium, and Deltatheridia, and is usually considered as a

1013 diagnostic trait of the entire clade (Sigogneau-Russell, 1999, Kielan-Jaworowska et al.,

1014 2004; Lopatin and Averianov, 2007). In all known therian mammals, including most

1015 zalambdodont ones the lower molars show a well-developed talonid, usually with a well

1016 developed distal metacristid (Kielan-Jaworowska et al. 2004). The only living therian in which a

1017 metacristid is absent is the zalambdodont insectivoran Chrysochloris (Asher and Sánchez-

1018 Villagra, 2005). Within cladotherians a metacristid is usually present in most taxa, but in basal

1019 Dryolestoidea a well developed talonid (or pseudotalonid) and a distal metacristid are

1020 apomorphically absent, and the molariforms are considered as zalambodont-like (Bonaparte,

1021 2002; Kielan-Jaworowska et al., 2004; Rougier et al., 2011). In fact, absence of distal metacristid

1022 was considered as synapomorphic of Dryolestoidea by Chimento et al. (2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1023 In this way, the absence of distal metacristid is here recovered as a synapomorphy shared by

1024 Notoryctes and Dryolestoidea.

1025 79(2)-Nearly transverse orientation of the paracristid relative to longitudinal axis of the

1026 molar (Figure 14). In Notoryctes the paracristid of lower molariforms consists on an acute ridge

1027 that develops along the anterior rear of the teeth (Stirling, 1894). This crest is nearly transversely

1028 oriented with respect to the main mesiodistal axis of the teeth.

s 1029 In dryolestoids the paracristid of lower molars exhibits a nearly transverse orientation when t n i 1030 compared with the longitudinal (=mesiodistal) molar length (see Bonaparte, 1990). This r

P 1031 morphology is clearly related to the transverse expansion and mesiodistal compression of each e r

P 1032 dental element, a condition typical of dryolestoids (Bonaparte, 1986; 1990; Kielan Jaworowska et

1033 al., 2004). This morphology also occurs in most meridiolestidan dryolestoids, including

1034 Necrolestes, Leonardus, and Mesungulatum, among others (Bonaparte, 1986, 1990, 2002; Asher

1035 et al., 2007; Chornogubsky, 2011; Chimento et al., 2012). Presence of dryolestoid-like disposition

1036 of paracristid on lower molars is a feature that was convergently acquired by some zalambdodont

1037 taxa (Asher and Sánchez-Villagra, 2005).

1038 In our analysis, presence of transverse paracristid is considered as a possible synapomorphy

1039 nesting Notoryctes within Meridiolestida.

1040 104(3)- Upper molariforms lacking metacone (Figure 2). As analyzed above, in

1041 Notoryctes the occlusal surface of the upper molariforms is constituted by the stylocone,

1042 paracone and metastyle, with the total absence of a metacone.

1043 The metacone is currently considered as a neoformation in the upper molars of

1044 “eupantotherian” mammals (Crompton 1971; Kielan-Jaworowska et al. 2004). In most

1045 dryolestoids (e.g. Dryolestes, Laolestes, Tathiodon, Henkelotherium; Krebs 1991; Martin 1999;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1046 Kielan-Jaworowska et al. 2004) the metacone is highly reduced, being represented by a small

1047 cusp located near cusp "C", both being connected through a metacrista (Krebs 1991; Martin

1048 1999; Schultz and Martin 2011). In Meridiolestida, the metacone is totally absent, as observed in

1049 all known mesungulatids, Cronopio and Necrolestes (Gelfo and Pascual 2001; Bonaparte 2002),

1050 and was considered as a synapomorphy of Meridiolestida Chimento et al., 2012; Rougier et al.,

1051 2012).

1052 As a result of our analysis, the absence of this cusp in Notoryctes is hypothesized as a s t

n 1053 synapomorphy that unites Notoryctes with Meridiolestida. i r

P 1054 152(2)- Three upper premolars. In Notoryctes the dental formula is highly variable among e r

P 1055 individuals of the same species. As discussed above, a maximum number of three upper

1056 premolars has been reported for Notoryctes.

1057 Most basal zatherian mammals show a plesiomorphic premolar number of five (McKenna,

1058 1975; Kielan Jaworowska et al. 2004). On the other hand, metatherians show a derived dental

1059 formula composed by three upper premolars, with the possible single exception of the retention

1060 of five premolars in the basal taxon Sinodelphis (Luo et al. 2003). In eutherian (Kielan

1061 Jaworowska et al. 2004) as well as dryolestoid mammals, such as Krebsotherium,

1062 Henkelotherium, and Dryolestes (Krebs, 1991; Martin, 1999; Kielan Jaworowska et al. 2004),

1063 and the basal meridiolestidan Cronopio (Rougier et al. 2011) there are four upper premolars,

1064 representing a possible plesiomorphic condition. On the other hand, in remaining meridiolestidan

1065 dryolestoids only three upper premolars are exhibited, as exemplified by Coloniatherium,

1066 Peligrotherium, and Necrolestes (Asher et al. 2007; Páez Arango, 2008; Rougier et al. 2009;

1067 Chimento et al., 2012). The same number is also reported for the possible paurodontid

1068 dryolestoid Drescheratherium (Krebs, 1998).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1069 In the present analysis, presence of three premolars is recovered as a possible synapomorphy

1070 of the Meridiolestida including Notoryctes, which was convergently acquired by metatherians.

1071 (Figure 4).

1072 244(1)-Shallow and weakly developed patellar groove on distal femur (Figure 6).

1073 In Notoryctes the distal end of the femur shows on its anterior surface a poorly developed

1074 patellar groove represented by an incipient concavity with ill-defined margins (Warburton, 2003). s t 1075 In basal mammaliaforms, such as monotremes, triconodonts, didelphids, Dromiciops, and the n i r 1076 extinct therian Asiatherium the distal end of femur is anteriorly flat and lacks any sign of patellar P e 1077 groove (Jenkins and Parrington 1976; Ji et al. 1999; Forasiepi and Martinelli 2003; Chester et al. r

P 1078 2012). On the other hand, in multituberculates and most therians the patellar groove is deeply

1079 excavated and shows well-defined and sharply ridged longitudinal edges (see Forasiepi and

1080 Martinelli 2003). This condition that is also present in fossorial eutherians (e.g., Scapanus, Sorex,

1081 Neurotrichus; Reed, 1951). Among dryolestoids the femur is only known in Necrolestes and

1082 Henkelotherium, and both taxa lack a well-developed and defined patellar groove on its anterior

1083 surface. In both taxa the patellar groove of the femur is only developed by an incipient concavity

1084 with ill-defined margins (Krebs 1991; Asher et al. 2007). This feature was considered by

1085 Chimento et al. (2012) as a synapomorphy of Dryolestoidea (Figure 6).

1086 In the context of the available evidence, a poorly marked patellar groove on distal femur is

1087 considered as a possible derived feature diagnostic of Dryolestoidea, including Notoryctes.

1088 458(1)-Second crus commune on semicircular canals of the middle ear (Figure 7). The

1089 secondary crus commune constitutes a point of the inner ear at which the posterior semicircular

1090 canal cross-over the lateral one (Ladevèze et al. 2008). Gray (1908) described for the inner ear of

1091 Notoryctes a peculiar junction between the lateral and posterior semicircular canals at the point in

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1092 which the later passes under the former, thus constituting a secondary crus commune. This

1093 condition is only present in a bunch of therian mammals, including the derived marsupials

1094 Monodelphys and Didelphis as well as in sparse eutherian genera (Schmelzle et al. 2007;

1095 Ladevèze et al. 2008; Ekdale, 2009; Luo et al. 2011). Moreover, its presence has also been

1096 reported for the dryolestoids Dryolestes and Henkelotherium (also Ruf et al. 2009; Luo et al.,

1097 2011), and Necrolestes (Ladevèze et al. 2008). Thus, on the basis of a comprehensive

1098 phylogenetic analysis Chimento et al. (2012) conclude that presence of secondary crus commune s t 1099 was a synapomorphy of Dryolestoidea. n i r 1100 In concordance, present analysis indicates that the existence of a secondary crus commune P e r 1101 may constitute a synapomorphy uniting Notoryctes with dryolestoids. (Figure 4). P

1102

1103 Furthermore, Notoryctes exhibits the following six synapomorphic characters with the

1104 dryolestoid clade Meridiolestida:

1105 4(2)- Meckel´s sulcus absent (Figure 14). In basal mammaliaforms, including

1106 australosphenidans, multituberculates, and basal Jurassic dryolestoids, a well-developed

1107 meckelian sulcus is present on the medial surface of dentary (Krebs 1969; 1971; Martin 1995;

1108 1999; Kielan-Jaworowska et al. 2004; Rich et al. 2005). This condition is also retained in selected

1109 basal Mesozoic therians (e.g., Kokopellia, Prokennalestes, Eomaia, Kielantherium; Dashzeveg

1110 and Kielan-Jaworowska 1984; Kielan-Jaworowska and Dashzeveg 1989; Ji et al. 2002; Kielan-

1111 Jaworowska et al. 2004). On the contrary, this sulcus is absent in Cretaceous dryolestoids,

1112 including Crusafontia and all Meridiolestida (e.g., Cronopio, Coloniatherium, Necrolestes;

1113 Rougier et al. 2009; Rougier et al. 2011; Chimento et al., 2012). The absence of a meckelian

1114 groove is also reported in most living and extinct metatherian and eutherian mammals (Kielan-

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1115 Jaworowska et al. 2004). In the present analysis, the absence of meckelian sulcus is recovered as

1116 a synapomorphy of the Meridiolestida, and Notoryctes.

1117 31(1)- Gracile and elongate dentary peduncle. In Notoryctes the peduncle for the

1118 mandibular condyle is extremely gracile and elongate, it is dorsally oriented, and ends in a small

1119 articular surface for the skull. (Figure 14)

1120 In basal mammaliamorphs, such as Morganucodon and docodontans the peduncle of the

s 1121 articular condyle of the dentary is slightly developed and is relatively short and strong (see Kielan t n i 1122 Jaworowska et al., 2004). In the same way, in basal australosphenidans, such as (Rich et r

P 1123 al., 2001) the dentary condyle shows a highly reduced peduncle. Basal dryolestoids show a robust e r

P 1124 and poorly developed dentary peduncle (e.g., Krebsotherium, Dryolestes, Crusafontia; Krebs,

1125 1993; Martin, 1999), a morphology widespread in basal therians, including the metatherians

1126 Mayulestes, , and (Fox and Taylor, 1986; Cifelli et al., 1996; Muizon,

1127 1998), and the eutherians Barunlestes, Zalambdalestes, , and Maelestes (Kielan

1128 Jaworowska, 1975; Wible et al. 2009). The condition of the condylar peduncle is variable among

1129 living therians, and a gracile and elongate peduncle is present, as for example, in Chrysochloris

1130 (Asher et al., 2007).

1131 In the meridiolestidan dryolestoid Cronopio the dentary peduncle is elongated and very well

1132 developed, being also well dorsally extended (Rougier et al. 2011), a condition also present in

1133 Necrolestes (Asher et al., 2007).

1134 In our analysis, presence of an elongate condylar peduncle results as a synapomorphy of

1135 Meridiolestida, including Notoryctes.

1136 220(1)- Strong styloid process on distal ulna (Figure 6). The distal ulna of marsupials

1137 shows a poorly developed and distally oriented process on the caudal surface of the bone, that is

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1138 frequently termed as the styloid process, and that is currently considered as a possible

1139 synapomorphy for Marsupialia (Ahser et al. 2007). However, this ball-like distal process is also

1140 present in known dryolestoids, including Necrolestes and Henkelotherium (Krebs, 1991; Asher et

1141 al. 2007), as well as the spalacotherioid Akidolestes (Chen and Luo, 2013). In the same way, in

1142 Notoryctes a ball-like styloid process is also present on the distal ulna.

1143 The analysis here performed indicates that presence of large styloid process on ulna may be

1144 considered as a Meridiolestida synapomorphy, convergently acquired by marsupials. s t n i 1145 r P e 1146 Similarities shared by Notoryctes and dryolestoids. In addition to the synapomorphies r

P 1147 described above, there are several additional similarities between Notoryctes and meridiolestidan

1148 dryolestoids that do not results as synapomorphic in our analysis due to its complex distribution

1149 or low support. In spite of that, some of them appears to be important and we anayze them as

1150 follows.

1151 Chimento et al. (2012) considered the presence in lower molars of protoconid and metaconid

1152 subequal in height as a synapomorphy of the Dryolestoidea. This contrasts with the reduced

1153 metaconid seen in most Metatheria, in which this cusp is at least 30% smaller than the protoconid

1154 (Asher et al., 2007). In Notoryctes, both the metaconid and protoconid are similar sized, recalling

1155 the dryolestoid condition.

1156 Bensley (1903) indicated that in Notoryctes molariforms the large internal cusp (paracone

1157 herein) is crescentic in shape when viewed from the crown, and its tip is placed at much lower

1158 level than the external cusp (stylocone herein). The talonid is absent or present only by a minute

1159 tubercle attached to the postero-internal angle of the trigonid in the first and second molariforms.

1160 This combination of characters is widespread in dryolestoids, including Groebertherium and

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1161 Casamiquelia (Bonaparte, 1990), and the absence of talonid was regarded as diagnostic of

1162 meridiolestidan dryolestoids by Chimento et al. (2012). Moreover, Notoryctes also resembles

1163 meridiolestidans in having a metastylar lobe much larger than the parastylar lobe, a condition

1164 regarded as synapomorphic of such clade (Rougier et al., 2011; Chimento et al., 2012). In

1165 addition, Notoryctes, such as mesungulatids (e.g., Mesungulatum, Coloniatherium,

1166 Peligrotherium; Páez Arango, 2008; Rougier et al. 2009), Leonardus, and Groebertherium

1167 (Bonaparte, 1990) show a very distinctive, proportionately large, and centrally located stylocone. s t 1168 As in these genera, in Notoryctes the lower molariforms exhibit a nearly straight paracristid, and n i r 1169 a transverse metacristid. Notoryctes resembles meridiolestidans, such as Leonardus, Cronopio P

e 1170 and Necrolestes in having non-imbricate upper molariforms which are well separated each other r

P 1171 (Chornogubsky, 2011; Rougier et al., 2011; Chimento et al., 2012). This condition contrasts with

1172 the imbricate condition shared by Laurasian dryolestoids (e.g., Dryolestes, Henkelotherium,

1173 Krebsotherium; Martin, 1999).

1174 In contrast with paurodontids and mesungulatoids, Notoryctes has a shallower and gracile

1175 dentary bone with a subhorizontal symphysis, a condition reminiscent to that of the basal

1176 meridiolestidans Cronopio and Necrolestes (Martin, 1999; Páez Arango, 2008; Rougier et al.,

1177 2011; Chimento et al., 2012). Moreover, Notoryctes shares with Leonardus, Necrolestes, and

1178 Cronopio hypsodont-like molariforms, mesiodistally compressed upper molariforms, and

1179 presence of a parastylar hook in upper premolars (Bonaparte, 1990; Chimento et al., 2012).

1180 Finally, Notoryctes and Necrolestes share posteriorly situated mandibular glenoid fossa lateral to

1181 the pars cochlearis of the petrosal (Asher et al., 2007), as well as absence of prootic canal and a

1182 small-sized lateral lamina and through (Ladevèze et al., 2009; Rougier et al., 2012). The later two

1183 characters are different from basal dryolestoids, but similar to plesiomorphic eutherian mammals

1184 (Wible et al., 2009), a condition that was probably convergently acquired. Moreover, both

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1185 Notoryctes and Necrolestes show a large amount of postcranial features probably related with

1186 fossoriality (e.g., fused cervicals, double scapular spine, ulna with very large olecranon which is

1187 medially infected; Asher et al., 2007), since these traits are also present in digging eutherian

1188 insectivores (e.g., chrysochloroids).

1189 In this way, several similarities shared by Notoryctes and Necrolestes suggest that both genera

1190 may be closely related, and is it is probable that the traits common to these genera may reflect

1191 close phylogenetic relationships rather than adaptative paralellisms responding to similar modes s t

n 1192 of life. i r

P 1193 Another important source of iformation regarding phylogenetic analysis is the disposition and e r

P 1194 composition of enamel microstructure. The schmelzmuster of Notoryctes is asymmetrical. In

1195 longitudinal section shows radial enamel and steeply apically oriented prisms in the inner zone

1196 and antapical prisms in the outer region (Asher et al., 2007). In cross section the prisms are

1197 obliquely oriented in the inner zone and longitudinal in the outer zone (Asher et al., 2007). This

1198 kind of enamel is present in small marsupials and “insectivoran” placentals (Koeningswald and

1199 Goin, 2000), but also in meridiolestidan dryolestoids (e.g., Necrolestes, Reigitherium; Wood and

1200 Rougier, 2005; Asher et al., 2007), and was previously regarded as the plesiomorphic condition

1201 for Theria. Although far from conclusive, the enamel morphology and disposition of Notoryctes

1202 does not substantially differs from that of basal cladotherian and basal therians, and thus, do not

1203 contradict the basal position for Notoryctes, as here proposed.

1204

1205 The phylogenetic position of Naraboryctes philcreaseri Archer et al. 2010. Archer et al.

1206 (2010) described the new genus and species Naraboryctes philcreaseri from the Early Miocene

1207 of , Australia. Naraboryctes was considered as nearly related to Notoryctes and was

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1208 consequently included by Archer et al. (2010) within . They allied Notoryctes and

1209 Naraboryctes on the basis of the tendency of zalambdodonty in upper molars, with paracone

1210 smaller (or absent) than metacone, large protocone, and lower molars with reduced (to absent)

1211 talonids (see main text for a different arrangement of cusp homologies).

1212 However, Naraboryctes dentition and skull clearly differ from Notoryctes in retaining

1213 features recalling typical metatherian condition, as for example the presence of I5 (only I4 in

1214 Notoryctes), distinct paracone on upper molars and three cusped talonids on the lower molars, s t

n 1215 talonid only slightly smaller than the trigonid, anterior cingulid evident, and dentary with a very i r 1216 large coronoid process. Moreover, as can be deduced from the list of characters diagnosing P e r 1217 Notoryctidae, Archer et al. (2010) do not report a single unique apomorphy uniting Notoryctes P 1218 and Naraboryctes, and most characters point to a “tendence” towards zalambdodonty, rather than

1219 discrete apomorphic characters. On this basis, we consider that cranial material Naraboryctes

1220 cannot be confidently included within Notoryctidae or Notorycteomorphia, and we consider it as

1221 Metatheria incertae sedis, pending new detailed studies.

1222 Archer et al. (2010) described Naraboryctes based on dissociated cranial and postcranial

1223 material. Archer et al. (2010) referred to Naraboryctes an ulna and humerus that show all the

1224 diagnostic features of these bones seen in Notoryctes. These bones were not found in association

1225 with any element unambiguously referable to Naraboryctes and are here considered as

1226 Notoryctidae indet., representing the only probable fossil record for the clade.

1227 As a concluding remark, we exclude Naraboryctes from the Notoryctes lineage, and we

1228 consider that the only possible fossil record of notoryctids consist on a Miocene isolated ulna and

1229 humerus described by Archer et al. (2010).

1230

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1231 Mammalian plesiomorphies present in the soft anatomy of Notoryctes. Since the end of

1232 the XIX century, the soft anatomy of Notoryctes was considered as unique among mammals, and

1233 regarded as highly modified for burrowing habits (Stirling, 1891; Gadow, 1892; Ogilby, 1892;

1234 Thompson, 1905; Sweet, 1906). In spite of such strong modifications, the soft anatomy of

1235 Notoryctes allow to recognize some interesting topics. At following we summarize some highly

1236 plesiomorphic features present on internal organs of the marsupial mole.

1237 The brain of Notoryctes presents a combination of characters that distinguishes it from both s t

n 1238 monotreme and eutherian mammals, showing an intermediate morphology between both clades i r 1239 (Figure 15). For example, the olfactory bulbs in Notoryctes are plesiomorphic in being placed P e r 1240 entirely in front of the cerebrum, with a size smaller than in any living therian, but more P 1241 developed than in monotremes (Smith, 1895; Benshemesh and Johnson, 2003; Ashwell, 2010;

1242 Vaughan et al., 2010). In therians the olfactory bulbs are ventro-laterally displaced from midline,

1243 a condition that has been traditionally regarded as synapomorphic of the group (Ashwell, 2010).

1244 In Notoryctes, the neopallium is smaller than in other mammals; the inrolling and folding of the

1245 (arquipalium) are less well developed than in therians and the cerebellum is very

1246 small and exhibits an extreme degree of simplicity, a unique plesiomorphic combination of traits

1247 absent in therian mammals (Smith, 1895; Vaughan et al., 2010). The neopallium forms merely a

1248 dorsal cap lying on the pyriform lobe, and is not separated by any fissure, a condition reminiscent

1249 to that of monotremes, but different from that exhibited by tribosphenic mammals (Ashwell,

1250 2010; see also Rowe et al., 2011). The pyriform lobe is very large, and not only constitutes the

1251 ventral part, but also much of the lateral walls of the brain, a plesiomorphic condition for

1252 mammals (Smith, 1895; Benshemesh and Johnson, 2003; Ashwell, 2010). In the same way, the

1253 cerebellum is small, and shows an extreme degree of simplicity (Smith, 1895). As a result, the

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1254 small and simple brain of Notoryctes is very similar in several features to that of monotremes,

1255 lacking a large amount of derived traits present in therian mammals.

1256 In addition to its brain anatomy, in Notoryctes the shows a strikingly

1257 plesiomorphic morphology. Since its original description Notoryctes was considered as peculiar

1258 among metatherians in having a single exit for both urinal and reproductive ducts (Gadow, 1892).

1259 In fact, in Notoryctes, the /deferent sperm-ducts pass into a common urogenital canal

1260 together with the , ending in a common (Renfree, 1993; Presley, 1997). This s t

n 1261 constitutes the plesiomorphic condition for mammals (Renfree, 1993; Presley, 1997). i r 1262 Monotremes also exhibit a single cloacal opening, but these mammals present a wide urogenital P e r 1263 sinus, much wider than the urogenital canal of Notoryctes (Stirling, 1891; Gadow, 1892; Renfree, P 1264 1993). In Notoryctes this single duct becomes narrower and longer than that of monotremes,

1265 approaching in this aspect the derived therian condition. However, in most therians this duct is

1266 divided among most of its length (Stirling, 1891; Renfree, 1993; Presley, 1997). Among living

1267 mammals, only egglaying monotremes, and possibly tenrecid eutherians, retains as adults an

1268 undoubted typical cloaca (Temple-Smith and Grant, 2001; Riedelsheimer et al., 2007). The

1269 presence of a true cloaca has been denied in most placental and marsupial mammals, in which the

1270 small common “pseudo-cloaca” outlet is composed only by a skin fold, with the fold´s epithelium

1271 keratinized and endowed by epidermal appendages (Sweet, 1907; Djakiev and Jones, 1982; Frey,

1272 1991; Shoshani and McKenna, 1998; Mess and Carter, 2006; Riedelsheimer et al., 2007). On the

1273 contrary, in monotremes, as well as Notoryctes (Temple-Smith and Grant, 2001) the true cloaca is

1274 devoid of classical skin glands and associated ducts, and the epithelium is not keratinized (Sweet,

1275 1907). (Figure 16).

1276 The male reproductive system of Notoryctes exhibits striking plesiomorphic morphology,

1277 being reminiscent to that of egg-laying mammals. In Notoryctes the is located inside the

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1278 internal wall of the cloaca, as occurs in monotremes, whereas in therians the penis is placed

1279 external to it (Gadow, 1892; Stirling, 1891; Temple-Smith and Grant, 2001; Riedelsheimer et al.,

1280 2007). The in Notoryctes are internal to the body, located between the and the

1281 abdominal wall, a morphology that represents an intermediate condition between the intra-

1282 abdominal testicles of monotremes and the external one of most therian testicles (Gadow, 1892;

1283 Stirling, 1891; Werdelin and Nilssone, 1999; Temple-Smith and Grant, 2001; Riedelsheimer et

1284 al., 2007; Kleisner et al., 2010). Notoryctes lacks of scrotum, a condition also shared with s t 1285 monotremes, whereas in therians the scrotum is present and well-developed (Waddle et al., 1999; n i r 1286 Temple-Smith and Grant, 2001; Riedelsheimer et al., 2007; Kleisner et al., 2010). In Notoryctes P

e 1287 (as in monotremes) only a single pair of additional bulbo-uretral glandulae are present, whereas r

P 1288 in therians exists several additional structures, including and uretral glandules, and in

1289 derived eutherians a seminal vesicle is present. (Figure 17).

1290 As a whole, the reproductive organ anatomy and brain morphology of Notoryctes are also

1291 indicative of the exclusion of this mammal from Theria. (Figure 18).

1292

1293 BIOGEOGRAPHICAL IMPLICANCES

1294 Notoryctes and meridiolestidan radiation. Present analysis results in that Notoryctes is very

1295 different from Laurasian dryolestoids, and appears to be well-nested within the meridiolestidan

1296 South American radiation. Strong similarities with the Cretaceous genus Leonardus and the

1297 Miocene Necrolestes indicating that the lineage has an extremely long evolutionary history, and

1298 that its fossil record appears to be patched during the last 70 my.

1299 Meridiolestidan radiation includes a large amount of ecologically divergent taxa. Among

1300 them, there are small sized and acute cusped taxa, such as Groebertherium and Brandonia

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1301 (Bonaparte, 1991). Mesungulatids, including Mesungulatum, Coloniatherium, Peligrotherium,

1302 Reigitherium and Paraungulatum (Bonaparte, 1986; 1990, 2002; Gelfo and Pascual, 2001;

1303 Rougier et al., 2009) share extensive tooth to tooth occlusion with expanded cingula and bulbous

1304 bonodontan cusps. This later morphology was linked to herbivorous habits, and the great

1305 radiation of these taxa was related to the high angiosperm diversification (Rougier et al., 2009).

1306 On the other hand, there also existed a bunch of taxa including small-sized and fossorial taxa,

1307 showing acute cusped and hypsodont-like teeth, such as Necrolestes, Notoryctes, and probably s t 1308 Cronopio and Leonardus (Bensley, 1903; Bonaparte, 1991; Rougier et al., 2011; Chimento et al., n i r 1309 2012). This suggests that dryolestoids underwent a very large evolutive radiation, including still P

e 1310 unexpected forms, as previously advocated by Bonaparte (1994). r P 1311

1312 Survival of ancient mammals in the of southern continents. In South America,

1313 contrasting with other landmasses the fossil record indicates a Late Cenozoic survival of several

1314 Mesozoic lineages. Well-documented provincialism of mammals in the Mesozoic of South

1315 America, includes highly distinctive taxa related to Jurassic forms of the northern continents

1316 (Bonaparte, 1990). In contrast to the Northern Hemisphere, several mesozoic mammals survive

1317 the K/T boundary. In fact, by Eocene and times several multituberculate

1318 gondwanatheres were recovered from Patagonia and Perú (Goin et al., 2006, 2012; Antoine et al.,

1319 2011). In addition, dryolestoids were also found in and Miocene beds of Patagonia

1320 (Bonaparte et al., 1993; Gelfo and Pascual, 2001; Chimento et al., 2012; Rougier et al. 2012). In

1321 addition, a monotreme was also recoverd in the early Paleocene beds of Patagonia (Pascual et al.,

1322 1992). The existence of such atavisms, coexisting with derived placental mammals during the

1323 Cenozoic was considered as a “mixture fauna”, a pattern different from that seen in Northern

1324 Continents (Rougier et al., 2012). The increasing number of Mesozoic lineages now known to

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1325 survive in the Cenozoic of South America demonstrates the integration of these basal mammals

1326 into the eutherian and metatherian faunas of the Cenozoic.

1327 In , together with placental and marsupial mammals remains of multituberculate

1328 gondwanatherians were also reported (Goin et al. 2006), suggesting a similar pattern to that seen

1329 in South America.

1330 A similar history appears to be also evident in Australia, New Zealand and adjacent islands

s 1331 (see Fooden, 1972). In fact, living monotremes constitute a surviving mesozoic australosphenidan t n i 1332 lineage, and are known since the Late Mesozoic to Recent times in Australasia (Luo et al. 2001), r

P 1333 coexisting with marsupial and possibly placental mammals. In addition, recent finding of a e r

P 1334 Mesozoic ghost lineage on New Zealand is in agreement with the general pattern envisaged here

1335 (Worthy et al. 2006). Moreover, the addition of dryolestoids to Cenozoic (i.e. Yalkaparidon) and

1336 Recent (i.e. Notoryctes) australasian biota, suggest that the composition of mammalian faunas in

1337 this continent show similarities to South America.

1338 It is striking that the animalivorous and fossorial habits of Notoryctes, perhaps akin of African

1339 golden moles, have no close analog among living or extinct Australian mammals (Warburton,

1340 2003). The same may be applied to the mammalian woodpecker Yalkaparidon (Beck, 2003). This

1341 suggests that these forms exploitted marginal niches outside the ecological diversity of Australian

1342 therians. This is reminiscent to the equally relictual modern monotremes, which occupy a highly

1343 specialized ecological nicha (Phillips et al. 2009). In this way, the survival of Notoryctes may be

1344 also considered the result of the absence of usefull competitors of its niche.

1345

1346 CONCLUSIONS

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1347 Extant mammalian faunas around the world are mostly composed by marsupials and

1348 placentals. They conform the 99% of living species and are rather abundant. The only exception

1349 is the monotremes, currently restricted to five species geographically restricted to Australia and

1350 . Survival in recent times of another archaic mammal lineage (i.e. Dryolestoidea) that

1351 took origin in Jurassic times seems improbable. But recent discoveries and made in

1352 South America revealed that dryolestoids were highly diverse during Late Cretaceos, and most

1353 surprising, that survived well into Cenozoic times (Figure 19). Thus, although improbable, the s t 1354 survival of a dryolestoid in recent times, as here proposed for Notoryctes, it may not be as n i r 1355 extraordinary as can be think. P e r 1356 Early authors doubted and debated about the phylogenetic relationships of the “marsupial P 1357 mole” Notoryctes. However, recent analyses agreed in considering it as one of the most aberrant

1358 marsupials, due to the extreme peculiarities of its skeleton and soft anatomy. It is probable that

1359 the referral of Notoryctes to the Metatheria was based mainly by biogeographic grounds. A

1360 Dryolestoid affinity for Notoryctes constitutes the most parsimonious phylogenetic proposal and

1361 is congruent with the Late Cenozoic survival of the clade on southern landmasses. Present

1362 phylogeny indicates that dryolestoids underwent an unexpected post-Mesozoic radiation in some

1363 Gondwanan landmasses, and most of this evolutionary history remains obscure.

1364 Notoryctes join monotremes as examples of ancient and formerly widespread mammalian

1365 taxa that are currently living with relictual distributions in Australasia. The early isolation of such

1366 landmass probably allowed the survival of several archaic endemic taxa that became extinct in

1367 remaining continents. In fact, the mammalian faunas of such territories are dominated by

1368 plesiomorphic clades, including egg-lying monotremes and australidelphian marsupials (Jones et

1369 al., 2009), to which we add here the new “” Notoryctes.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1370 From a paleontological and phylogenetic perspective, efforts to conserve Notoryctes, the sole

1371 surviving member of an ancient mammalian clade with deep evolutionary roots in Gondwana,

1372 should be given the highest priority. If it can be preserved, the Mesozoic zoo that survives today

1373 in Australia can offer invaluable insights regarding past and present biodiversity.

1374

1375 ACKNOWLEDGEMENTS s t 1376 To F. Novas and M. Ezcurra for their critical reading of the manuscript. Special thanks to T. n i r 1377 Rich and M. Archer because of their detailed review of an advanced version of the manuscript. To P e 1378 D. Flores for his help during the revision of the comparative material under his care. To S. r

P 1379 Lucero, G. Lio, F. Brisson Egli, M.R. Derguy, R. Lucero, A. Scanferla, and E. Guerrero for their

1380 useful comments and discussions. Finally to J.F. Bonaparte for his comments and sharing several

1381 unpublished data.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1382 REFERENCES

1383 Allin E.F., Hopson J.A. 1992. Evolution of the auditory system in Synapsida (‘mammal-

1384 like ’ and primitive mammals) as seen in the fossil record. In: Webster DB, Fay RR,

1385 Popper AN, eds. The of hearing. New York: Springer-Verlag, 587–614.

1386 Amrine-Madsen, H., Scally, M., Westerman, M., Stanhope, M. J., Krajewski, C. W. &

1387 Springer, M. S. 2003 Nuclear gene sequences provide evidence for the monophyly of

s 1388 australidelphian marsupials. Mol. Phylogenet. Evol. 28, 186-196. t n i r 1389 Antoine, P.-O., Marivaux, L., Croft, D.A., Billet, G., Ganerød, M., Jaramillo, C., Martin, P e 1390 T., Orliac, M.J., Tejada, J., Altamirano, A.J., Duranthon, F., Fanjat, G., Rousse, S., Gismondi, r

P 1391 R.S. 2012. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of

1392 caviomorph origins and biogeography. Proceedings of the Royal Society B, 279(1732): 1319-

1393 1326.

1394 Archer, M. 1976. The basicranial region of marsupicarnivores (Marsupialia),

1395 interrelationships of carnivorous marsupials, and affinities of the insectivorous marsupial

1396 peramelids. Zoological Journal of the Linnean Society, 59: 217-322.

1397 Archer, M. in Zoogeography & Evolution in Australasia (eds M. Archer & G.

1398 Clayton) 633–808 ( in Space & Time, Hesperian Press, Carlisle, 1984).

1399 Archer, M., Hand, S. J. & Godthelp, H. 1988. A new order of Tertiary zalambdodont

1400 marsupials. Science 239, 1528-1531.

1401 Archer, M., Hand, S. & Godthelp, H. 1994. Riversleigh – the story of animals in ancient

1402 rainforests of inland Australia. Reed Books, .

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1403 Archer M, Beck R, Gott M, Hand S, Godthelp H, Black K (2011) Australia’s first fossil

1404 marsupial mole (Notoryctemorphia) resolves controversies about their evolution and

1405 palaeoenvironmental origins. Proc R Soc B 278: 1498-1506.

1406 Archibald, J.D. 1979. Oldest known eutherian stapes and a marsupial petrosal bone from

1407 the of .Nature 281: 669–670.

1408 Asher RJ, Horovitz I, Martin T, Sánchez-Villagra MR (2007) Neither a nor a

s 1409 : a Reexamination of Necrolestes patagonensis Ameghino. Amer Mus Novit 3546:1- t n i 1410 40 r P e 1411 Asher RJ, Sánchez-Villagra MR (2005) Locking yourself out: diversity among dentally r

P 1412 zalambdodont therian mammals. J Mammal Evol 12:265-282

1413 Asher, R. J., Horovitz, I. & Sánchez-Villagra, M. R. 2004. First combined cladistic

1414 analysis of marsupial mammal interrelationships. Mol. Phylogenet. Evol. 33, 240-250.

1415 Ashwell, K.W.S. The Neurobiology of Australian Marsupials. Brain evolution in the other

1416 mammalian radiation. Cambridge University Press, New York, USA (2010)

1417 Averianov AO, Archibald JD, Ekdale EG (2010a) New material of the Late Cretaceous

1418 deltatheroidan mammal Sulestes from Uzbekistan and phylogenetic reassessment of the

1419 metatherian–eutherian dichotomy. J Syst Palaeontol 8: 301–330.

1420 Averianov, A.O., Martin, T. and Lopatin, A.V. (2013). A new phylogeny for basal

1421 and Cladotheria and affinities of South American endemic Late Cretaceous

1422 mammals. Naturwissenschaften 100(4): 311-326.

1423 Barnett, C.H. and Napier, J.R. 1953. The form and mobility of the fibula in metatherian

1424 mammals. Journal of Anatomy 87(2): 207-213.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1425 Beck, R.M.D. 2009. Was the Oligo-Miocene Australian metatherian Yalkaparidon a

1426 ‘mammalian woodpecker’? Biological Journal of the Linnean Society, 2009, 97, 1–17.

1427 Beck, R.M.D. 2008. 'A dated phylogeny of marsupials using a molecular supermatrix and

1428 multiple fossil constraints: comparison with the fossil record.' Journal of 89:

1429 175-189.

1430 Beck, R.M.D., Godthelp, H., Weisbecker, V., Archer, M., Hand, S.J. 2008. 'Australia's

s 1431 oldest marsupial fossils and their biogeographical implications.' PLoS ONE 3: e1858. t n i r 1432 Benshemesh, J. & K. Johnson (2003). Biology and conservation of marsupial moles P e 1433 (Notoryctes). In: Jones M., C.R. Dickman & M. Archer, eds. Predators with Pouches: the r

P 1434 biology of carnivorous marsupials. Page(s) 464-474. , CSIRO Publishing.

1435 Bensley, B.A. 1903. On the evolution of the Australian Marsupialia: With remarks on the

1436 relationships of the marsupials in general. Trans. Linnean Soc. Lond., Ser. 2, Zool. 9: 83-217.

1437 Bonaparte JF (1986) Sobre Mesungulatum houssayi y nuevos mamíferos cretácicos de

1438 Patagonia. IV Congr Arg Paleont Bioestr Actas 2:48-61

1439 Bonaparte JF (1990) New Late Cretaceous mammals from the ,

1440 northern Patagonia. Nat Geogr Res 6:63-93

1441 Bonaparte, J. F. Approach to the significance of the Late Cretaceous mammals of South

1442 America. Berl. Geow Ab. E 13, 31–44 (1994).

1443 Bonaparte, J. F. New (Theria) from the Late Cretaceous of Los Alamitos,

1444 Argentina, and paleogeographical comments. N. Jahrb. Geol. Palaont., Ab. 224, 339-371

1445 (2002).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1446 Bonaparte, J.F. & Migale, L.A. Protomamíferos y mamíferos mesozoicos de América del

1447 Sur. Municipalidad de Mercedes, Museo Municipal de Ciencias Naturales “Carlos

1448 Ameghino”. 441 pp. (2010).

1449 Bonaparte JF, Rougier GW. 1987. Mamíferos del Cretácico Inferior de Patagonia. IV

1450 Congr Latinoamer Paleont. 1:343–359.

1451 Bonaparte, J.F., Van Valen, L.M. & Kramarz, A. La Fauna local de Punta peligro,

s 1452 Paleoceno inferior, de la provincia del Chubut, Patagonia, Argentina. Evol. Mon. 14, 1–61 t n i 1453 (1993). r P e 1454 Butler PM. 1990. Early trends in the evolution of tribosphenic molars. Biol Rev. 65:529– r

P 1455 552.

1456 Calaby, H.J., Corbett, L.K., Sharman, G.B. & Johnston, P.G. (1974). The chromosomes

1457 and systematic position of the marsupial mole, Notoryctes typhlops. Australian Journal of

1458 Biological Science 27: 529–532.

1459 Cardillo M, Bininda-Emonds ORP, Boakes E, Purvis A. 2004. A species-level

1460 phylogenetic supertree of marsupials. Journal of Zoology 264: 11–31.

1461 Cifelli, R. L. 1993 Theria of metatherian-eutherian grade and the origin of marsupials. In

1462 Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians,

1463 and marsupials (eds F. S. Szalay, M. J. Novacek & M. C. McKenna), pp. 205–215. New York,

1464 NY: Springer.

1465 Cifelli RL, Rowe T, Luckett WP, Banta J, Reyes R, et al. (1996) Fossil evidence for the

1466 origin of the marsupial pattern of tooth replacement. Nature 379: 715–718.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1467 Chester, S.G.B., E.J. Sargis, F.S. Szalay, J.D. Archibald & A.O. Averianov. 2010.

1468 Mammalian distal humeri from the Late Cretaceous of Uzbekistan. Acta Palaeontol. Pol. 55:

1469 199-211.

1470 Chester SGB, Sargis EJ, Szalay FS, Archibald DJ, Averianov AO (2012) Therian femora

1471 from the Late Cretaceous of Uzbekistan. Acta Paleontol Pol 57:53-64

1472 Chester SGB, Sargis EJ, Szalay FS, Archibald JD, Averianov AO (2010) Mammalian

s 1473 distal humeri from the Late Cretaceous of Uzbekistan. Acta Palaeontol Pol 55:199-211. t n i r 1474 Chimento NR, Agnolin FL, Novas FE. 2012. The Patagonian fossil mammal Necrolestes: P e 1475 a Neogene survivor of Dryolestoidea. Rev Mus Argentino Cienc Nat ns. 14(2):261–306. r P 1476 Chimento NR, Agnolin FL, Novas FE. 2014. The bizarre ‘metatherians’ Groeberia and

1477 Patagonia, late surviving members of gondwanatherian mammals. Historical Biology, DOI:

1478 10.1080/08912963.2014.903945.

1479 Chornogubsky L (2011). New remains of the dryolestoid mammal Leonardus cuspidatus

1480 from the Los Alamitos Formation (Late Cretaceous, Argentina). Palaontol Z 85:343-350

1481 Clemens WA, Lillegraven JA (1986) New late Cretaceous, North American advanced

1482 therian mammals that fit neither the marsupial nor eutherian molds. In: Flanagan KM,

1483 Lillegraven JA (eds) , Phylogeny and Philosophy. Contributions to Geology,

1484 University of Wyoming 3: 55-86.

1485 Cope, E. D. On the habits and affinities of the new Australian mammal, Notoryctes

1486 typhlops. Amer. Nat. 26, 121–128 (1892).

1487 Crompton AW (1971) The origin of the tribosphenic molar. In Kermack DM, Kermack

1488 KA, (eds) Early Mammals. Zool J Linn Soc 50, supplement 1:65-87

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1489 Dashzeveg D, Kielan-Jaworowska Z (1984) The lower jaw of an aegialodontid mammal

1490 from the of . Zool J Linn Soc 82:217-227

1491 Djakiew, D. and Jones, R.C. 1981. Structural differentiation of the male genital ducts of

1492 the (Tachyglossus aculeatus). J. Anat. 132, 2: 187-202.

1493 Dollo, Les ancêtres des Marsupiaux étaient-ils arbicoles ? in: Miscellanées biologiques

1494 dédiées au Professeur Alfred Gtiard à l'occasion du 25. anniversaire de la fondation de la

s 1495 station zoologique de Wimereux, Paris 1899. Ekdale, 2009 t n i r 1496 Ekdale, E.G., J.D. Archibald, and A.O. Averianov. 2004. Petrosal bones of placental P e 1497 mammals from the Late Cretaceous of Uzbekistan. Acta Palaeontologica Polonica 49: 161– r

P 1498 176.

1499 Fleischer, G. 1978. Evolutionary principles of the mammalian middle ear. Adv. Anat.

1500 Embryol. Cell Biol. 55, 1–70.

1501 Fooden J. 1972. Breakup of and isolation of relict mammals in Australia, South

1502 America, and Madagascar. Science. 175 (4024):894–898.

1503 Forasiepi AM, Martinelli AG (2003) A femur of a monotreme (Mammalia, Monotremata)

1504 from the Early Paleocene Salamanca Formation of Patagonia, Argentina. Ameghiniana

1505 40:625-630

1506 Forasiepi, A.M., Coria, R.A., Hurum, J. and Currie, P.J. 2013. First dryolestoid

1507 (Mammalia, Dryolestoidea, Meridiolestida) from the Coniacian of Patagonia and new

1508 evidence on their early radiation in South America. Ameghiniana 49(4): 497-504.

1509 Fox RC (1975) Molar structure and function in the Early Cretaceous mammal

1510 : Evolutionary implications for Mesozoic Theria. Can J Earth Sc 12:412-442

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1511 Fox, R.C. & Naylor, B.G. (1986). A new species of Didelphodon Marsh (Marsupialia)

1512 from the Upper Cretaceous of Alberta, Canada: Paleobiology and Phylogeny. Neues Jahrbuch

1513 für Geologie und Paläontologie. Stuttgart. Abhandlungen 172: 357–380

1514 Frey, V.R. Zur Ursache des Hodenabstiegs (Descensus testiculorum) bei Säugetieren. J.

1515 Zool. Syst. Evol. Res. 29, 40-65 (1991).

1516 Gadow, H. On the systematic position of Notoryctes typhlops. Proc. Zool. Soc. London

s 1517 1892, 361–370 (1892). t n i r 1518 Gambaryan, P.P. and Kielan−Jaworowska, Z. 1997. Sprawling versus parasagittal stance P e 1519 in multituberculate mammals. Acta Palaeontologica Polonica 42: 13–44. r P 1520 Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestida) from the

1521 early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation.

1522 Geodiversitas 23:369-379

1523 Goin, F.J., Carlini, A.A., and Pascual, R. 1986. Un probable marsupial del Cretácico

1524 Tardío del norte de Patagonia, Argentina. IV Congreso Argentino e Paleontología y

1525 Bioestratigrafía, Actas 2: 401–410.

1526 Goin FJ, Reguero MA, Pascual R, von KoenigswaldW, Woodburne MO, Case JA,

1527 Marenssi SA, Vieytes EC, Vizcaíno SF. 2006. First gondwanatherian mammal from

1528 Antarctica. In: Francis JE, Pirrie D, Crame JA, editors. Cretaceous–Tertiary high-latitude

1529 paleoenvironments, James Ross Basin, Antarctica. London: Spec Publ Geol Soc; p. 145–161.

1530 Goin FJ, Tejedor MF, Chornogubsky L, López GM, Gelfo JN, Bond M, Woodburne MO,

1531 Gurovich Y, Reguero M. 2012. Persistence of a Mesozoic, non-therian mammalian lineage

1532 (Gondwanatheria) in the mid- of Patagonia. Naturwissenschaften. 99:449–463.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1533 Goloboff PJ, Farris J, Nixon K (2008) A free program for phylogenetic analysis.

1534 24:774-786

1535 Gray, A. A. The labyrinth of animals. Vol. 2. (J. & A. Churchill, London, 1908).

1536 Hopson, J. A. & G. W. Rougier. 1993. Braincase structure in the oldest known skull of a

1537 therian mammal: Implications for mammalian systematics and cranial evolution. American

1538 Journal of Science, 293-A: 268-299. s t 1539 Horovitz, I. & Sánchez-Villagra, M. R. A morphological analysis of marsupial mammal n i r 1540 higher-level phylogenetic relationships. Cladistics 19, 181–212 (2003). P e r 1541 Horovitz, I. & Sánchez-Villagra, M. R. 2003 A morphological analysis of marsupial P 1542 mammal higher-level phylogenetic relationships. Cladistics 19, 181-212.

1543 Horovitz, I., Martin, T., Bloch, J., Ladevèze, S., Kurz, C. & Sánchez-Villagra, M.R.

1544 Cranial Anatomy of the Earliest Marsupials and the Origin of . PLoS ONE 4,

1545 e8278. doi:10.1371/journal.pone.0008278 (2009).

1546 Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from

1547 and its implications for mammalian evolution. Nature 390:137-142

1548 Hu Y-M, Fox RC, Wang Y-Q, Li C-K (2005) A new spalacotheriid symmetrodont from the

1549 Early Cretaceous of Northeastern China. Am Mus Nov 3475: 1–20.

1550 Hu, Y., J. Meng, C. Li, and Y. Wang. 2010. New basal eutherian mammal from the Early

1551 Cretaceous Jehol biota, , China. Proceedings of the Royal Society of London B

1552 Biological Sciences 277: 229–236.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1553 Hurum, J.H., Presley, R., and Kielan−Jaworowska, Z. 1996. The middle ear in

1554 multituberculate mammals. Acta Palaeontologica Polonica 41: 253–275.

1555 Jenkins, F. A., Jr. (1973). The functional anatomy and evolution of the mammalian

1556 humero-ulnar articulation. Am. J. Anat. 137: 281–298.

1557 Jenkins FA Jr, Parrington FR (1976) The postcranial skeletons of the mammals

1558 Eozostrodon, and Erythrotherium. Philos Trans Royal Soc London 273:387-

s 1559 431 t n i r 1560 Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of the P e 1561 mammalian skeleton. Nature 398:326-330. r P 1562 Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang J-P, Georgi JA (2002) The earliest known

1563 eutherian mammal. Nature 416:816-822

1564 Johnson, K. A. & Walton, D. W. in . Mammalia. (eds D.W. Walton &

1565 B.J. Richardson) 1B: 591-602 (Australian Government Publishing Service, Camberra, 1989).

1566 Jones, M. E. H. et al. A sphenodontine (Rhynchocephalia) from the Miocene of New

1567 Zealand and palaeobiogeography of the tuatara (Sphenodon). Proc. R. Soc. B 276, 1385–1390

1568 (2009).

1569 Kermack KA, Lee AJ, Lees PM, Mussett F (1987) A new docodont from the

1570 Marble. Zool J Linn Soc 89:1-39

1571 Kielan-Jaworowska Z. 1975. Preliminary description of two new eutherian genera from

1572 the Late Cretaceous of Mongolia. Palaeontol Pol. 33:5–16.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1573 Kielan−Jaworowska, Z. 1977. Evolution of the therian mammals in the Late Cretaceous

1574 of . Part II. Postcranial skeleton in Kennalestes and Asioryctes. In: Z.

1575 Kielan−Jaworowska (ed.), Results of the Polish−Mongolian Palaeontological Expeditions,

1576 Part VII. Palaeontologia Polonica 37: 65–83.

1577 Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of :

1578 origins, evolution, and structure. Columbia Univ. Press, New York

s 1579 Kielan-Jaworowska Z, Dashzeveg D (1989) Eutherian mammals from the Early t n i 1580 Cretaceous of Mongolia. Zool Scrip 18:347-355 r P e 1581 Kielan-Jaworowska, Z., and Gambaryan, P. P. (1994). Postcranial anatomy and habits of r

P 1582 Asian multituberculate mammals. Fossils Strata 36: 1–92.

1583 Kielan−Jaworowska, Z. & Hurum, J. H. Limb posture in early mammals: Sprawling or

1584 parasagittal. Acta Palaeontol. Pol. 51, 393–406 (2006).

1585 Kirsch, J.A.W., F.J. Lapointe & M.S. Springer (1997). DNA-hybridisation Studies of

1586 Marsupials and their Implications for Metatherian Classification. Australian Journal of

1587 Zoology. 45:211-280.

1588 Klaauw, C.J. van der 1931. The auditory bulla in some fossil mammals, with a general

1589 introduction to this region of the skull. Bulletin of the American Museum of Natural History

1590 62: 1–352.

1591 Kleisner, K., Ivell, R., Flegr, J. 2010. The evolutionary history of testicular externalization

1592 and the origin of the scrotum. Journal of Biosciences 35(1): 27-37.

1593 Krebs B (1969) Nachweis eines rudimentären Coronoids im Unterkiefer der Pantotheria

1594 (Mammalia). Paläontol Z 43:57-63.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1595 Krebs B (1971) Evolution of the mandible and lower dentition in dryolestoids

1596 (Pantotheria, Mammalia). In Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn

1597 Soc 50, supplement 1:89-102

1598 Krebs B (1991) Das Skelett von Henkelotherium guimarotae gen. et sp. nov.

1599 (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berl geow Ab A 133:1- 110

1600 Krebs B (1993) Das Gebiß von Crusafontia (Eupantotheria, Mammalia) —Funde aus der

s 1601 Unter-Kreide von Galve un Uña. Berl geow Ab E 9:233-252 t n i r 1602 Krebs B (1998) Drescheratherium acutum gen. et sp. nov., ein neuer Eupantotherier P e 1603 (Mammalia) aus dem Oberen Jura von Portugal. Berl geow Ab E 28:91-111 r P 1604 Ladevèze, S., Asher, R. J. & Sánchez-Villagra, M. R. 2008 Petrosal anatomy in the fossil

1605 mammal Necrolestes: evidence for metatherian affinities and comparisons with the extant

1606 marsupial mole. J. Anat. 213, 686–697.

1607 Ladevèze S, de Muizon C, Colbert M, Smith T. 2010. 3D computational imaging of the

1608 petrosal of a new multituberculate mammal from the Late Cretaceous of China and its

1609 paleobiologic inferences. Comptes Rendus Palevol 9: 319–330.

1610 Ladevèze S, Asher RJ, Sánchez-Villagra MR (2008) Petrosal anatomy in the fossil

1611 mammal Necrolestes: evidence for metatherian affinities and comparisons with the extant

1612 marsupial mole. J Anat 213:686-697

1613 Ladéveze, S., Muizon, C. de, Colbert, M. & Smith, T. 3D computational imaging of the

1614 petrosal of a new multituberculate mammal from the Late Cretaceous of China and its

1615 paleobiologic inferences. C. R. Palevol 9, 319-330 (2010).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1616 Lapointe, F.-J. and Kirsch, J.A.W. 2001. Construction and verification of a large

1617 phylogeny of marsupials. Australian Mammalogy 23: 9-22.

1618 Leche W (1907) Zur Entwicklungsgeschichte des Zahnsystems der Säugetiere, zugleich

1619 ein Beitrag zur Stammengeschichte dieser Tiergruppe. Teil 2. Zoologica (Stuttgart) 49:1-157

1620 Li G, Luo Z-X (2006) A Cretaceous symmetrodont therian with some monotreme-like

1621 postcranial features. Nature 439:195-200 s t 1622 Lillegraven JA. 1969. Latest Cretaceous mammals of upper part of Edmonton Formation n i r 1623 of Alberta, Canada, and review of marsupialplacental dichotomy in mammalian evolution. P e 1624 Univ Kansas Paleontol Contr. 50:1–122. r P 1625 Lopatin AV, Averianov AO (2007) Kielantherium, a basal tribosphenic mammal from the

1626 Early Cretaceous of Mongolia, with new data on the aegialodontian dentition. Acta Palaeontol

1627 Pol 52:441-446.

1628 Lucas SG, Luo ZX. 1993. Adelobasileus from the Upper Triassic of western Texas: the

1629 oldest mammal. Journal of 13: 309–334.

1630 Luo Z-X (2007) Transformation and diversification in early mammal evolution. Nature

1631 450: 1011-1019.

1632 Luo ZX, Crompton AW. 1994. Transformations of the quadrate (incus) through the

1633 transition from non-mammalian cynodonts to mammals. Journal of Vertebrate Paleontology

1634 14: 341–374.

1635 Luo Z. -X., Ruf, I., Schultz, J. A. & Martin, T. Fossil evidence on evolution of inner ear

1636 cochlea in Jurassic mammals. Proc. R. Soc. B 278, 28-34 (2011).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1637 Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001a) Dual origin of tribosphenic

1638 mammals. Nature 409:53-57

1639 Luo Z-X, Crompton AW, Sun A-L (2001b) A New Mammaliaform from the Early Jurassic

1640 and Evolution of Mammalian Characteristics. Science 292:1535-1540

1641 Luo, Z-X. & J.R. Wible. 2005. A new digging mammal and early

1642 mammalian diversification. Science 308: 103–107. s t 1643 Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental adaptations in pseudotribosphenic n i r 1644 and tribosphenic mammals. Nature 450:93-97 P e r 1645 Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic P 1646 mammals. Acta Palaeontol Pol 47:1-78

1647 Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence

1648 of marsupials and placentals. Nature 476:442-445

1649 Luo, Z. -X., Ji, Q., Wible, J. R. & Yuan, C. -X. An early Cretaceous tribosphenic mammal

1650 and metatherian evolution. Science 302, 1934–1940 (2003).

1651 Luo, Z.-X., Ruf, I. & T. Martin. 2012. The petrosal and inner ear of the Late Jurassic

1652 cladotherian mammal Dryolestes leiriensis and implications for ear evolution in therian

1653 mammals. Zoological Journal of the Linnean Society, 166: 433–463.

1654 Marshall, L.G. (1979). Evolution of metatherian and eutherian (mammalian) characters: a

1655 review based on cladistic methodology. Zoological Journal of the Linnean Society 66: 369–

1656 410.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1657 Martin T (1995) from the Kimmeridge of the Guimarota coal mine

1658 (Portugal) and their implications for dryolestid systematics and phylogeny. In Sun A-L, Wang

1659 Y (eds) Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota. Ocean Press,

1660 Beijing, pp 229-231

1661 Martin T (1997) Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria,

1662 Mammalia). J Mammal Evol 4:1-18

s 1663 Martin T (1999) Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von t n i 1664 Portugal. Abh Senckenb Naturf Gesell 550:1-119 r P e 1665 Martin T, Rauhut OWM. 2005. Mandible and dentition of Asfaltomylos patagonicus r

P 1666 (, Mammalia) and the evolution of tribosphenic teeth. J Vert Paleontol.

1667 25(2):414–425.

1668 Martinelli, A.G., Bonaparte, J.F., Schultz, C.L. and Rubert, R. 2007. A new tritheledontid

1669 (Therapsida, Eucynodontia) from the of Rio Grande do Sul (Brazil) and its

1670 phylogenetic relationships among carnivorous non-mammalian eucynodonts. Ameghiniana

1671 42(1): 191-208.

1672 Mason, M. J. Middle ear structures in fossorial mammals: a comparison with non-

1673 fossorial species. J. Zool. 255, 467-486 (2001).

1674 M.J. Mason, Morphology of the middle ear of golden moles (Chrysochloridae), J. Zool.

1675 260 391-403. (2003).

1676 M.J. Mason, Evolution of the middle ear apparatus in talpid moles, J. Morphol. 267 678-

1677 695. (2006).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1678 McKenna, M.C. 1961. On the of the mammalian subclass .

1679 American Museum Novitates 2066: 1–27.

1680 McKenna, M.C. (1975). Toward a phylogenetic classification of the Mammalia. Pp. 21–

1681 46 in Luckett, W.P. & Szalay, F.S. (eds) Phylogeny of the . Plenum Press : New York

1682 Meng J, Wyss A. 1995. Monotreme affinities and low frequency hearing suggested by

1683 multituberculate ear. Nature 377: 141–144. s t 1684 Meng, J. Wang, Y. and Li, C. 2011. Transitional mammalian middle ear from a new n i r 1685 Cretaceous Jehol eutriconodont. Nature 472 (7342): 181–185. P e r 1686 Meredith, R. W. et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg P 1687 on Mammal Diversification. Science 334, 521

1688 Meredith, R. W., Krajewski, C., Westerman, W. & Springer, M. S. 2009 Relationships and

1689 divergence times among the orders and families of marsupials. Mus. N. Ariz. Bull. 65, 383-

1690 406.

1691 Meredith, R. W., Westerman, M., Case, J. A. & Springer, M. S. 2008 A phylogeny and

1692 timescale for marsupial evolution based on sequences for five nuclear genes. J. Mamm. Evol.

1693 15, 1-36. - very strong molecular (nuclear) support for Notoryctes within crown-group

1694 Marsupialia

1695 Mess, A. y Carter, A.M. 2006. Evolutionary Transformations of Fetal Membrane

1696 Characters in Eutheria with Special Reference to . Journal of Experimental Zoology

1697 306B: 140–163.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1698 Muizon, C.de. 1998. Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the

1699 early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20:

1700 19-142.

1701 Nilsson, M. A., Arnason, U., Spencer, P. B. S. & Janke, A. 2004 Marsupial relationships

1702 and a timeline for marsupial radiation in South Gondwana. Gene 340, 189-196.

1703 Nilsson, M. A., Churakov, G., Sommer, M., Tran, N.V., Zemann, A., Brosius, J. &

s 1704 Schmitz, J. 2010 Tracking marsupial evolution using archaic genomic retroposon insertions. t n i 1705 PLoS Biol. 8, e1000436. r P e 1706 Novacek MJ. 1986. The skull of leptictid insectivorans and the higher-level classification r

P 1707 of eutherian mammals. Bulletin of the American Museum of Natural History 183: 1–112.

1708 Nowak, R. M. Walker’s Mammals of the World. Sixth edition (The Johns Hopkins Univ.

1709 Press, Baltimore and London, 1999).

1710 Ogilby, J.D. (1892). Catalogue of Australian Mammals, with Introductory notes on

1711 General Mammalogy. Catalogue No. 16. : Sydney 142 pp.

1712 Páez Arango, N. 2008. Dental and craniomandibular anatomy of Peligrotherium

1713 tropicalis: the evolutionary radiation of South American dryolestoid mammals. Thesis of

1714 Master Of Science, Department of Anatomical Sciences and Neurobiology, School of

1715 Medicine, University of Louisville, Louisville, Kentucky. 232 pp.

1716 Pascual R, Archer M, Ortiz-Jaureguizar E, Prado JL, Godthelp H, Hand SJ. 1992. First

1717 discovery of monotremes in South America. Nature 356:704–705.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1718 Pascual R, Ortíz-Jaureguizar E (2007) The Gondwanan and South American Episodes:

1719 Two Major and Unrelated Moments in the History of the South American Mammals. J

1720 Mammal Evol 14:75-137

1721 Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar

1722 teeth. Fieldiana: Geology 13:1-105

1723 Patterson B (1958) Affinities of the Patagonian fossil mammal, Necrolestes. Breviora

s 1724 94:1-14 t n i r 1725 Phillips MJ, Pratt RC. 2008. Family-level relationships among the Australasian marsupial P e 1726 ‘herbivores’ (Diprotodontia: , , and possums). Molecular r

P 1727 Phylogenetics and Evolution 46: 594–605.

1728 Phillips, M. J., McLenachan, P. A., Down, C., Gibb, G. C. & Penny, D. 2006 Combined

1729 mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian

1730 marsupial radiations. Syst. Biol. 55, 122-137.

1731 Phillips MJ, Bennett TH, Lee MSY. 2009. Molecules, morphology, and ecology indicate a

1732 recent, amphibious ancestry for . Proc Natl Acad Sci USA. 106(40):17089–17094.

1733 Presley, R. Pelvic problems for mammals. Nature 389, 440-441 (1997).

1734 Pridmore, P.A. 1985. in monotremes (Mammalia: Monotremata).

1735 Journal of Zoology 205(1): 53-73.

1736 Pridmore, P.A., Rich, T.H., Vickers-Rich, P. & Gambaryan, P.P. 2005. A Tachyglossid-

1737 Like Humerus from the Early Cretaceous of South-Eastern Australia. Journal of Mammalian

1738 Evolution, 12 (3/4): 359-378.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1739 Prothero, D.R. 1981. New Jurassic mammals from , Wyoming, and the

1740 interrelationships of non−tribosphenic Theria. Bulletin of the American Museum of Natural

1741 History 167: 277–326.

1742 Reese, S., Pfuderer, U., Bragulla, H., Loeffer, K. & Budras, K. 2001. Topography,

1743 structure and fuction of the patella and the patelloid in marsupials. Anatomy, Histology and

1744 Embryology 30: 289-294.

s 1745 Renfree, M.B. Ontology, Genetic Control, and Phylogeny of Reproduction in t n i 1746 Monotreme and Therian Mammals. In: Szalay, F.S., Novacek, M.J., and McKenna, M.C. r

P 1747 (eds.). Mammal Phylogeny. Mesozoic Differentiation, Multituberculates, Monotremes, Early e r

P 1748 Therians, and Marsupials. Springer-Verlag. Pp. 4-20 (1993).

1749 Rich, T.H., Flannery, T.F., Trusler, P., Kool, L., van Klaveren, N., and Vickers−Rich, P.

1750 2001. Asecond placental mammal from the Early Cretaceous Flat Rocks site,,

1751 Australia. Records of the Queen Victoria Museum 110: 1–9.

1752 Rich TH, Hopson JA, Musser AM, Flannery TF, Vickers-Rich P (2005) Independent

1753 Origins of Middle Ear Bones in Monotremes and Therians. Science 307:910-914

1754 Riedelsheimer, B., Unterberger, P., Künzle, H. and U. Welsch. 2007. Histological study of

1755 the cloacal region and associated structures in the tenrec Echinops telfairi.

1756 Mammalian Biology 72(6): 330-341.

1757 Rougier GW, Wible JR, Hopson JA. 1992. Reconstruction of the cranial vessels in the

1758 early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the

1759 mammalian cranial vascular system. J Vertebr Paleontol 12:188–216.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1760 Rougier GW, Wible JR, Hopson JA. 1996. Basicranial anatomy of fruitaensis

1761 (, Mammalia) from the late Jurassic of Colorado, and a reappraisal of

1762 mammaliaform interrelationships. Am Mus Novit 3183: 1–38.

1763 Rougier GW, Wible JR, Novacek MJ. 1998. Implications of specimens for

1764 early marsupial history. Nature 396:459–463.

1765 Rougier GW, Apesteguía S, Gaetano LC (2011) Highly specialized mammalian skulls

s 1766 from the Late Cretaceous of South America. Nature 479:98-102 t n i r 1767 Rougier GW, Wible JR, Beck RMD, Apesteguía S. 2012. The Miocene mammal P e 1768 Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic r

P 1769 of South America. Proc Natl Acad Sci USA. 109(49):20053–20058.

1770 Rougier, G. W., Forasiepi, A. M., Hill, R. V. & Novaceck, M. New mammalian remains

1771 from the Late Cretaceous La Colonia Formation, Patagonia, Argentina. Acta Paleontol. Pol.

1772 54, 195-212 (2008).

1773 Rougier, G.W., Chornogubsky, L., Casadío, S., Páez Arango, N. & Giallombardo, A.

1774 Mammals from the , Late Cretaceous, Argentina. Cret. Res. 30, 223-238

1775 (2009).

1776 Rougier, G.W., Wible, J.R. & Hopson, J.A. 1992. Reconstruction of the cranial vessels in

1777 the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the

1778 mammalian cranial vascular system. J. Vert. Paleontol. 12, 188-216 (1992).

1779 Rowe T. 1993. Phylogenetic systematics and the early history of mammals. In: Szalay FS,

1780 Novacek MJ, McKenna MC, editors. Mammalian phylogeny. Vol. 1. Mesozoic

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1781 differentiation, multituberculates, monotremes, early therians, and marsupials. New York:

1782 Springer-Verlag. p 129–145.

1783 Rowe T. 1996. Coevolution of the mammalian middle ear and neocortex. Science

1784 273:651–654.

1785 Rowe, T., T.E. Macrini, and Z.-X. Luo. 2011. Fossil evidence on origin of the mammalian

1786 brain. Science 332: 955–957. s t 1787 Rowe, M.J. & Bohringer, R.C. Functional organization of the in n i r 1788 monotremes. In: Augee, M.L. (ed.). Platypus and Echidnas. Royal Zoological Society of New P e 1789 South Wales, Australia. Pp. 177-193 (1992). r P 1790 Ruf, I., Luo, Z.-X., Wible, J. R. & Martin, T. 2009. Petrosal anatomy and inner ear

1791 structure of the Late Jurassic mammal Henkelotherium and the ear region characters of basal

1792 therian mammals. J. Anat. 214, 679–693.

1793 Sánchez-Villagra, M.R. 2001. Ontogenetic and phylogenetic transformations of the

1794 vomeronasal complex and nasal floor elements in marsupial mammals. Zoological Journal of

1795 the Linnean Society 131: 459–479.

1796 Sánchez-Villagra MR, Smith KK. 1997. Diversity and evolution of the marsupial

1797 mandibular angular process. J Mammal Evol. 4:119–144.

1798 Sanchez-Villagra, M. et al. Exceptionally preserved North American Paleogene

1799 metatherians: adaptations and discovery of a major gap in the fossil record. Biol.

1800 Lett. 3, 318-322 (2007).

1801 Schmelzle T, Sánchez-Villagra MR, Maier W (2007) Vestibular labyrinth evolution in

1802 diprotodontian marsupial mammals. Mammal Study 32:83-97

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1803 Schultz JA, Martin T (2011) Wear pattern and functional morphology of dryolestoid

1804 molars (Mammalia, Cladotheria). Paläontol Z 85:269-285

1805 Scott WB (1905) Paleontology. Part II. Insectivora. Report of the Princeton University

1806 Expeditions to Patagonia 5:365-383

1807 Segall, W. Morphological parallelisms of bulla and auditory ossicles in some insectivores

1808 and marsupials. Field. Zool. 51, 169-205 (1970). s t 1809 Sereno PC. 2006. Shoulder girdle and in multituberculates: evolution of n i r 1810 parasagittal forelimb posture in mammals. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR, P e 1811 eds. paleobiology: perspectives on the , , and reptiles. r

P 1812 Chicago, IL: University of Chicago Press, 315–366.

1813 Sereno PC, McKenna MC (1995) Cretaceous multituberculate skeleton and the early

1814 evolution of the mammalian shoulder girdle. Nature 377:144-147

1815 Shoshani, J. & Mckenna, M.C. 1998. Higher taxonomic relationships among extant

1816 mammals based on morphology, with selected comparisons of results from molecular data.

1817 Molecular Phylogenetics and Evolution 9(3): 572-584.

1818 Sigogneau-Russell D (1998) Discovery of a Late Jurassic Chinese mammal in the upper

1819 of England. C R Acad Sc 327:571-576

1820 Sigogneau-Russell D (1999) Réévaluation des Peramura (Mammalia, Theria) sur la base

1821 de nouveaux spécimens du Crétacé inférieur d’Angleterre et du Maroc. Geodiversitas 21:93-

1822 127

1823 Sigogneau-Russell D (2003) Holotherian mammals from the Forest Marble (Middle

1824 Jurassic of England). Geodiversitas 25: 501–537.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1825 Smith, G. E. The comparative anatomy of the cerebrum of Notoryctes typhlops. Trans. R.

1826 Soc. S Australia 19, 167–193 (1895).

1827 Spencer, B. 1896b. Report on the work of the Horn Scientific Expedition to Central

1828 Australia. Part I: Introduction, Narrative, Summary of Results and Supplement to Zoological

1829 Report. Melville, Mullen and Slade, Melbourne.

1830 Springer, M.S., Burk, A., Kavanagh, J.R., Maddell, V.G., Stanhope, M.J. 1997. The

s 1831 interphotoreceptor retinoid binding gene in therian mammals: Implications for higher t n i 1832 level relationships and evidence for loss of function in the marsupial mole. PNAS 94(25): r

P 1833 13754–13759. e r

P 1834 Springer, M.S., Westerman, M., Kavanagh, J.R., Burk, A., Woodburne, M.O., Kao, D.J. &

1835 Krajewski, C. 1998. The origin of the Australasian marsupial fauna and the monophyletic

1836 affinities of the enigmatic monito de monte and marsupial mole. Proc. R. Soc. London B 265,

1837 2381–2386.

1838 Stirling, E. C. 1888 Preliminary notes on a new Australian mammal. Trans. R. Soc. South

1839 Aust. 11, 21–24.

1840 Stirling, E.C. 1891. Description of a new genus and species of Marsupialia, Notoryctes

1841 typhlops. Trans. R. Soc. S. Aus 14, 154-187 (1891).

1842 Sweet, G. Contributions to our knowledge of the anatomy of Notoryctes typhlops. Parts

1843 IV and V. The skin, , and reproductive organs of Notoryctes. Quart. J. Micr. Sc. 51, 325–

1844 344 (1907).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1845 Szalay FS. 1982. A new appraisal of marsupial phylogeny and classification. In: Archer

1846 M, ed. Carnivorous marsupials. Mosman, NSW: Royal Zoological Society of New South

1847 Wales, 621–640.

1848 Szalay, F.S. and Sargis, E.J. 2006. Cretaceous therian tarsals and the metatherian-

1849 eutherian dichotomy. Journal of Mammalian Evolution 13: 171-210.

1850 Szalay, F.S. Evolutionary history of the marsupials and an analysis of osteological

s 1851 characters. Cambridge University Press, New York. 481 pp. (1994). t n i r 1852 Temple-Smith, T.; Grant, T. 2001. Uncertain breeeding: a short history of reproduction in P e 1853 monotremes. Reprod. Fertil. Dev. 13, 487–497. r P 1854 Thomas, O. Notoryctes in north-west Australia. Ann. Mag. Nat. Hist. 6, 111–113 (1920).

1855 Turnbull, W. D. in Dental Morphology and Evolution (ed A. A. Dahlberg) 151-179 (Univ.

1856 Chicago Press, Chicago, 1971).

1857 Vaughan, T. A., Ryan, J. M. & Czaplewski, N. J. Mammalogy. 5th Edition. (Jones &

1858 Bartlett Learning, 2010).

1859 Vázquez-Molinero, R., Martin, T., Fischer, M.S., Frey, R. 2001. Comparative anatomical

1860 investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991

1861 (Eupantotheria, Mammalia) and their implications for its locomotion. Mitt. Mus. Nat.kd.

1862 Berl., Zool. Reihe 77(2): 207-216.

1863 von Koenigswald W, Goin FJ. 2000. Enamel differentiation in South American marsupials

1864 and a comparison of placental and marsupial enamel. Palaeontogr Abt A. 255:1–40.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1865 Vullo R, Gheerbrant E, Muizon Cd, Néraudeau D (2009) The oldest modern therian

1866 mammal from Europe and its bearing on stem marsupial paleobiogeography. PNAS

1867 106:19910-19915

1868 Waddell, P.J., Okada, N., Hasegawa, M. 1999. Towards resolving the interordinal

1869 relationships of placental mammals. Systematic Biology 48: 1–5.

1870 Warburton, N.M. Functional morphology and evolution of marsupial moles (Marsupialia;

s 1871 Notoryctemorphia). (Unpublished PhD thesis, School of Biology, Univ. Western t n i 1872 Australia, 2003). r P e 1873 Werdelin, L.; Nilsonne, A. 1999. The evolution of the scrotum and testicular descent in r

P 1874 mammals: a phylogenetic view. J. Theor. Biol. 196, 61–72.

1875 Wible JR. 1990. Petrosals of Late Cretaceous marsupials from North America, and a

1876 cladistic analysis of the petrosal in therian mammals. J Vertebr Paleontol 10:183–205.

1877 Wible, J.R., Miao, D. & Hopson, J.A. 1990. The septomaxilla of fossil and recent

1878 and the problem of the septomaxilla of monotre-mes and . zoological

1879 Journal of the Linnean Society ( 1990), 98: 203-228.

1880 Wible, J.R. & Hopson, J.A. Basicranial Evidence for Early Mammal Phylogeny. In:

1881 Szalay, F.S., Novacek, M.J. & McKenna, M.C. (eds.). Mammal Phylogeny. Mesozoic

1882 Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-

1883 Verlag. Pp. 45-62 (1993).

1884 Wible, J.R., Rougier, G.W., Novacek, M.J. & McKenna, M.C. Earliest Eutherian Ear

1885 Region: A Petrosal Referred to Prokennalestes from the Early Cretaceous of Mongolia.

1886 American Museum Novitates 3322, 1-44 (2001).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1887 Wible JR, Rougier GW, Novacek MJ, Asher RJ. 2009. The eutherian mammal Maelestes

1888 gobiensis from the Late Cretaceous of Mongolia and the phylogeny of cretaceous Eutheria.

1889 Bull Amer Mus Nat Hist. 327:1–123.

1890 Wood, C.B. & Rougier, G.W. 2005. Updating and recoding enamel microstructure in

1891 mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. Journal

1892 of Mammalian Evolution, 12: 433-460.

s 1893 Woodburne, M. O. & Case, J. A. Dispersal, vicariance, and the Late Cretaceous to early t n i 1894 Tertiary land mammal biogeography from South America to Australia. J. Mammal. Evol. 3, r

P 1895 121-161 (1996). e r

P 1896 Worthy TH, Tennyson AJD, Archer M, Musser AM, Hand SJ, Jones C, Douglas BJ,

1897 McNamara JA, Beck RMD. 2006. Miocene mammal reveals a Mesozoic ghost lineage on

1898 insular New Zealand, southwest Pacific. Proc Natl Acad Sci USA. 103:19419–19423.

1899 Wroe, S., Ebach, M., Ahyong, S., de Muizon, C., and Muirhead, J. (2000). Phylogeny of

1900 Dasyuromorphia:a cladistic analysis using cranial and dental data. Journal of Mammalogy 81,

1901 1008 – 1024.

1902 Zeller U. 1993. Ontogenetic evidence for cranial homologies in monotremes and therians,

1903 with special reference to Ornithorhynchus. In: Szalay FS, Novacek MJ, McKenna MC, eds.

1904 Mammal phylogeny – Mesozoic differentiation, multituberculates, monotremes, early

1905 therians, and marsupials. New York: Springer-Verlag, 95–107.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1906 Figures. s t n i r P e r P

1907

1908 Figure 1. Skull and dentition of Notoryctes typhlops compared with selected therian and

1909 non-therian mammals. A, Notoryctes typhlops (ZIUT-SZ10068, Zoologisches Institut

1910 Universitat Tübingen, Germany) skull in dorsal (left above), lateral (left below), and ventral

1911 (central) views, B, Notoryctes typhlops (BMNH 39.4210, British Museum of Natural History,

1912 England) right mandible in oclusal (above) and lateral (below) views. C-G, lower : C,

1913 m1-m7 of Dryolestes (Dryolestoidea); D, m1-m4 of Notoryctes; E, ?m2-3 of Mesungulatum

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1914 (Meridiolestida); F, p1-m3 of Asiatherium (Metatheria); G, p1-m4 of Zalambdalestes. H-L,

1915 upper dentition of selected mammals: H, M1-M7 of Dryolestes (Dryolestoidea); I, M1-M3 of

1916 Notoryctes; J, molariform of Mesungulatum (Meridiolestida); K, M1-M4 of Asiatherium

1917 (Metatheria); l, P3-M3 of Zalambdalestes (Eutheria). D, based on BMNH 39.4210; I, based on

1918 ZIUT-SZ10068. A-B, scale bar: 10 mm; C-L, not to scale.

1919 s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1920

1921 Figure 2. Upper dentitions of selected mammaliaforms in oclusal view. A, M1-M7 of Dryolestes

1922 (Dryolestoidea); B, M1-M5 of Henkelotherium (Dryolestoidea); C, M1-M7 of Krebsotherium

1923 (Dryolestoidea); D, ?M of Crusafontia (Dryolestoidea); E, ?M of Laolestes (Dryolestoidea); F, ?M3 of

1924 Mesungulatum (Dryolestoidea); G, ?M3 of Coloniatherium (Meridiolestida); H, ?M of Brandonia

1925 (Meridiolestida); I, ?M of Casamiquelia (Meridiolestida); J, ?M of Groebertherium (Meridiolestida); K,

1926 M1-M3 of Notoryctes (Meridiolestida); L, ?M1-3 of Leonardus (Meridiolestida); M, M1-M3 of Cronopio

1927 (Meridiolestida); N, P4-M2 of Necrolestes (Meridiolestida); O, M1-M4 of Asiatherium (Metatheria); P,

1928 P3-M3 of Prokennalestes (Eutheria); Q, M1-M2 of (Monotremata); R, M1-M4 of Alphadon

1929 (Metatheria); S, P3-M3 of Zalambdalestes (Eutheria). A-J, L-S modified from Chimento et al. (2012), K,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1930 based on ZIUT-SZ10068. Arrow indicates distal tooth face. References: blue, paracone; red, metacone;

1931 green, stylocone; yellow, metastyle; light blue, parastyle; orange, protocone; violet, cusp "C".

1932 Abbreviations: metc, metacrista; mr, median ridge; prpc, preparacrista. Not to scale. s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1933

1934 Figure 3. Lower dentitions of selected mammaliaforms in oclusal view. A, m1-m7 of Dryolestes

1935 (Dryolestoidea); B, p4-m2 and m5-m8 of Guimarotodus (Dryolestoidea); C, ?m of Chunnelodon

1936 (Dryolestoidea); D, ?m of Tathiodon (Dryolestoidea); E, ?m of Laolestes (Dryolestoidea); F, ?m of

1937 Amblotherium (Dryolestoidea); G, m1-m4 of Notoryctes (Meridiolestida); H, p4-m1 of Mesungulatum

1938 (Dryolestoidea); I, two molars of Leonardus (Meridiolestida); J, P2-M3 of Necrolestes (Meridiolestida);

1939 K, p3-m4 of Asiatherium (Metatheria); L, p4-m3 of Prokennalestes (Eutheria); M, p3-m4 of Alphadon

1940 (Metatheria); N, dentition of Zalambdalestes (Eutheria); O, p4-m3 of Aukstribosphenos

1941 (Australosphenida); P, m1-m3 of Steropodon (Australosphenida). A-F, H-P modified from Chimento et al.

1942 (2012); G, based on BMNH 39.4210. Arrows indicate distal face of tooth. References: blue, protoconid;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1943 red, paraconid; green, metaconid; yellow, hipoconulid; orange, entoconid; light blue, hipoconid. Not to

1944 scale. s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1945

1946 Figure 4. Compared oclusal views of the maxillar check-teeth of Notoryctes (A),

1947 Cronopio (B) and Necrolestes (C). A correspond to ZIUT-SZ10068; B modified from Rougier et

1948 al. (2011); C modified from Asher et al. (2007).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r

P 1949 e r P 1950 Figure 5. Comparisons of petrosal anatomy of selected mammals in ventral (above) and

1951 dorsal views (below). A,E, Necrolestes; B,F, Notoryctes; C,G, ; D,H,

1952 Prokennalestes. A,B,E,F modified from Ladevèze et al. (2008); C,G modified from Horovitz et

1953 al. (2009); D,H, modified from Wible et al. (2001).

1954

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1955

1956 Figure 6. Selected post-cranial bones of Notoryctes compared with Necrolestes. A, femur of

1957 Notoryctes; B, femur of Necrolestes; C, left ulna of Notoryctes; D, right ulna of Necrolestes

1958 (reversed); E, left femur of Notoryctes; F, right femur of Necrolestes (reversed); G, left fibula of

1959 Notoryctes; H, fibula of Necrolestes. Character numbers and states: 211(0), lesser tubercle of

1960 the humerus relative to the greater tubercle, narrower; 215(0), ulnar articulation on the distal

1961 humerus, bulbous; 217(0), entepicondyle (medial epicondyle) and ectepicondyle (lateral

1962 epicondyle) of the humerus, robust; 220(1), styloid process of the radius, strong; 244(1), patellar

1963 facet (‘groove’) of the femur shallow and weakly developed; 249(1), parafibular process of the

1964 fibula fused to fibula and enlarged. A, B, C, H, modified from Asher et al. (2007); D and F

1965 correspond to MACN A-5751 and MACN A-5747, respectively; E and G correspond to ZMB

1966 35694.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1967

1968 Figure 7. Inner ear morphology of selected mammals. A, Ornithorhynchus (Monotremata) in

1969 median (above) and ventral (below) views; B, cf. Tombaatar (Multituberculata) in median

1970 (above) and ventral (below) views; C, Dryolestes (Dryolestoidea) in median (above) and ventral

1971 (below) views; D, Henkelotherium (Dryolestoidea) in dorsomedian (above) and median (below)

1972 views; E, Notoryctes (Dryolestoidea) in dorsal (above) and lateral (below) views; F,

1973 (Dryolestoidea) in anterior view; G, Mimoperadectes (Metatheria) in lateral

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1974 view; H, Didelphys (Metatheria) in median (above) and ventral (below) views; I, Petauroides

1975 (Metatheria) in lateral (above) and anterior (below) views; J, Loris (Eutheria) in lateral (above)

1976 and anterior (below) views; K, Adapis (Eutheria) in lateral (above) and anterior (below) views. A,

1977 C, and H modified from (50); B modified from (82); D modified from (49); E modified from

1978 (48); F modified from (80); G modified from (83); I modified from (84); J-K modified from (85).

1979 Abbreviations: asc, anterior semicircular canal; cc, crus commune; co, cochlea; lsc, lateral

1980 semicircular canal; psc, posterior semicircular canal; scc, secondary crus commune. Not to scale. s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1981

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

1982 Figure 8. A-B, lateral view of skulls of Notoryctes in right lateral view, showing a detail of the snout; A,

1983 Notoryctes typhlops (ZIUT-SZ10068); B, Notoryctes typhlops (AMNH 202107, modified from Rodgers,

1984 2008). C-J, lateral view of the skull of basal mammaliaforms; C, Repenomamus (modified from Hu et al.,

1985 2005); D, Hadrocodium (modified from Luo et al., 2001); E, Probainognathus (modified from Bonaparte

1986 & Migale, 2010); F, Ornithorhynchus (modified from Kielan-Jaworowska et al., 2004); G, Sinoconodon

1987 (modified from Kielan-Jaworowska et al., 2004); H, Notoryctes (modified from Rodgers, 2008); I,

1988 Vincelestes (modified from Kielan-Jaworowska et al., 2004); J, Cronopio (modified from Rougier et al.,

1989 2011). Septomaxilla indicated in colour blue. Abbreviations: Mx, maxilla; Pmx, premaxilla; Smx, s t 1990 septomaxilla; Ns, nasal. Not to scale. n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1991

1992 Figure 9. A, skull of Notoryctes typhlops (ZIUT-SZ10068) in right lateral view (at left), ventrolateral view

1993 of the snout (at right); B, skull of Notoryctes typhlops (ZIUT-SZ10068) in left lateral view (at right),

1994 ventrolateral view of the snout (at left). Abbreviations: sept, septomaxilla.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

1995

1996 Figure 10. Comparisons between carpal manual elements of selected mammaliaforms. A,

1997 Ornithorhynchus (Monotremata); B, Zhangheotherium (Symmetrodonta); C, Notoryctes

1998 (Dryolestoidea); D, Jeholodens (Mammaliaformes); E, Sinodelphys (Metatheria); F, Asiatherium

1999 (Metatheria); G, Didelphys (Metatheria); H, Dromiciops (Metatheria); I, Eomaia (Eutheria); J,

2000 Zalambdalestes (Eutheria); K, Asioryctes (Eutheria); L, Talpa (Eutheria) (A-B, D, G- J modified

2001 from Ji et al., 2002; C modified from Szalay, 1994; E modified from Luo et al., 2003; F modified

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2002 from Szalay & Trofimov, 1996; K modified from Kielan-Jaworowska et al., 2004; L modified

2003 from Holmgren, 1952). References: red, hamate; blue, triquetrum; green, scaphoid. Not to scale. s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

2004 2005 Figure 11. Comparisons between tarsal pedal elements of selected mammaliaforms.

2006 Monotremata: A, Tachyglossus; B, Ornithorhynchus; Dryolestoidea: C, Notoryctes;

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2007 Mammaliaformes: D, Jeholodens; Theria: E, Echymipera; F, ; G, ; H,

2008 ; I, Dasyurus; J, Dendrolagus; K, Eomaia; L, Tupaia; M, Asioryctes; N,

2009 Zalambdalestes (A-C, E-H, modified from Szalay, 1994; D, K-N, modified from Ji et al., 2002;

2010 I-J modified from Vaughan et al., 2010). References: red, calcaneus; blue, fifth metatarsal;

2011 green, cuboid; yellow, astragalus. Not to scale.

2012 s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

2013

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2014 Figure 12. Thoracic ribs and sternal articulation of selected mammals. A, Notoryctes

2015 (ZMB35694); B, Tachyglossus (MACN 6.8); C, Ornithorynchus (MACN 26.76); D, Dasyurus

2016 (MACN 23.572); E, Talpa (MACN 6.35). Arrow indicate articulation between thoraci ribs and

2017 sternebrae. Note that each thoracic rib articulates with a single sternebra in Monotremata and

2018 Notoryctes, whereas in Theria at least to sternebrae are contacted by each rib (based on Horovitz

2019 & Sánchez-Villagra, 2003). s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

2020

2021 Figure 13. Phylogenetic analysis of Mammaliaformes. Strict-consensus tree of higher-level

2022 mammaliaform relationships. References: yellow, Yinotheria; red, Dryolestoidea; green,

2023 Eutheria; blue, Metatheria.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r

P 2024 e r

P 2025 Figure 14. Hemimandible of Notoryctes (left) compared with Necrolestes (right), in

2026 medial (A,D), lateral (B,E) and oclusal views (C,F). A, B and C correspond to BMNH 39.4210;

2027 D, E and F correspond to MACN-A5742 (holotipe). Character numbers and states: 4(2),

2028 absent of Meckel’s sulcus; 31(1), presence of gracile and elongate dentary peduncle; 79(2),

2029 paracristid nearly transverse relative to the longitudinal axis of the molar; 85(0), absence of

2030 talonid; 136(1), absence of distal metacristid.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r

P 2031

2032 Figure 15. Comparison of selected mammalian brains. Monotremata: Tachyglossus, Ornitorynchus,

2033 Obdurodon. Dryolestoidea: Notoryctes. Stem-Zatheria: Vincelestes. Metatheria: Herpetotherium,

2034 Dasyurus, , Isoodon, Vombatus, Petaurus, Trichosurus, Potorous, Thylogale, Macropus,

2035 Dromiciops, . Eutheria: Dasypus, Erinaceus, Tenrec, Tupaia, Sorex, Tarsius, Scalopus.

2036 Modified from brain photographs of the University of Wisconsin and Michigan State Comparative

2037 Mammalian Brain Collections, available at: http://www-brainmuseum.org (specimens 65-46; 60-465; 65-

2038 60; 70-96; 61-559; 64-32; 64-033; 73-4; 64-20; 65-55; 65-65; 59-267; 64-25; 64-232; 64-193; 69-503; 65-

2039 59; 64-29; 62-279; 64-11) (Additional data taken from Smith, 1895a,b,c; 1995; Moeller, 1970; Rowe &

2040 Bohringer, 1992; Bohringer, 1992; Karlen & Krubitzer, 2007; Macrini et al., 2007; Sanchez-Villagra et al.,

2041 2007; Ashwell, 2010).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

2042

2043 Figure 16. Comparisons between female reproductive systems of main mammalian clades.

2044 Diagrammatic figures of female reproductive system of Mammalia: A, Monotremata; B, Notoryctes; C,

2045 Metatheria; D, Eutheria (based on Stirling, 1891; Gadow, 1892; Weichert & Presch, 1981; Renfree, 1993;

2046 Presley, 1997; Vaughan et al., 2010). References: green, kidneys; pink, ; light red, ; deep

2047 red, uterines; orange, ; light green, ureters; yellow, bladder; brown, ; light brown, ;

2048 light blue, urogenital sinus; deep blue, cloaca. Not to scale.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

2049

2050 Figure 17. Comparisons between male reproductive systems. Diagrammatic figures of

2051 male reproductive system of Mammalia: A, Prototheria; B, Notoryctes; C, Metatheria; D,

2052 Eutheria (based on Gadow, 1892; Linzey & Layne, 1969; Frey, 1991; Jones et al., 1992; Vaughan

2053 et al., 2010). References: dark green, kidneys; light green, ureters; green, prostate gland;

2054 cream, testis; yellow fluorescent, vas deferens; yellow, bladder; brown, urethra; light brown,

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2055 rectum; light blue, urogenital sinus; blue, cloaca; fuchsia, urethral glands; dark red,

2056 bulbourethral glands; violet, vesicular glands; red, penis. Not to scale. s t n i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P 2057

2058 Figure 18. Simplified phylogeny of Mammalia illustrating key-features, as present in

2059 Notoryctes and main mammalian clades. Selected mammalian soft organs: from left to right:

2060 left female reproductive system, male reproductive system, brain in dorsal view, and brain in left

2061 lateral view. Upper row: Monotremata; mid-upper row: Notoryctes; mid-lower row: Marsupialia;

2062 lower row: Eutheria. Brain colouration: green, olfactory bulb; blue, neopallium; red,

2063 paleopallium; yellow, cerebellum. Abbreviations: Tr, Triassic; Jur, Jurassic; Cr, Cretaceous; Tc,

2064 Tertiary; E, early; M, middle; L, late; Ma, Mammalia; Cl, Cladotheria; DR, Dryolestoidea; Dr,

2065 Dryolestida; Me, Meridiolestida; Ms Mesungulatinae; Th, Theria. Not to scale.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript s t n i r P e r P

2066

2067 Figure 19. Map of southern Gondwanan continents by the Late Paleogene. Location of typically

2068 Mesozoic mammalian lineages that survived the Cretaceous-Tertiary extinction event is

2069 indicated. Green silhouette represent dryolestoids; Yellow silhouette represent gondwanatheres;

2070 Black silhouette represent monotremes.

2071

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2072

2073 Appendix 1. List of characters

2074

2075 MANDIBLE

2076 1. Post-dentary trough (behind the tooth row):

s 2077 (0) Present; (1) Absent. t n i r 2078 Notoryctes: 1, absent. P e r 2079 P

2080 2. Separate scars for the surangular/prearticular in the mandible:

2081 (0) Present; (1) Absent.

2082 Notoryctes: 1, absent.

2083

2084 3. Overhanging medial ridge above the post-dentary trough (behind the tooth row):

2085 (0) Present; (1) Absent.

2086 Notoryctes: 1, absent.

2087

2088 4. Degree of development of Meckel’s sulcus:

2089 (0) Well developed; (1) Weakly developed; (2) Vestigial or absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2090 Notoryctes: 2, absent.

2091

2092 5. Curvature of Meckel’s sulcus (under the tooth row):

2093 (0) Parallel to the ventral border of the mandible; (1) Convergent on the ventral border of the

2094 mandible.

2095 Notoryctes: ?, inapplicable. s t n i 2096 r P e

r 2097 6. Groove for the replacement dental lamina (= Crompton's groove): P 2098 (0) Present; (1) Absent.

2099 Notoryctes: 1, absent.

2100

2101 7. Angular process of the dentary:

2102 (0) Weakly developed to absent; (1) Present, distinctive but not inflected; (2) Present and

2103 transversely flaring (This is different from character state {4} in having a lateral expansion of the

2104 angle and in lacking the anterior shelf); (3) Present and slightly inflected; (4) Present, strongly

2105 inflected, and continuing anteriorly as the mandibular shelf.

2106 Necrolestes: 2, 3 transversely flaring and inflected.

2107 Notoryctes: 2, transversely flaring and inflected.

2108

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2109 8. Position of the angular process of the dentary relative to the dentary condyle:

2110 (0) Anterior position (the angular process is below the main body of the coronoid process,

2111 separated widely from the dentary condyle); (1) Posterior position (the angular process is

2112 positioned at the level of the posterior end of the coronoid process, either close to, or directly

2113 under the dentary condyle).

2114 Necrolestes: 1, posterior position. s t 2115 Notoryctes: 1, posterior position. n i r

P 2116 e r

P 2117 9. Vertical elevation of the angular process of the dentary relative to the molar alveoli:

2118 (0) Angular process low, at or near the level of the ventral border of the mandibular horizontal

2119 ramus; (1) Angular process high, at or near the level of the molar alveolar line (and far above the

2120 ventral border of the mandibular horizontal ramus).

2121 Notoryctes: 0, angular process low.

2122

2123 10. Flat ventral surface of the mandibular angle:

2124 (0) Absent; (1) Present.

2125 Notoryctes: 0, absent.

2126

2127 11. Exoflection of the angular process of mandible:

2128 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2129 Notoryctes: 0, absent.

2130

2131 12. Coronoid bone (or its attachment scar):

2132 (0) Present; (1) Absent.

2133 Notoryctes: 1, absent.

s 2134 t n i r 2135 13. Location of the mandibular foramen (posterior opening of the mandibular canal): P e r 2136 (0) Within the postdentary trough or in the posterior part of Meckel’s sulcus; (1) In the P 2137 pterygoid fossa and offset from Meckel’s sulcus (the intersection of Meckel’s sulcus at the

2138 pterygoid margin is ventral and posterior to the foramen); (2) In the pterygoid fossa and in

2139 alignment with the posterior end of Meckel’s sulcus; (3) In the pterygoid fossa but not associated

2140 with Meckel’s sulcus; (4) Not associated with any of the above structures.

2141 Notoryctes: 4, mandibular foramen not associated with any structure.

2142

2143 14. Vertical position of the mandibular foramen:

2144 (0) Below the alveolar plane; (1) At or above the alveolar plane.

2145 Notoryctes: 1, mandibular foramen at the alveolar plane.

2146

2147 15. Concavity (fossa) for the reflected lamina of the angular bone on the dentary angular

2148 process:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2149 (0) Present the medial side; (1) Present on the posterior aspect; (2) Absent.

2150 Notoryctes: 2, absent.

2151

2152 16. Splenial bone as a separate element (as indicated by its scar on the dentary):

2153 (0) Present; (1) Absent.

s 2154 Notoryctes: 1, absent. t n i r 2155 P e r 2156 17. Relationship of the “postdentary” complex (surangular-articular-prearticular) to the P 2157 craniomandibular joint (CMJ):

2158 (0) Participating in CMJ; (1) Excluded from CMJ.

2159 Notoryctes: 1, excluded from CMJ.

2160

2161 18. Contact of the surangular bone (or associated postdentary element) with the squamosal:

2162 (0) Absent; (1) Present.

2163 Notoryctes: 0, absent.

2164

2165 19. Pterygoid muscle fossa on the medial side of the ramus of the mandible:

2166 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2167 Notoryctes: 1, present.

2168

2169 20. Medial pterygoid ridge (shelf) along the ventral border of the ramus of the mandible:

2170 (0) Absent; (1) Present; (2) Pterygoid shelf present and reaching the dentary condyle via a low

2171 crest.

2172 Notoryctes: 0, absent. s t n i 2173 r P e

r 2174 21. Ventral border of the masseteric fossa: P 2175 (0) Absent; (1) Present as a low and broad crest; (2) Present as a well-defined and thin crest.

2176 Notoryctes: 1, present as a low and broad crest.

2177

2178 22. Crest of the masseteric fossa along the anterior border of the coronoid process:

2179 (0) Absent or weakly developed; (1) Present and distinctive; (2) Hypertrophied and laterally

2180 flaring.

2181 Notoryctes: 1, present and distinctive.

2182

2183 23. Anteroventral extension of the masseteric fossa:

2184 (0) Absent; (1) Extending anteriorly onto the body of the mandible; (2) Further anterior

2185 extension below the ultimate premolar.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2186 Notoryctes: 0, absent.

2187

2188 24. Labial mandibular foramen inside the masseteric fossa:

2189 (0) Absent; (1) Present.

2190 Notoryctes: 0, absent.

s 2191 t n i r 2192 25. Posterior vertical shelf of the masseteric fossa connected to the dentary condyle: P e r 2193 (0) Absent; (1) Present as a thin crest along the angular margin of mandible; (2) Present as a P 2194 thick, vertical crest.

2195 Notoryctes: 1, present.

2196

2197 26. Posterior-most mental foramen:

2198 (0) In the canine and anterior premolar (premolariform) region (in the saddle behind the

2199 canine eminence of the mandible); (1) Below the penultimate premolar (under the anterior end of

2200 the functional postcanine row); (2) Below the ultimate premolar; (3) At the ultimate premolar and

2201 the first molar junction; (4) Under the first molar.

2202 Notoryctes: 1, below the penultimate premolar.

2203

2204 27. Articulation of the dentary and the squamosal:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2205 (0) Absent; (1) Present, but without condyle/glenoid; (2) Present, but with condyle/glenoid.

2206 Notoryctes: 2, present, but with condyle/glenoid.

2207

2208 28. Shape and relative size of the dentary articulation:

2209 (0) Condyle small or absent; (1) Condyle massive, bulbous, and transversely broad in its

2210 dorsal aspect; (2) Condyle mediolaterally narrow and vertically deep, forming a broad arc in s t

n 2211 lateral outline, either ovoid or triangular in posterior view. i r

P 2212 Notoryctes: 1, condyle massive. e r P 2213

2214 29. Orientation of the dentary peduncle (condylar process) and condyle:

2215 (0) Dentary peduncle more posteriorly directed; (1) Dentary condyle continuous with the

2216 semicircular posterior margin of the dentary; the condyle is facing up due to the upturning of the

2217 posterior-most part of the dentary; (2) Dentary articulation extending vertically for the entire

2218 depth of the posterior mandibular ramus; it is confluent with the ramus and without a peduncle;

2219 the dentary articulation is posteriorly directed; (3) More vertically directed dentary peduncle.

2220 Notoryctes: 3, More vertically directed dentary peduncle.

2221

2222 30. Ventral (inferior) border of the dentary peduncle:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2223 (0) Posteriorly tapering; (1) Columnar and with a lateral ridge; (2) Ventrally flaring; (3)

2224 Robust and short; (4) Ventral part of the peduncle and condyle continuous with the ventral border

2225 of the mandible.

2226 Necrolestes: 1, Columnar and with a lateral ridge.

2227 Notoryctes: 1, Columnar and with a lateral ridge.

2228 s t

n 2229 31. Gracile and elongate dentary peduncle: i r

P 2230 (0) Absent; (1) Present. e r P 2231 Notoryctes: 1, present.

2232

2233 32. Position of the dentary condyle relative to the level of the postcanine alveoli:

2234 (0) Below or about the same level; (1) Above.

2235 Notoryctes: 1, above.

2236

2237 33. Tilting of the coronoid process of the dentary (measured as the angle between the anterior

2238 border of the coronoid process and the horizontal alveolar line of all molars):

2239 (0) Coronoid process strongly reclined and the coronoid angle obtuse (≥150º); (1) Coronoid

2240 process less reclined (135º-145º); (2) Coronoid process less than vertical (110º-125º); (3)

2241 Coronoid process near vertical (95º to 105º).

2242 Necrolestes: 3, Coronoid process near vertical (95º to 105º).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2243 Notoryctes: 3, Coronoid process near vertical (95º to 105º).

2244

2245 34. Gracile base of the coronoid process:

2246 (0) Absent; (1) Present.

2247 Notoryctes: 0, absent.

s 2248 t n i r 2249 35. Height of the coronoid process of the dentary: P e r 2250 (0) Not reduced; (1) reduced. P

2251 Notoryctes: 0, not reduced.

2252

2253 36. Alignment of the ultimate molar (or posteriormost postcanine) to the anterior margin of

2254 the dentary coronoid process (and near the coronoid scar if present):

2255 (0) Ultimate molar medial to the coronoid process; (1) Ultimate molar aligned with the

2256 coronoid process.

2257 Notoryctes: 0, Ultimate molar medial to the coronoid process.

2258

2259 37. Direction of lower jaw movement during occlusion (as inferred from teeth):

2260 (0) Dorsal movement; (1) Dorsomedial movement with a significant medial component; (2)

2261 Dorsoposterior movement.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2262 Notoryctes: 1, dorsomedial movement.

2263

2264 38. Dentary symphysis:

2265 (0) Fused; (1) Unfused.

2266 Notoryctes: 1, unfused.

s 2267 t n i r 2268 39. Rostral mandibular spout: P e r 2269 (0) Absent; (1) Present. P

2270 Notoryctes: 0, absent.

2271

2272 PREMOLARS

2273 40. Ultimate upper premolar - metastylar lobe:

2274 (0) Reduced or absent; (1) Enlarged and wing-like.

2275 Notoryctes: 0, reduced.

2276

2277 41. Ultimate upper premolar - metacone or metaconal swelling:

2278 (0) Absent; (1) Present.

2279 Notoryctes: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2280

2281 42. Ultimate upper premolar - protocone or protoconal swelling:

2282 (0) Little or no lingual swelling; (1) Present.

2283 Notoryctes: 0, no lingual swelling.

2284

s 2285 43. Penultimate upper premolar - protocone or protoconal swelling: t n i r 2286 (0) Little or no lingual swelling; (1) Protoconal swelling; (2) Distinctive and functional P e

r 2287 protocone. P 2288 Notoryctes: ?, unknown.

2289

2290 44. Position of the tallest posterior upper premolar within the premolar series:

2291 (0) No premolar standing out; (1) In ultimate premolar position; (2) In penultimate premolar

2292 position.

2293 Notoryctes: 0, no premolar standing out.

2294

2295 45. Diastema posterior to the first upper premolar (applicable to taxa with premolar-molar

2296 differentiation):

2297 (0) Absent; (1) Present.

2298 Notoryctes: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2299

2300 46. Ultimate lower premolar - symmetry of the main cusp a (= protoconid):

2301 (0) Asymmetrical (anterior edge of cusp a is more convex in outline than the posterior edge);

2302 (1) Symmetrical (anterior and posterior cutting edges are equal or subequal in length; neither

2303 edge is more convex or concave than the other in lateral profile).

2304 Notoryctes: ?. s t

n 2305 i r

P 2306 47. Ultimate lower premolar - anterior cusp b (= paraconid): e r P 2307 (0) Absent or indistinctive; (1) Present and distinctive; (2) Enlarged.

2308 Notoryctes: 1, present and distinctive.

2309

2310 48. Ultimate lower premolar - arrangement of principal cusp a, cusp b (if present), and cusp c

2311 (assuming the cusp to be c if there is only one cusp behind the main cusp a):

2312 (0) Aligned in a single straight line or at a slight angle; (1) Distinctive triangulation; (2)

2313 Premolar multicuspate in longitudinal row(s).

2314 Notoryctes: ?.

2315

2316 49. Ultimate lower premolar - posterior (distal) cingulid or cingular cuspule (in addition to

2317 cusp c or the metaconid if the latter cusp is present on a triangulated trigonid).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2318 (0) Absent or indistinctive; (1) Present; (2) Present, in addition to cusp c or the c swelling; (3)

2319 Presence of the continuous posterior (distal) cingulid at the base of the crown.

2320 Notoryctes: ?.

2321

2322 50. Ultimate lower premolar - outline:

2323 (0) Laterally compressed (or slightly angled); (1) Transversely wide (by trigonid); (2) s t

n 2324 Transversely wide (by talonid). i r

P 2325 Notoryctes: 1, ultimate lower premolar transversely wide by trigonid. e r P 2326

2327 51. Ultimate lower premolar - labial cingulid:

2328 (0) Absent or vestigial; (1) Present (at least along the length of more than half of the crown).

2329 Notoryctes: 0, absent.

2330

2331 52. Ultimate lower premolar - lingual cingulid:

2332 (0) Absent or vestigial; (1) Present.

2333 Notoryctes: 0, absent.

2334

2335 53. Ultimate lower premolar - relative height of primary cusp a to cusp c (measured as the

2336 height ratio of a and c from the bottom of the valley between the two adjacent cusps):

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2337 (0) Indistinctive; (1) Posterior cusp c distinctive but less than 30% of the primary cusp a; (2)

2338 Posterior cusp c and primary cusp a equal or subequal in height (c is 40%-100% of a).

2339 Notoryctes: ?.

2340

2341 54. Penultimate lower premolar - paraconid (=cusp b):

2342 (0) Absent; (1) Present but not distinctive; (2) Distinctive and slightly enlarged. s t n i 2343 Notoryctes: ?. r P e

r 2344 P 2345 55. Penultimate lower premolar - arrangement of principal cusp a, cusp b (if present), and

2346 cusp c (we assume the cusp to be c if there is only one cusp behind the main cusp a):

2347 (0) Cusps in straight alignment (for a tooth with a single cusp, the anterior and posterior

2348 crests from the main cusp are in alignment); (1) Cusps in reversed triangulation; (2) With

2349 multicusps in longitudinal row(s).

2350 Notoryctes: 0, alignment.

2351

2352 56. Elongation of posterior premolars:

2353 (0) Absent; (1) Present.

2354 Notoryctes: 0, absent.

2355

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2356 MOLAR MORPHOLOGY

2357 57. Alignment of the main cusps of the anterior lower molar(s):

2358 (0) Single longitudinal row; (1) Reversed triangle–acute (≤90o); (2) Multiple longitudinal

2359 multicuspate rows.

2360 Notoryctes: 1, reversed triangle-acute.

2361 s t n i 2362 58. Triangulation of cusps in the posterior molars: r P e

r 2363 (0) Absent; (1) Multi-row and multi-cuspate; (2) Posterior molars slightly triangulated; (3) P 2364 Posterior molars fully triangulated.

2365 Notoryctes: 3, posterior molars fully triangulated.

2366

2367 59. B1 cusp on the upper molar (applicable to molars with triangulation):

2368 (0) Absent; (1) Present:

2369 Notoryctes: 0, absent.

2370

2371 60. Postvallum/prevallid shearing (angle of the main trigonid shear facets, based on the

2372 second lower molar):

2373 (0) Absent; (1) Present, weakly developed, slightly oblique; (2) Present, strongly developed

2374 and more transverse; (3) Present, strongly developed, short and slightly oblique.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2375 Notoryctes: 1, present, weakly developed.

2376

2377 61. Rank of postvallum shear (on the upper second molar; applicable to molars with reversed

2378 triangulation of cusps):

2379 (0) Present but only by the first rank: postmetacrista; (1) Present, with the addition of a

2380 second rank (postprotocrista below postmetacrista) but the second rank does not reach labially s t 2381 below the base of the metacone; (2) Metacingulum/metaconule present, in addition to n i r 2382 postprotocrista, but the metacingulum crest does not extend beyond the base of the metacone; (3) P e 2383 Metacingulum extended beyond metacone; (4) Metacingulum extended to the metastylar lobe; (5) r

P 2384 Second rank postvallum shear forming a broad shelf.

2385 Notoryctes: 1, Present.

2386

2387 62. Postcingulum:

2388 (0) Absent or weak; (1) Present; (2) Present and reaching past the metaconule; (3) Formed by

2389 the hypoconal shelf raised to near the level of the protocone.

2390 Notoryctes: 0, absent.

2391

2392 63. Precise opposition of the upper and lower molars:

2393 (0) Absent; (1) Present (either one-to-one, or occluding at the opposite embrasure or talonid);

2394 (2) Present (one lower molar contacts sequentially more than one upper molar).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2395 Notoryctes: 1, present.

2396

2397 64. Relationships between the cusps of the opposing upper and lower molars:

2398 (0) Absent; (1) Present, lower primary cusp a occludes in the groove between upper cusps A,

2399 B; (2) Present, lower main cusp a occludes in front of the upper cusp B and into the embrasure

2400 between the opposite upper tooth and the preceding upper tooth; (3) Present, parts of the talonid s t 2401 occluding with the lingual face (or any part) of the upper molar; (4) Lower multicuspate rows n i r 2402 alternately occluding between the upper multicuspate rows; (5) Columnar tooth without cusps P e 2403 and with beveled wear across the entire crown contact surface. r P 2404 Notoryctes: ?.

2405

2406 65. Protoconid (cusp a) and metaconid (cusp c) height ratio (on the lower second molar):

2407 (0) Protoconid distinctively higher; (1) Protoconid and metaconid nearly equal in height.

2408 Notoryctes: 1, nearly equal in height.

2409

2410 66. Relative height and size of the base of the paraconid (cusp b) and metaconid (cusp c)(on

2411 the lower second molar):

2412 (0) Paraconid distinctively higher than the metaconid; (1) Paraconid and metaconid nearly

2413 equal in height; (2) Paraconid lower than metaconid; (3) Paraconid reduced or absent.

2414 Notoryctes: 1, nearly equal in height.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2415

2416 67. Elevation of the cingulid base of the paraconid (cusp b) relative to the cingulid base of the

2417 metaconid (cusp c) on the lower molars:

2418 (0) Absent; (1) Present.

2419 Notoryctes: 0, absent.

2420 s t n i 2421 68. Cristid obliqua, presence vs. absence and orientation (applicable only to the molar with at r

P 2422 least a hypoconid on the talonid or a distal cingulid cuspule): e r P 2423 (0) Absent; (1) Present, contact closest to the middle posterior of the metaconid; (2) Present,

2424 contact closest to the lowest point of the protocristid; (3) Present, contact closest to the middle

2425 posterior of the protoconid.

2426 Notoryctes: 0, absent.

2427

2428 69. Lower molar - medial and longitudinal crest (=‘pre-entocristid’ or ‘pre-hypoconulid’) on

2429 the talonid heel (only applicable to taxa with talonid or at least a cusp d):

2430 (0) Talonid (or cusp d) has no medial and longitudinal crest; (1) Medial-most cristid (‘pre-

2431 entoconid cristid’) of the talonid in alignment with the metaconid or with the postmetacristid if

2432 the latter is present (the postmetacristid is defined as the posterior crest of metaconid that is

2433 parallel to the lingual border of the crown), but widely separated from the latter; (2) Medial-most

2434 cristid of the talonid (‘pre-hypoconulid’ cristid, based on cusp designation) is hypertrophied and

2435 in alignment with the postmetacristid and abuts the latter by a V-notch; (3) ‘Pre-entocristid’ crest

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2436 is offset from the metaconid (and postmetacristid if present), and the ‘pre-entocristid’ extending

2437 anterolingually past the base of the metaconid.

2438 Necrolestes: 0, talonid has no medial and longitudinal crest.

2439 Notoryctes: 0, talonid has no medial and longitudinal crest.

2440

2441 70. Posterior lingual cingulid of the lower molars: s t n i 2442 (0) Absent or weak; (1) Distinctive; (2) Strongly developed, crenulated with distinctive r

P 2443 cuspules (such as the kuhneocone). e r P 2444 Notoryctes: 0, absent.

2445

2446 71. Anterior internal (mesio-lingual) cingular cuspule (e) on the lower molars:

2447 (0) Present as an anterior cuspule but not at the cingulid level; (1) Present, at the cingulid

2448 level; (2) Present, positioned above the cingulid level; (3) hypertrophied cusp e = pseudo-

2449 hypoconulid; (4) Absent.

2450 Notoryctes: 4, absent.

2451

2452 72. Anterior and labial (mesio-buccal) cingular cuspule (f):

2453 (0) Absent; (1) Present; (2) Hypertrophied to form pseudo-hypoconid.

2454 Notoryctes: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2455

2456 73. Mesial cingulid features above the gum:

2457 (0) Absent; (1) Weak and discontinuous, with individualized cuspules below the trigonid (as

2458 individual cuspule e, f, or both, but e and f are not connected); (2) Present, in a continuous shelf

2459 below the trigonid (with no relations to the protoconid and paraconid), without occlusal function;

2460 (3) Present, with occlusal contact to the upper molar. s t 2461 Notoryctes: 0, absent. n i r

P 2462 e r

P 2463 74. Cingulid shelf wrapping around the anterolingual corner of the molar to extend to the

2464 lingual side of the trigonid below the paraconid:

2465 (0) Absent; (1) Present, without occlusal function to the upper molars; (2) Present, with

2466 occlusal function to the upper molars.

2467 Notoryctes: 0, absent.

2468

2469 75. Postcingulid (distal transverse cingulid above the gum level) on the lower molars:

2470 (0) Absent; (1) Present, horizontal above the gum level.

2471 Notoryctes: 0, absent.

2472

2473 76. Interlocking mechanism between two adjacent lower molars:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2474 (0) Absent; (1) Present, posterior cingular cuspule d (or the base of the hypoconulid) of the

2475 preceding molar fits in between cingular cuspules e and f of the succeeding molar; (2) Present,

2476 posterior cingular cuspule d fits between cingular cuspule e and cusp b of the succeeding molar;

2477 (3) Present, posterior cingular cuspule d of the preceding molar fits into an embayment or vertical

2478 groove of the anterior aspect of cusp b of the succeeding molar (without any involvement of

2479 distinctive cingular cuspules in interlocking). (4) Anterior corner of succeeding lower molar

2480 overlapping posterior corner of preceding lower molar. s t

n 2481 Notoryctes: 0, absent. i r

P 2482 e r

P 2483 77. Size ratio of the last three lower molars:

2484 (0) Ultimate molar is smaller than the penultimate molar (m1≥m2≥m3; or m2≥m3≥m4; or

2485 m3≥m4≥m5; or m4≥m5≥m6); (1) Penultimate molar is the largest of the molars

2486 (m1≤m2≤m3≥m4; or m1≤m2>m3); (2) Ultimate molar is larger than the penultimate molar

2487 (m1≤m2≤m3); (3) Equal size.

2488 Notoryctes: 0, ultimate molar is smaller than the penultimate molar.

2489

2490 78. Paraconid position relative to the other cusps of the trigonid on the lower molars (based

2491 on the lower second molar):

2492 (0) Paraconid in anterolingual position; (1) Paraconid lingually positioned (within lingual 1/4

2493 of the trigonid width); (2) Paraconid lingually positioned and appressed to the metaconid; (3)

2494 Paraconid reduced in the selenodont/lophodont patterns.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2495 Notoryctes: 0, anterolingual position.

2496

2497 79. Orientation of the paracristid (or the crest between cusps a and b) relative to the

2498 longitudinal axis of the molar:

2499 (0) Longitudinal orientation; (1) Oblique; (2) Nearly transverse.

2500 Notoryctes: 2, nearly transverse. s t n i 2501 r P e

r 2502 80. Angle of the paracristid (b-a crest) and the protocristid (a-c crest) on the lower molar: P 2503 (0) > 90º; (1) 90º ~ 50º; (2) < 35º.

2504 Notoryctes: 1, 90º ~ 50º.

2505

2506 81. Mesiolingual vertical crest of the paraconid on the lower molars:

2507 (0) Rounded; (1) Forming a keel.

2508 Notoryctes: 0, rounded.

2509

2510 82. Anteroposterior shortening at the base of the trigonid relative to the talonid:

2511 (0) Trigonid long (extending over 3/4 of the tooth length); (1) Swelling on the side walls of

2512 the trigonid (taxa assigned to this character state have a trigonid length ratio 45%~50%; but their

2513 morphology is different from all other states in that their side walls are convex); (2) No

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2514 shortening (trigonid 50-65% of tooth length); (3) Some shortening (the base of trigonid < 50% of

2515 tooth length); (4) Anteroposterior compression of trigonid (trigonid 40~45% of the tooth length).

2516 Notoryctes: 0, trigonid long.

2517

2518 83. Molar (the lower second molar measured where possible) trigonid/talonid heel width

2519 ratio: s t

n 2520 (0) Narrow (talonid ≤40% of trigonid); (1) Wide (talonid is 40-70% of the trigonid in width); i r

P 2521 (2) Talonid is equal or wider than trigonid. e r

P 2522 Necrolestes: 0, narrow.

2523 Notoryctes: 0, narrow.

2524

2525 84. Lower molar hypoflexid (concavity anterolabial to the hypconid or cusp d):

2526 (0) Absent or shallow (all "triconodont-like" teeth are coded as "0" here as long as they have

2527 cuspule d); (1) Deep (40~50% of talonid width); (2) Very Deep (>65%); (3) Pseudo-hypoflexid

2528 (40% to 65% of the pseudo-talonid width).

2529 Notoryctes: 0, absent.

2530

2531 85. Morphology of the talonid (or the posterior heel) of the molar:

2532 (0) Absent; (1) Present, as an incipient heel, a cingulid, or cingular cuspule (d); (2) Present, as

2533 a transverse ‘V-shaped’ basin with two functional cusps; (3) Present, as an obtuse ‘V-shaped’

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2534 triangle; (4) Present, as a functional basin, rimmed with 3 functional cusps (if the entoconid is

2535 vestigial, there is a functional crest to define the medial rim of the basin).

2536 Notoryctes: 1, incipient heel.

2537

2538 86. Hypoconid (we designate the distal cingulid cuspule d as the homolog to the hypoconid in

2539 the teeth with linear alignment of the main cusps; we assume the cusp to be the hypoconid if s t 2540 there is only a single cusp on the talonid in the teeth with reversed triangulation): n i r

P 2541 (0) Present, but not elevated above the cingulid level; (1) Present [as distal cusp d, sensu e r 2542 Crompton (122)], elevated above the cingulid level, labially positioned (or tilted in the lingual P 2543 direction); (2) Present, elevated above the cingulid level, labially positioned; (3) Absent.

2544 Notoryctes: 0, absent.

2545

2546 87. Hypoconulid:

2547 (0) Absent; (1) Present, and median (near the mid-point of the transverse talonid width); (2)

2548 Present, and placed within the lingual 1/3 of the talonid basin; (3) Incorporated into the crest of

2549 lophodont or selenodont conditions.

2550 Notoryctes: 0, absent.

2551

2552 88. Anterior lower molar- hypoconulid - anteroposterior orientation: procumbent vs. reclined:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2553 (0) Cusp tip reclined and the posterior wall of the hypoconulid is slanted and overhanging the

2554 root; (1) Cusp tip procumbent and the posterior wall of the cusp is vertical; (2) Cusp tip

2555 procumbent and the posterior wall is gibbous.

2556 Notoryctes: ?, not applicable.

2557

2558 89. Hypoconulid labial postcingulid (shelf) on the lower molars: s t

n 2559 (0) Absent; (1) Present as a crest descending mesiolabially from the apex of the hypoconulid i r

P 2560 to the base of the hypoconid. e r

P 2561 Notoryctes: 0, absent.

2562

2563 90. Last lower molar - hypoconulid - orientation and relative size:

2564 (0) Short and erect; (1) Tall (higher than hypoconid) and recurved.

2565 Notoryctes: ?, not applicable.

2566

2567 91. Entoconid:

2568 (0) Absent; (1) Present, about equal distance to the hypoconulid as to the hypoconid; (2)

2569 Present, with slight approximation to the hypoconulid (distance between the hypoconulid and

2570 entoconid noticeably shorter than between the hypoconulid and hypoconid); (3) Present, and

2571 twinned with the hypoconulid.

2572 Notoryctes: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2573

2574 92. Height ratio of the medial side of the crown vs. the most lingual cusp on the talonid to the

2575 base of the labial crown:

2576 (0) Entoconid absent on the talonid heel; (1) Entoconid lower than the hypoconid; (2)

2577 Entoconid near the height of the hypoconid; (3) Entoconid near the height of the hypoconid and

2578 linked to the hypoconid by a transverse crest. s t 2579 Notoryctes: 0, absent. n i r

P 2580 e r

P 2581 93. Alignment of the paraconid, metaconid, and entoconid on the lower molars (applicable

2582 only to taxa with triangulation of the trigonid cusps and the entoconid present on the talonid):

2583 (0) Cusps not aligned; (1) Cusps aligned.

2584 Notoryctes: ?, not applicable.

2585

2586 94. The length vs. width ratio of the functional talonid basin of the lower molars:

2587 (0) Longer than wide (or narrows posteriorly); (1) Length equals width; (2) Wider than long.

2588 Notoryctes: ?, not applicable.

2589

2590 95. Elevation of the talonid relative to the trigonid: (0) Hypoconid/protoconid height ratio less

2591 than 20% (hypoconid or cusp d is on the cingulid); (1) Hypoconid/protoconid height ratio

2592 between 25% and 35% (talonid cusp elevated above the cingulid level); (2)

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2593 Hypoconid/protoconid height ratio between 40% and 60%; (3) Hypoconid/protoconid height ratio

2594 between >60% and 80%; (4) Equal height.

2595 Notoryctes: ?, not applicable.

2596

2597 96. Size of the upper molar labial stylar shelf on the penultimate molar:

2598 (0) Absent; (1) Present and narrow; (2) Present and broad. s t n i 2599 Notoryctes: 2, present and broad. r P e

r 2600 P 2601 97. Presence vs. absence of the ectoflexus on the upper second molar (or postcanines in the

2602 middle portion of the postcanine row):

2603 (0) Absent or weakly developed; (1) Present.

2604 Notoryctes: 0, absent.

2605

2606 98. Ectoflexus gradient along the molar series:

2607 (0) Present on penultimate molar, but weakly developed or absent on the anterior molars; (1)

2608 Present on the penultimate and preceding molars.

2609 Notoryctes: ?, not applicable.

2610

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2611 99. Morphological features on the labial cingulum or stylar shelf of the upper molars

2612 (excluding the parastyle and metastyle):

2613 (0) Indistinctive; (1) Distinctive cingulum, without cuspules; (2) Individualized or even

2614 hypertrophied cuspules; (3) W-pattern on stylar shelf; (4) Cingulum crenulated with distinctive

2615 and even-sized multiple cuspules.

2616 Notoryctes: 0, indistinctive. s t 2617 n i r

P 2618 100. Upper molar protocone: e r

P 2619 (0) Functional cusp and lingual swelling absent; (1) Functional cusp absent, but the lingual

2620 side is more swollen than the labial side at the cingular level; (2) Functional cusp present.

2621 Notoryctes: ?.

2622

2623 101. Degree of labial shift of the protocone (distance from the protocone apex to the lingual

2624 border vs. the total tooth width, in %):

2625 (0) Protocone present but no labial shift (10%-20%); (1) Moderate labial shift (25%- 30%);

2626 (2) Substantial labial shift (≥ 40%).

2627 Notoryctes: ?, not applicable.

2628

2629 102. Morphology of the protocone:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2630 (0) Protoconal region present but no distinct protocone; (1) Protocone present, its apical

2631 portion anteroposteriorly compressed; (2) Apical portion slightly expanded; (3) Apical portion

2632 expanded; (4) Apical portion forming an obtuse triangle with the protoconal cristae.

2633 Notoryctes: ?, not applicable.

2634

2635 103. Height of the protocone relative to the paracone and metacone (whichever is highest of s t 2636 the latter two): n i r

P 2637 (0) Protocone markedly lower (less than 70%); (1) Protocone of intermediate height e r 2638 (70%~80%); (2) Protocone near the height of paracone and metacone (within 80%). P

2639 Notoryctes: ?, not applicable.

2640

2641 104. Height and size of the paracone (cusp B) and metacone (cusp C) (based on the upper

2642 second molar if available):

2643 (0) Paracone noticeably higher and larger at the base than metacone; (1) Paracone slightly

2644 larger than metacone; (2) Paracone and metacone of equal size or paracone lower than metacone,

2645 (3) metacone absent.

2646 Notoryctes: 3, metacone absent.

2647

2648 105. Metacone position relative to paracone:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2649 (0) Metacone labial to paracone; (1) Metacone about the same level as paracone; (2)

2650 Metacone lingual to paracone.

2651 Notoryctes: ?, not applicable.

2652

2653 106. Base of the paracone and metacone (based on the upper second molar if available,

2654 applicable only to triangulated molars): s t

n 2655 (0) Merged; (1) Separated. i r

P 2656 Notoryctes: ?, not applicable. e r P 2657

2658 107. Centrocrista between the paracone and the metacone of the upper molars (applicable

2659 only to taxa with well-developed metacone and distinctive wear facets 3 and 4):

2660 (0) Straight; (1) V-shaped, with labially directed postparacrista and premetacrista.

2661 Notoryctes: ?, not applicable.

2662

2663 108. Anteroposterior width of the conular region (with or without conules) on the upper

2664 molars:

2665 (0) Narrow (anteroposterior distance medial to the paracone and metacone less than 0.30 of

2666 total tooth length); (1) Moderate development (distance between position of conules = 0.31—

2667 0.50 of total tooth length); (2) Wide (distance between conules greater than 0.51 of total tooth

2668 length); (3) Expanded.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2669 Notoryctes: ?, not applicable.

2670

2671 109. Presence of the paraconule and metaconule on the upper molars:

2672 (0) Absent; (1) Present.

2673 Notoryctes: 0, absent.

s 2674 t n i r 2675 110. Relative position of the paraconule and metaconule on the upper first and second molars: P e r 2676 (0) Paraconule and metaconule closer to the protocone; (1) Both positioned near the midpoint P 2677 of the protocone-metacone; (2) Paraconule and metaconule labial to the midpoint.

2678 Notoryctes: ?, not applicable.

2679

2680 111. Internal conular cristae (conular wing):

2681 (0) Cristae indistinctive; (1) Cristae distinctive and wing-like.

2682 Notoryctes: ?, not applicable.

2683

2684 112. Parastylar groove (on upper second molar):

2685 (0) Weak or absent; (1) Moderately to well developed.

2686 Notoryctes: ?.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2687

2688 113. Stylar cuspule “A”, the parastyle, on the upper molars (of the Bensley-Simpson system):

2689 (0) Present (at least a swelling is present); (1) Absent.

2690 Notoryctes: ?.

2691

s 2692 114. Preparastyle on the upper first molar: t n i r 2693 (0) Absent; (1) Present. P e r 2694 Notoryctes: ?. P

2695

2696 115. Stylar cuspule “B” (opposite the paracone) (based on the upper second molar if

2697 available):

2698 (0) Vestigial to absent; (1) Small but distinctive; (2) Subequal to the parastyle; (3) Large

2699 (subequal to parastyle), with an extra "B-1" cuspule in addition to "B".

2700 Notoryctes: ?.

2701

2702 116. Stylar cuspule "C" (near the ectoflexus) on the penultimate upper molar:

2703 (0) Absent; (1) Present.

2704 Notoryctes: ?.

2705

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2706 117. Stylar cuspule "D" (opposite the metacone) on the penultimate upper molar:

2707 (0) Absent; (1) Present.

2708 Notoryctes: ?.

2709

2710 118. Absence vs. presence and size of the stylar cuspule “E”:

s 2711 (0) Absent or poorly developed; (1) Present, less developed than or subequal to stylar cuspule t n i 2712 “D”; (2) Present and better developed than cuspule “D”. r P e

r 2713 Notoryctes: ?. P 2714

2715 119. Position of the stylar cuspule “E” relative to cusp “D” or “D-position”:

2716 (0) “E” more lingual to “D” or “D-position”; (1) “E” distal to or at same level as “D” or “D-

2717 position”.

2718 Notoryctes: ?, not applicable.

2719

2720 120. Upper molar interlock:

2721 (0) Absent; (1) -in-groove interlock; (2) Parastylar lobe of a succeeding molar

2722 lumbricated with the metastylar region of a preceding molar.

2723 Notoryctes: 0, absent.

2724

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2725 121. Size and labial extent of the metastylar lobe and parastylar lobe (based on the upper first

2726 molar if available; if not, then based on upper second):

2727 (0) Metastylar lobe smaller than the parastylar lobe; (1) Metastylar lobe of similar size and

2728 labial extent to the parastylar lobe; (2) Metastylar lobe much larger than the parastylar lobe; (3)

2729 Metastylar lobe absent.

2730 Notoryctes: 1, similar size. s t 2731 n i r

P 2732 122. Salient postmetacrista on the upper molars (applicable to taxa with reversed e r 2733 triangulation): P

2734 (0) Absent or weakly developed; (1) Well-developed but no longer than the metacone-

2735 protocone distance; (2) Hypertrophied and longer than the metacone-protocone distance.

2736 Notoryctes: 0, absent.

2737

2738 123. Selenodont molar pattern:

2739 (0) Absent; (1) Present.

2740 Notoryctes: 0, absent.

2741

2742 124. Outline of the lower first molar crown (in crown view):

2743 (0) Laterally compressed; (1) Oblong with slight labial bulge; (2) Triangular or tear-drop

2744 shaped; (3) Rectangular (or rhomboidal); (4) circular.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2745 Notoryctes: 2, triangular.

2746

2747 125. Aspect ratio and outline of the upper first molar:

2748 (0) Laterally compressed; (1) Longer than transversely wide (oval-shaped or spindle shaped);

2749 (2) Transversely wider than long (triangular outline); (3) Rectangular or nearly so; (4) circular.

2750 Notoryctes: 2, transversely wider than long. s t n i 2751 r P e

r 2752 126. Carnassial shearing blades on last upper premolar and first lower molar: P 2753 (0) Absent; (1) Present.

2754 Notoryctes: 0, Absent.

2755

2756 MOLAR WEAR PATTERN

2757 127. Functional development of occlusal facets on individual molar cusps:

2758 (0) Absent; (1) Absent at eruption but developed later by crown wear; (2) Wear facets match

2759 upon tooth eruption (inferred from the flat contact surface upon eruption).

2760 Notoryctes: 2, wear facets match upon tooth eruption.

2761

2762 128. Topographic relationships of wear facets to the main cusps:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2763 (0) Wear pattern across the entire crown; (1) Lower cusps a, c support two different wear

2764 facets (facets 1 and 4) that contact the upper primary cusp A; (2) Lower cusps a, c support a

2765 single wear facet (facet 4) that contacts the upper primary cusp B (this facet extends onto cusp A

2766 as wear continues, but 1 and 4 do not develop simultaneous in these taxa); (3) Multicuspate

2767 series, each cusp may support 2 wear facets.

2768 Notoryctes: 2.

s 2769 t n i r 2770 129. Development and orientation of prevallum/postvallid shearing (based on either upper or P e 2771 the lower molar structures): r P 2772 (0) Absent; (1) Present and obtuse; (2) Present, hypertrophied and transverse.

2773 Necrolestes: 1, present.

2774 Notoryctes: 1, present.

2775

2776 130. Wear facet 1 (a single facet supported by cusp a and cusp c) and facet 2 (a single facet

2777 supported by cusp a and cusp b):

2778 (0) Absent; (1) Present.

2779 Notoryctes: 1, present.

2780

2781 131. Upper molars - development of facet 1 and the preprotocrista:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2782 (0) Facet 1 (prevallum crest) short, not extending to the stylocone area; (1) Facet 1 extending

2783 into the hook-like area near the stylocone; (2) Preprotocrista long, extending labially beyond the

2784 paracone.

2785 Notoryctes: 1.

2786

2787 132. Differentiation of wear facet 3 and facet 4 (applicable to taxa with a distal cusp d or s t 2788 “hypoconulid”): n i r

P 2789 (0) Absent; (1) Present; (2) Facets 3 and 4 hypertrophied on the flanks of the strongly e r 2790 Vshaped talonid. P

2791 Notoryctes: 0, absent.

2792

2793 133. Orientation of facet 4 (on the posterior aspect of the hypoconid):

2794 (0) Present and oblique to the long axis of the tooth; (1) Present and forming a more

2795 transverse angle to the long axis of the tooth.

2796 Notoryctes: ?, not applicable.

2797

2798 134. Morphology of the posterolateral aspect of the talonid:

2799 (0) Gently rounded; (1) Angular.

2800 Notoryctes: ?, not applicable.

2801

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2802 135. Wear pattern within the talonid basin:

2803 (0) Absent; (1) Present; (2) Present apically on the crests of the talonid; (3) Apical wear on

2804 crest and lophodont.

2805 Notoryctes: 0, absent.

2806

2807 136. Development of the distal metacristid: s t n i 2808 (0) Present; (1) Absent. r P e

r 2809 Notoryctes: 1, absent. P 2810

2811 137. Differentiation of wear facets 5 and 6 on the labial face of the entoconid:

2812 (0) Absent; (1) Present.

2813 Notoryctes: 0, absent.

2814

2815 138. Surficial features on the occluding surfaces on the talonid :

2816 (0) Smooth surface on the talonid heel (or on cusp d); (1) Multiple ridges within the talonid

2817 basin; (2) Talonid present, but wear occurs apically on the crests of cristid obliqua and hypoconid

2818 cristid (V-shaped talonid crests).

2819 Notoryctes: ?, not applicable.

2820

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2821 139. Molar wear facets pseudo-3 and pseudo-4:

2822 (0) Absent; (1) Present.

2823 Notoryctes: 0, absent.

2824

2825 140. Molar wear facets pseudo-5 and pseudo-6:

s 2826 (0) Absent; (1) Present. t n i r 2827 Notoryctes: 0, absent. P e r 2828 P

2829 141. Pseudo cusp e and f hypertrophied:

2830 (0) Absent; (1) Present.

2831 Notoryctes: 0, absent.

2832

2833 OTHER DENTAL FEATURES

2834 142. Number of lower incisors:

2835 (0) Five or more; (1) Four; (2) Three; (3) Two; (4) One; (5) No incisors.

2836 Notoryctes: 3, two.

2837

2838 143. Number of upper incisors:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2839 (0) Five; (1) Four; (2) Three; (3) Two or one; (4) No incisors.

2840 Notoryctes: 2, three.

2841

2842 144. Lower anterior-most incisor enamel:

2843 (0) Covers the whole incisor; (1) Restricted anteriorly.

s 2844 Notoryctes: 0, covers the whole incisor. t n i r 2845 P e r 2846 145. Lower anterior-most incisor with open root: P

2847 (0) Absent; (1) Present.

2848 Notoryctes: 0, absent.

2849

2850 146. Upper anterior-most incisor enamel:

2851 (0) Covers the whole incisor; (1) Restricted anteriorly.

2852 Notoryctes: 0, covers the whole incisor.

2853

2854 147. Upper anterior-most incisor with open root:

2855 (0) Absent; (1) Present.

2856 Notoryctes: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2857

2858 148. Upper canine - presence vs. absence, and size:

2859 (0) Present and enlarged; (1) Present and small; (2) Absent.

2860 Notoryctes: 1, present and small.

2861

s 2862 149. Number of upper canine roots: t n i r 2863 (0) One; (1) Two. P e r 2864 Notoryctes: 0, one. P

2865

2866 150. Lower canine - presence vs. absence and size:

2867 (0) Present and enlarged; (1) Present and small; (2) Absent.

2868 Notoryctes: 2, absent.

2869

2870 151. Number of lower canine roots:

2871 (0) One; (1) Two.

2872 Notoryctes: 0, one.

2873

2874 152. Number of upper premolars:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2875 (0) Five or more; (1) Four; (2) Three; (3) Two or less.

2876 Notoryctes: ?, unknown.

2877

2878 153. Number of lower premolars:

2879 (0) Five or more; (1) Four; (2) Three; (3) Two or less.

s 2880 Notoryctes: 3, two. t n i r 2881 P e r 2882 154. Number of lower molars or molariform postcanines: P

2883 (0) Six or more; (1) Five; (2) Four; (3) Three; (4) Two or less.

2884 Notoryctes: ?.

2885

2886 155. Number of upper molars or molariform postcanines:

2887 (0) Six or more; (1) Five; (2) Four; (3) Three; (4) Two or less.

2888 Notoryctes: ?.

2889

2890 156. Total number of upper postcanine loci:

2891 (0) More than 8; (1) Eight; (2) Seven, (3) Six; (4) Five or less.

2892 Notoryctes: 3, six.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2893

2894 157. Number of lower postcanine loci:

2895 (0) Eight or more; (1) Seven; (2) Six; (3) Five or less.

2896 Notoryctes: 3, five.

2897

s 2898 158. Procumbency and diastema of first (functional) upper premolar or postcanine in relation t n i 2899 to the upper canine: r P e

r 2900 (0) Not procumbent and without diastema; (1) Procumbent and with diastema. P 2901 Notoryctes: 0, not procumbent.

2902

2903 159. Diastema separating the lower first and second premolars (defined as the first and second

2904 functioning premolar or premolariform postcanine):

2905 (0) Absent (gap less than one tooth root for whichever is smaller of the adjacent teeth); (1)

2906 Present, subequal to one tooth-root diameter or more; (2) Present, equal to or more than one-tooth

2907 length.

2908 Notoryctes: 1, present.

2909

2910 160. Ultimate premolar bladed or crenulated:

2911 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2912 Notoryctes: 0, absent.

2913

2914 161. Upper anterior-most incisor:

2915 (0) Subequal to the remaining incisors, no diastema with the second incisor; (1) Anteriorly

2916 projecting, separated from the second incisor by a diastema; (2) Absent.

2917 Notoryctes: 0, subequal. s t n i 2918 r P e

r 2919 162. Ultimate and penultimate upper incisors are relatively compressed laterally: P 2920 (0) Absent; (1) Present, and spoon-shaped to rhomboid-shaped in lateral view; (2) Present,

2921 and spatulate in lateral view; (3) Ultimate and/or penultimate upper incisors bicuspate or

2922 tricuspate.

2923 Notoryctes: 1, present, spoon-shaped.

2924

2925 163. Staggered lower incisor:

2926 (0) Absent; (1) Present.

2927 Necrolestes: 1, present.

2928 Notoryctes: 1, present.

2929

2930 164. Replacement pattern of incisors and canines:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2931 (0) More than one replacement; (1) One replacement; (2) No replacement.

2932 Notoryctes: ?, unknown.

2933

2934 165. Replacement of at least some posterior functional molariform postcanines:

2935 (0) Present; (1) Absent.

s 2936 Notoryctes: ?, absent. t n i r 2937 P e r 2938 166. Procumbency and enlargement of the lower anterior-most incisor: P

2939 (0) Absent; (1) Present (at least 50% longer than the adjacent incisor).

2940 Peligrotherium: 0, absent.

2941 Cronopio: 1, present.

2942 Necrolestes: 1, present.

2943 Notoryctes: 0, absent.

2944

2945 167. Enlarged diastema in the lower incisor-canine region (better developed in older

2946 individuals):

2947 (0) Absent; (1) Present and behind the canine; (2) Present and behind the posterior incisor.

2948 Notoryctes: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2949

2950 168. U-shaped ridge in the lower multi-rowed molars:

2951 (0) Absent; (1) Present.

2952 Notoryctes: 0, absent.

2953

s 2954 169. Single-aligned and the labial row of multi-cusp or multi-rowed lower molar – Cusp ratio: t n i r 2955 (0) Second mesial cusp (b2) highest; (1) Mesial cusp highest. P e r 2956 Notoryctes: ?, not applicable. P

2957

2958 170. Multi-rowed upper premolar/molar - cusp ratio in the labial row of multi-cusp row:

2959 (0) Distal cusp highest, with a gradient of anteriorly decreasing height; (1) Cusps in same row

2960 of equal height.

2961 Notoryctes: 1, cusps in same row of equal height.

2962

2963 171. Alignment of multi-cuspate upper first and second molars:

2964 (0) Second lingually offset from the first so that the lower second molar lingual row occludes

2965 with the lingual side of the upper second labial row; (1) Lower second molar labial row occludes

2966 with the labial side of the upper second labial row.

2967 Notoryctes: 1.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2968

2969 172. Enamel microstructure:

2970 (0) Synapsida columnar enamel (prismless); (1) ‘Transitional’ (sheath indistinct, ‘prismatic’

2971 crystallites inclined at less than 45o to the ‘interprismatic’ matrix); (2) Full prismatic enamel; (3)

2972 Enamel absent.

2973 Notoryctes: 1, transitional. s t

n 2974 i r

P 2975 173. Open root end of the postcanines e r P 2976 (0) Absent; (1) Present.

2977 Notoryctes: 0, absent.

2978

2979 VERTEBRAE AND RIBS

2980 174. Fusion of the atlas neural arch and intercentrum (modified from Rougier et al., 2012):

2981 (0) Unfused; (1) Fused.

2982 Notoryctes: 1, Fused.

2983

2984 175. Atlas rib:

2985 (0) Present; (1) Absent.

2986 Notoryctes: 1, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

2987

2988 176. Fusion of dens to the axis:

2989 (0) Absent; (1) Present.

2990 Notoryctes: 1, present.

2991

s 2992 177. Axis rib: t n i r 2993 (0) Present; (1) Absent. P e r 2994 Notoryctes: 1, absent. P

2995

2996 178. Postaxial cervical ribs:

2997 (0) Unfused; (1) Fused.

2998 Notoryctes: 1, fused.

2999

3000 179. Number of thoracic vertebrae:

3001 (0) 13 or less; (1) 15 or more.

3002 Notoryctes: 1, fifteen.

3003

3004 180. Overlapping ventral costal plates:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3005 (0) Absent; (1) Present.

3006 Notoryctes: 0, absent.

3007

3008 181. Overlapping lumbar or posterior thoracic ribs:

3009 (0) Present; (1) Absent.

s 3010 Notoryctes: 0, absent. t n i r 3011 P e r 3012 182. Anticlinal : P

3013 (0) Absent; (1) Present.

3014 Notoryctes: 1, present.

3015

3016 183. Mobile lumbar ribs:

3017 (0) Present; (1) Absent.

3018 Notoryctes: 1, absent.

3019

3020 184. Orientation of lumbar ribs or transverse processes:

3021 (0) Posterolaterally directed; (1) Laterally or anterolaterally directed.

3022 Notoryctes: 1, anterolaterally directed.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3023

3024 185. Xenarthrous articulation in addition to the pre- and post-zygapophyses of lumbar

3025 vertebrae:

3026 (0) Absent; (1) Present.

3027 Notoryctes: 0, absent.

3028 s t n i 3029 SHOULDER GIRDLE r P e

r 3030 186. Interclavicle: P 3031 (0) Present; (1) Absent.

3032 Notoryctes: ?, unknown.

3033

3034 187. Contact relationships between the interclavicle and the sternal manubrium:

3035 (0) Two elements distinct from each other, posterior end of the interclavicle abuts with the

3036 anterior border of manubrium; (1) Two elements distinct from each other, the interclavicle

3037 broadly overlaps the ventral side of the manubrium; (2) Complete fusion of the embryonic

3038 membranous and endochondral elements resulting in a single and enlarged manubrium.

3039 Notoryctes: ?, unknown.

3040

3041 188. Inverclavicle distal expansion:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3042 (0) Absent; (1) Present.

3043 Notoryctes: 0, absent.

3044

3045 189. Cranial margin of the interclavicle/manubrium (assuming the interclavicle is fused to the

3046 sternal manubrium in living therians):

3047 (0) Emarginated or flat; (1) With a median process. s t n i 3048 Notoryctes: 1, median process. r P e

r 3049 P 3050 190. Interclavicle to sternal manubrium length ratio

3051 (0) Interclavicle twice the length of manubrium; (1) Interclavicle nearly equal to manubrium

3052 in length.

3053 Notoryctes: ?, unknown.

3054

3055 191. Sternoclaviclular joint:

3056 (0) Immobile; (1) Mobile.

3057 Notoryctes: 1, mobile.

3058

3059 192. Sternal manubrial craniolateral process:

3060 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3061 Notoryctes: 0, absent.

3062

3063 193. Acromioclavicular joint:

3064 (0) Extensive articulation; (1) Limited articulation (either pointed acromion, pointed distal

3065 end of clavicle, or both).

3066 Notoryctes: 1, limited. s t n i 3067 r P e

r 3068 194. Curvature of the clavicle: P 3069 (0) Boomerang-shaped; (1) Slightly curved.

3070 Notoryctes: 1, slightly curved.

3071

3072 195. Scapula - supraspinous fossa: degree of development along the length:

3073 (0) Present only in the “acromional region” of the scapula, and on the cranial border of the

3074 scapula and positioned anterior to the glenoid; (1) Weakly developed; (2) Fully developed.

3075 Necrolestes: 1, weakly developed.

3076 Notoryctes: 2, fully developed.

3077

3078 196. Proportion of supraspinous vs. infraspinous fossae:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3079 (0) Supraspinous “fossa” on the cranial aspect of the scapula and much narrower than

3080 infraspinous fossa; (1) Supraspinous width is 50% to 80% that of infraspinous fossa; (2) Fossae

3081 subequal; (3) Supraspinous over 150% that of infraspinous fossa.

3082 Notoryctes: 2, fossae subequal.

3083

3084 197. Scapula - acromion process: s t

n 3085 (0) Short stump, level with or behind the glenoid; (1) Hook-like and extending below the i r

P 3086 glenoid. e r

P 3087 Notoryctes: 1, extending below the glenoid.

3088

3089 198. Scapula - a distinctive fossa for the teres major muscle on the lateral aspect of the

3090 scapular plate:

3091 (0) Absent; (1) Present.

3092 Notoryctes: 1, present.

3093

3094 199. Procoracoid:

3095 (0) Present; (1) Fused to the sternal apparatus.

3096 Notoryctes: 1, fused.

3097

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3098 200. Procoracoid foramen:

3099 (0) Present; (1) Absent.

3100 Notoryctes: 1, absent.

3101

3102 201. :

s 3103 (0) Large, with posterior process; (1) Small, without posterior process. t n i r 3104 Notoryctes: 1, small. P e r 3105 P

3106 202. Anterior process of the coracoid:

3107 (0) Indistinctive; (1) Distinctive; (2) Distinctive and forming a broad plate.

3108 Notoryctes: 0.

3109

3110 203. Coracoid process bridging over posteriorly toward the vertebral border of scapula:

3111 (0) Absent; (1) Present.

3112 Notoryctes: 0, absent.

3113

3114 204. Size of the anterior-most element (‘manubrium’) relative to the subsequent sternebrae in

3115 the sternal apparatus:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3116 (0) Large; (1) Small.

3117 Notoryctes: 1, small.

3118

3119 205. Orientation of the glenoid:

3120 (0) Nearly parallel and facing posterolaterally; (1) Oblique and facing more posteriorly; (2)

3121 Perpendicular. s t n i 3122 Necrolestes: 1, oblique. r P e

r 3123 Notoryctes: 1, oblique. P 3124

3125 206. Shape and curvature of the glenoid:

3126 (0) Saddle-shaped, oval and elongate; (1) Uniformly concave and more rounded in outline.

3127 Notoryctes: 1, uniformly.

3128

3129 207. Medial surface of the scapula:

3130 (0) Convex; (1) Flat.

3131 Notoryctes: 1, flat.

3132

3133 208. Suprascapular incisure (defined as the prominent emargination on the cranial border of

3134 the supraspinus fossa):

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3135 (0) Absent; (1) Present.

3136 Notoryctes: 1, present.

3137

3138 FORELIMB AND MANUS

3139 209. Humeral head:

s 3140 (0) Subspherical, weakly inflected; (1) Spherical, strongly inflected. t n i r 3141 Necrolestes: 0, subspherical, weakly inflected (Asher et al., 2007; Rougier et al., 2012) P e r 3142 Notoryctes: 1, spherical. P

3143

3144 210. Intertubercular groove of the humerus:

3145 (0) Shallow and broad; (1) Narrow and deep; (2) wide and deep

3146 Necrolestes: 0, Shallow and broad (Rougier et al., 2012).

3147 Notoryctes: 2, wide and deep.

3148

3149 211. Size of the lesser tubercle of the humerus relative to the greater tubercle:

3150 (0) Wider; (1) Narrower.

3151 Notoryctes: 1, narrower.

3152

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3153 212. Torsion between the proximal and distal ends of the humerus:

3154 (0) Strong (≥30º); (1) Moderate (30º – 15º); (2) Weak (< 15º).

3155 Notoryctes: 0, strong.

3156

3157 213. Ventral extension of the deltopectoral crest or the position of the deltoid tuberosity:

s 3158 (0) Short and limited to the proximal part of the humeral shaft; (1) Extending ventrally t n i 3159 (distally) at least 1/3 the length of the shaft. r P e

r 3160 Notoryctes: 1, extending distally. P 3161

3162 214. Teres tuberosity on medial side of humerus.

3163 (0) Absent; (1) Present; (2) Hypertrophied.

3164 Notoryctes: 0, absent.

3165

3166 215. Ulnar articulation on the distal humerus:

3167 (0) Bulbous ulnar condyle; (1) Cylindrical trochlea in posterior view with a vestigial ulnar

3168 condyle in anterior view; (2) Cylindrical trochlea without an ulnar condyle (cylindrical trochlea

3169 extending to the anterior/ventral side).

3170 Notoryctes: 1, vestigial ulnar condyle.

3171

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3172 216. Radial articulation on the distal humerus:

3173 (0) Distinct and rounded radial condyle in both anterior (ventral) and posterior (dorsal)

3174 aspects (that does not form a continuous synovial surface with the ulnar articulation in the

3175 ventral/anterior view of the humerus); (1) Rounded radial condyle anteriorly but cylindrical

3176 posteriorly; (2) Capitulum (forming a continuous synovial surface with the ulnar trochlea;

3177 cylindrical in both anterior and posterior aspects).

s 3178 Necrolestes: 2, capitulum. t n i r 3179 Notoryctes: 1. P e r 3180 P

3181 217. Entepicondyle (medial epicondyle) and ectepicondyle (lateral epicondyle) of the

3182 humerus:

3183 (0) Robust; (1) Weak.

3184 Necrolestes: 0, robust, (Rougier et al., 2012).

3185 Notoryctes: 0, robust.

3186

3187 218. Sigmoidal shelf for the supinator ridge extending proximally from the ectepicondyle:

3188 (0) Absent; (1) Present.

3189 Dryolestes: 0, absent, (Rougier et al., 2012).

3190 Necrolestes: 1, present, (Rougier et al., 2012).

3191 Notoryctes: 1, present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3192

3193 219. Coronoid process of semilunar notch of ulna:

3194 (0) Absent; (1) Present and level to olecranon process; (2) Present and higher than olecranon

3195 process.

3196 Notoryctes: 1, present.

3197 s t n i 3198 220. Styloid process of the radius: r P e

r 3199 (0) Weak; (1) Strong. P 3200 Notoryctes: 0, weak.

3201

3202 221. Enlargement of the scaphoid:

3203 (0) Not enlarged (scaphoid ≤150% of the lunate); (1) Enlarged (scaphoid twice the size of the

3204 lunate); (2) Enlarged with a distolateral process.

3205 Notoryctes: ?, unknown.

3206

3207 222. Size and shape of the hamate (unciform):

3208 (0) About equal size to the triquetrum, anteroposteriorly compressed; (1) Hypertrophied,

3209 much larger than the triquetrum, mediolaterally compressed.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3210 Notoryctes: 0, equal size to the triquetrum and anteroposteriorly compressed, (Szalay,

3211 1994).

3212

3213 223. Trapezium morphology and proportion:

3214 (0) Elongate to cuboidal, larger than or subequal to the trapezoid; (1) Bean-shaped or

3215 fusiform, smaller than the trapezoid. s t

n 3216 Notoryctes: 1. i r

P 3217 e r P 3218 224. Triquetrum-lunate proportion:

3219 (0) Triquetrum nearly twice the size of the lunate; (1) Triquetrum subequal to the lunate.

3220 Notoryctes: 1, subequal, (Szalay, 1994).

3221

3222 PELVIC GIRDLE

3223 225. Anterior process of the ilium:

3224 (0) Short (less than the diameter of the acetabulum); (1) Long, 1-1.5 times the diameter of the

3225 acetabulum; (2) Elongate, more than 1.5 times the diameter of the acetabulum.

3226 Notoryctes: 2, elongate, (Warburton, 2003).

3227

3228 226. Posterior process of the ilium:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3229 (0) Present; (1) Reduced or absent.

3230 Notoryctes: 1, reduced.

3231

3232 227. Acetabular dorsal emargination:

3233 (0) Open (emarginated); (1) Closed (with a complete rim).

s 3234 Necrolestes: 0, open, (Rougier et al., 2012). t n i r 3235 Notoryctes: 0, open. P e r 3236 P

3237 228. Sutures of the ilium, ischium, and pubis within the acetabulum:

3238 (0) Present; (1) Fused.

3239 Notoryctes: 1, Fused.

3240

3241 229. Ischiatic dorsal margin and tuberosity:

3242 (0) Dorsal margin concave (emarginated) and ischiatic tuberosity present; (1) Dorsal margin

3243 concave and ischiatic tuberosity hypertrophied; (2) Dorsal margin straight and ischiatic tuberosity

3244 small.

3245 Notoryctes: 2, dorsal margin straight and ischiatic tuberosity small.

3246

3247 230. Posterior spine of the ischium:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3248 (0) Short and pointed; (1) expanded with oblique posterior spine; (2) expanded and truncated.

3249 Notoryctes: 0, short.

3250

3251 231. Epipubic bone:

3252 (0) Present; (1) Absent.

s 3253 Notoryctes: 0, present. t n i r 3254 P e r 3255 232. Width of epipubis: P

3256 (0) Narrow; (1) wide.

3257 Notoryctes: 0, narrow.

3258

3259 233. Fusion of the sacral vertebrae with the proximal caudal vertebrae:

3260 (0) Absent; (1) Present.

3261 Notoryctes: 1, present.

3262

3263 234. Fusion of the ischium with the caudal vertebrae:

3264 (0) Absent; (1) Present.

3265 Notoryctes: 1, present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3266

3267 235. Preacetabular tubercle on the ilium for M. rectus femoris:

3268 (0) Absent; (1) Present.

3269 Necrolestes: 1, present, (Asher et al., 2007).

3270 Notoryctes: 1, present, (Warburton, 2003).

s 3271 t n i r 3272 236. Fully encircled synovial surface inside the acetabulum: P e r 3273 (0) Absent; (1) Present. P

3274 Necrolestes: 0, absent.

3275 Notoryctes: 0, absent.

3276

3277 237. Lesser psoas tuberosity or process on the pubis:

3278 (0) Absent; (1) Present.

3279 Notoryctes: 0, absent.

3280

3281 HINDLIMB AND PES

3282 238. Inflected head of the femur set off from the shaft by a neck:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3283 (0) Neck absent and head oriented dorsally; (1) Neck present, head spherical and inflected

3284 medially.

3285 Necrolestes: 1, neck present and head inflected medially, (Asher et al., 2007. Rougier et

3286 al., 2012).

3287 Notoryctes: 1, neck present and head inflected medially, (Warburton, 2003).

3288 s t

n 3289 239. Fovea for the acetabular ligament on the femoral head: i r

P 3290 (0) Absent; (1) Present. e r P 3291 Necrolestes: 1, present.

3292 Notoryctes: 1, present, (Warburton, 2003).

3293

3294 240. Orientation of the greater trochanter:

3295 (0) Directed dorsolaterally; (1) directed dorsally.

3296 Necrolestes: 1, directed dorsally, (Rougier et al., 2012).

3297 Notoryctes: 1, directed dorsally, (Warburton, 2003).

3298

3299 241. Position of the lesser trochanter:

3300 (0) On medial side of the shaft; (1) On the ventromedial or ventral side of the shaft.

3301 Necrolestes: 0, medial side of the shaft, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3302 Notoryctes: 0, medial side of the shaft.

3303

3304 242. Size of the lesser trochanter:

3305 (0) Large; (1) Small to absent.

3306 Necrolestes: 1, small, (Rougier et al., 2012).

s 3307 Notoryctes: 1, small, (Warburton, 2003). t n i r 3308 P e r 3309 243. The third trochanter of femur: P

3310 (0) Absent; (1) Present; (2) Present as a continuous ridge connected to the greater trochanter.

3311 Necrolestes: 2, present and connected to the greater trochanter.

3312 Notoryctes: 2, present and connected to the greater trochanter, (Warburton, 2003).

3313

3314 244. Patellar facet (‘groove’) of the femur:

3315 (0) Absent; (1) Shallow and weakly developed; (2) Well-developed.

3316 Necrolestes: 1, weakly developed.

3317 Notoryctes: 1, weakly developed, (Warburton, 2003).

3318 Comments: Rougier et al. (2012) codified Necrolestes as lacking a patellar groove o distal

3319 femus (Character 201-0). However, Asher et al., (2007) indicate the presence of a “…slight fossa

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3320 that may correspond to a patellar trochlea…”. Following this, Necrolestes is here codified in the

3321 present work as having a weakly developed patellar groove (state 1).

3322

3323 245. Proximo-lateral tubercle or tuberosity of the tibia:

3324 (0) Large and hook-like; (1) Indistinct.

3325 Notoryctes: 1, indistinct. s t n i 3326 r P e

r 3327 246. Distal tibial malleolus: P 3328 (0) Weak; (1) Distinctive.

3329 Notoryctes: 0, weak.

3330

3331 247. Fibula contacting the distal end of the femur:

3332 (0) Present; (1) Absent; (2) Fibula fused with the tibia.

3333 Notoryctes: 0, present.

3334

3335 248. Fused distal portions of the tibia and fibula:

3336 (0) Absent; (1) Present.

3337 Notoryctes: 0, absent, (Warburton, 2003).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3338

3339 249. Parafibular process of the fibula:

3340 (0) Absent or unfused to the fibular; (1) fused to fibula and enlarged:

3341 Notoryctes: 0, absent.

3342

s 3343 250. Distal fibular styloid process: t n i r 3344 (0) Weak or absent; (1) Distinct. P e r 3345 Notoryctes: 0, absent. P

3346

3347 251. Fibula contacting the calcaneus:

3348 (0) Extensive contact; (1) Reduced; (2) Absent.

3349 Notoryctes: 2, absent.

3350

3351 252. Superposition of the astragalus over the calcaneus:

3352 (0) Little or absent; (1) Weakly developed; (2) Present.

3353 Notoryctes: 2, present.

3354

3355 253. Astragalo-navicular articulation:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3356 (0) articulating facet indistinctive; (1) Weakly developed.

3357 Notoryctes: 0, indistinctive.

3358

3359 254. Astragalar neck basal width:

3360 (0) Neck narrower than the head; (1) Neck about same width as the head; (2) Widest point of

3361 neck at mid-length; (3) Astragalar neck widest at the base. s t n i 3362 Notoryctes: 1, Neck about same width as the head. r P e

r 3363 P 3364 255. Astragalonavicular contact aspect ratio:

3365 (0) Navicular contact transversely wider than dorsoventrally thick; (1) Navicular contact

3366 dorsoventrally thicker than transversely wide.

3367 Notoryctes: 0, contact transversely wide.

3368

3369 256. Expansion of navicular contact in the astragalar head region:

3370 (0) Restricted anteriorly; (1) Asymmetrical spread only to the medial side of the astragalar

3371 “headneck region”; (2) Astragalar head supersedes navicular so the navicular facet shifted

3372 ventrally; (3) Symmetrical spread of the navicular facet to both the lateral and the medial sides of

3373 the neck.

3374 Notoryctes: 3, symmetrical.

3375

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3376 257. Astragalar trochlea (defined as a saddle-shaped upper ankle joint):

3377 (0) Absent; (1) Present, but weak (defining crest on the medial astragalo-tibial facet weakly

3378 developed); (2) Present, with clear separation of the medial and lateral tibial facets.

3379 Notoryctes: 1, present, but weak.

3380

3381 258. Well-defined medio-tibial crest (more or less parallel to the tibio-fibular crest) on the s t

n 3382 astragalus: i r

P 3383 (0) Absent; (1) Present. e r P 3384 Notoryctes: 0, absent.

3385

3386 259. Astragalar medial plantar tuberosity:

3387 (0) Absent; (1) Present, but weakly developed; (2) Present, and ventrally flaring or

3388 protruding.

3389 Notoryctes: 2, present and ventrally flaring.

3390

3391 260. Distal end of the calcaneal tubercle:

3392 (0) Short, dorso-ventrally compressed, without a terminal swelling; (1) dorso-ventrally

3393 compressed, with a terminal swelling; (2) Elongate, vertically deep, and mediolaterally

3394 compressed, with terminal swelling.

3395 Notoryctes: 0, dorso-ventrally compressed without a terminal swelling.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3396

3397 261. Morphology of the peroneal process of the calcaneus:

3398 (0) Laterally expanded shelf, larger than the combined length of the sustentacular and

3399 astragalar facets, lateral to the astragalar facet; (1) With a distinct and long peroneal process,

3400 laterally projecting; (2) With a distinct peroneal process, demarcated by a deep peroneal groove at

3401 the base; (3) Laterally directed, small peroneal shelf demarcated from the anterior (cuboidal)

s 3402 edge of the calcaneus; (4) Anterolaterally directed, hypertrophied peroneal process/shelf; (5) t n i 3403 Peroneal structure laterally reduced (lateral surface is straight from the calcaneal tubercle). r P e 3404 Notoryctes: 5, reduced. r P 3405

3406 262. Placement of the base of the peroneal process relative to the level of the cuboid facet of

3407 the calcaneus:

3408 (0) Peroneal structure posterior to the level of the cuboid facet; (1) Peroneal structure

3409 developed anteriorly at the same level as the cuboid facet; (2) Peroneal structure hypertrophied,

3410 extending anteriorly beyond the level of the cuboid facet.

3411 Notoryctes: 2.

3412

3413 263. Peroneal groove of the calcaneus:

3414 (0) Indistinct, on the anterolateral aspect of the lateral shelf; (1) Distinct, deep separation of

3415 the peroneal process; (2) Weakly developed, with shallow groove on the lateral side of the

3416 process; (3) Distinct, on the anterolateral corner of the peroneal process.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3417 Notoryctes: 3.

3418

3419 264. Alignment of the cuboid to the main axis of the calcaneus (horizontal plane):

3420 (0) On the anterior end of the calcaneus; (1) On the anteromedial aspect of the calcaneus:

3421 Notoryctes: 0, on the anterior end of the calcaneus.

s 3422 t n i r 3423 265. Orientation of the calcaneocuboid joint in dorso-ventral plane: P e r 3424 (0) Calcaneocuboid facet on the calcaneus oriented ventrally (more visible in the plantar view P 3425 than in dorsal view); (1) Calcaneocuboid facet oriented anteriorly (distally); (2) Calcaneocuboid

3426 facet oriented ventromedially or medio-obliquely.

3427 Notoryctes: 1, oriented anteriorly.

3428

3429 266. Saddle-shaped calcaneocuboid joint:

3430 (0) Calcaneocuboid facet on the calcaneus relatively flat to slightly concave; (1) Saddle-

3431 shaped.

3432 Notoryctes: 0, flat.

3433

3434 267. Lower ankle joint - orientation of the sustentacular facet of the calcaneus in relation to

3435 the horizontal plane:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3436 (0) Nearly vertical; (1) Oblique (≤70o) to nearly horizontal.

3437 Notoryctes: 1.

3438

3439 268. Antero-posterior placement of the sustentacular facet relative to the astragalar facet on

3440 the calcaneus:

3441 (0) Directly anterior to the astragalar facet and vertically oriented on the medial edge of the s t

n 3442 calcaneus; (1) On the dorsal aspect and positioned anteromedial to the astragalar facet on the i r

P 3443 calcaneus; (2) On the dorsal aspect, medial to the astragalar facet; (3) On the dorsal aspect, e r 3444 anterior to the astragalar facet. P

3445 Notoryctes: 2.

3446

3447 269. Confluence of the sustentacular facet and the astragalar facet on the calcaneus:

3448 (0) Absent; (1) Present.

3449 Notoryctes: 1, present.

3450

3451 270. Ventral outline of the sustentacular process of the calcaneus:

3452 (0) Indistinctive; (1) Medially directed shelf, with rounded outline; (2) Protruding triangle,

3453 posteromedially directed.

3454 Notoryctes: 0, indistinctive.

3455

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3456 271. Antero-posterior position of the sustentacular facet/process (using the most salient point

3457 of the facet/process in ventral view as landmark) relative to the length of the calcaneus:

3458 (0) Near the mid-point; (1) Near the anterior (proximal) one-third.

3459 Notoryctes: 1.

3460

3461 272. Shape of posterior calcaneo-astragalar process/protuberance and its contiguous fibular s t

n 3462 contact on the calcaneus: i r

P 3463 (0) Confluent with fibular contact and indistinctive; (1) Oblong to ellipsoidal; (2) Nearly e r

P 3464 spherical and bulbous, more transversely developed than character state 1; (3) Transversely

3465 confluent with the sustentacular facet.

3466 Notoryctes: 0, indistinctive.

3467

3468 273. Placement of the calcaneoastragalar structure:

3469 (0) On the medial side of the body of the calcaneus; (1) On the dorsal side of the body of the

3470 calcaneus, but bordering on the body’s medial margin (without a protruding outline); (2) On the

3471 dorsal side of the body of the calcanues and protruding beyond the body’s medial margin; (3)

3472 Withdrawn and separated from the medial margin and placed along the lateral margin of the body

3473 of the calcaneus.

3474 Notoryctes: 0, medial side of the body of the calcaneus.

3475

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3476 274. Anterior ventral (plantar) tubercle of the calcaneus:

3477 (0) Absent; (1) Present, at the anterior edge (just lateral to the cuboid facet); (2) Present, set

3478 back from the anterior edge.

3479 Notoryctes: 1, present.

3480

3481 275. Anteroventral groove or depression of the calcaneus: s t n i 3482 (0) Absent; (1) Present. r P e

r 3483 Notoryctes: 1. P 3484

3485 276. Cross-sectional shape of the body of the calcaneus at the level of the posterior

3486 calcaneoastragalar facet:

3487 (0) Dorso-ventrally compressed; (1) Mediolaterally compressed.

3488 Notoryctes: 0, dorso-ventrally compressed.

3489

3490 277. Ventral curvature of the calcaneal tubercle:

3491 (0) Present; (1) Absent.

3492 Notoryctes: 1, absent.

3493

3494 278. Proportion of the navicular and cuboid (transverse width measured in dorsal view):

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3495 (0) Navicular narrower than or subequal to cuboid; (1) Navicular wider than cuboid.

3496 Notoryctes: 0, equal.

3497

3498 279. Proportion of the entocuneiform, mesocuneiform, and ectocuneiform (in ventral view):

3499 (0) Mesocuneiform and ectocuneiform small, their combined width smaller than the width of

3500 the entocuneiform; (1) Mesocuneiform and ectocuneiform large, their combined width (in dorsal s t

n 3501 view) exceeding the width of the entocuneiform. i r

P 3502 Notoryctes: 0, small. e r P 3503

3504 280. Medio-plantar aspect of the cuboid deeply notched by the peroneus longus tendon:

3505 (0) Absent; (1) Present.

3506 Notoryctes: 0, absent.

3507

3508 281. Prehallux:

3509 (0) Absent; (1) Present.

3510 Notoryctes: 0, absent.

3511

3512 282. Side-by-side contact of metatarsal V and the peroneal process of the calcaneus:

3513 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3514 Notoryctes: 1, present.

3515

3516 283. Relationships of the proximal end of metatarsal V to the cuboid:

3517 (0) Metatarsal V is off-set to the medial side of the cuboid; (1) Metatarsal V is so far offset to

3518 the side of the cuboid that it contacts the calcaneus; (2) Metatarsal V is level with the anterior end

3519 of the cuboid. s t

n 3520 Notoryctes: 1, metatarsal V is so far offset to the side of the cuboid. i r

P 3521 e r P 3522 284. Ventrolateral tubercle at the proximal end of metatarsal V:

3523 (0) Absent; (1) Present, at the anterior edge of the calcaneus; (2) Present, off-set posteriorly

3524 from the anterior edge of the calcaneus.

3525 Notoryctes: 0, absent.

3526

3527 285. Angle of metatarsal III to the calcaneus (which indicates how much the sole of the foot is

3528 ‘bent’ from the long axis of the ankle):

3529 (0) Metatarsal III aligned with (or parallel to) the long axis of the calcaneus; (1) Metatarsal III

3530 arranged obliquely from the long axis of the calcaneus.

3531 Notoryctes: 0, aligned.

3532

3533 286. Metatarsal II and metatarsal III proximal ends:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3534 (0) II and III even or II more proximal than III; (1) III more proximal than II.

3535 Notoryctes: 0.

3536

3537 287. Opposable hallux:

3538 (0) Absent; (1) Present.

s 3539 Notoryctes: 0, absent. t n i r 3540 P e r 3541 OTHER POSTCRANIAL CHARACTERS P

3542 288. Ossified patella:

3543 (0) Absent; (1) Present.

3544 Notoryctes: 1, present.

3545

3546 289. Sesamoid bones in the digital flexor tendons:

3547 (0) Absent; (1) Present, unpaired; (2) Present, paired.

3548 Notoryctes: 1, present, unpaired.

3549

3550 290. External pedal (tarsal) spur:

3551 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3552 Notoryctes: 0, absent.

3553

3554 291. Pes digital grouping:

3555 (0) Didactylous; (1) Syndactylous.

3556 Notoryctes: 0, didactylous.

s 3557 t n i r 3558 292. Epiphyses in long bones: P e r 3559 (0) Absent; (1) Present. P

3560 Notoryctes: 1, present.

3561

3562 BASICRANIUM

3563 293. External size of the cranial moiety of the squamosal:

3564 (0) Narrow; (1) Broad; (2) Expanded posteriorly to form the skull roof table.

3565 Notoryctes: 1, broad.

3566

3567 294. Participation of the cranial moiety of the squamosal in the endocranial wall of the

3568 braincase:

3569 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3570 Notoryctes: ?.

3571

3572 295. Multiple vascular foramina (for rami temporales) in the squamosal and parietal:

3573 (0) Absent; (1) Present.

3574 Notoryctes: 0, absent.

s 3575 t n i r 3576 296. Multiple vascular foramina (for branches of external ethmoidal artery) in the dorsal P e

r 3577 surface of the frontal: P 3578 (0) Absent; (1) Present.

3579 Notoryctes: 0, absent.

3580

3581 297. Topographic relationships of the dentary-squamosal contact (or glenoid) and the cranial

3582 moiety of the squamosal (only applicable to taxa with the dentary-squamosal joint; this character

3583 is best seen in ventral view):

3584 (0) Contact on the internal aspect of the zygoma, without a constricted neck; (1) Contact on

3585 the zygoma, with a constricted neck; (2) Contact on the cranial moiety of squama; (3) On

3586 zygoma, without a constricted neck.

3587 Peligrotherium: 0, without a constricted neck, (Rougier et al., 2012).

3588 Necrolestes: 0, without a constricted neck, (Rougier et al., 2012).

3589 Notoryctes: 0, without a constricted neck.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3590

3591 298. Cross-section profile of the squamosal anterior to its zygomatic root:

3592 (0) Rounded or triangular and tapering anteriorly; (1) Dorsoventral expanded and

3593 mediolaterally compressed, and not tapering anteriorly.

3594 Notoryctes: 0, rounded.

3595 s t n i 3596 299. Postglenoid depression on the squamosal: r P e

r 3597 (0) Present as the post-craniomandibular joint sulcus (“external auditory meatus” on the P 3598 zygoma); (1) Absent; (2) Present on the skull base.

3599 Necrolestes: 2, present.

3600 Notoryctes: 1, absent.

3601

3602 300. Squamosal - entoglenoid process:

3603 (0) Absent or vestigial; (1) Present, but separated from the postglenoid process; (2) Present,

3604 enlarged and connected to the postglenoid process.

3605 Necrolestes: 1, present.

3606 Notoryctes: 1, present.

3607

3608 301. Position of the craniomandibular joint:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3609 (0) Posterior or lateral to the level of the fenestra vestibuli; (1) Anterior to the level of the

3610 fenestra vestibuli.

3611 Necrolestes: 1, anterior.

3612 Notoryctes: 1, anterior.

3613

3614 302. Orientation of the glenoid on the squamosal: s t n i 3615 (0) On the inner side of the zygoma and facing ventromedially; (1) On the platform of the r

P 3616 zygoma and facing ventrally. e r P 3617 Necrolestes: 1, on the platform of the zygoma.

3618 Notoryctes: 1, on the platform of the zygoma.

3619

3620 303. Postglenoid process of the squamosal:

3621 (0) Absent; (1) Postglenoid crest raised below the fossa, but without a distinctive process; (2)

3622 Distinctive process; (3) Distinctive process buttressed by ectotympanic.

3623 Necrolestes: 1, without a distinctive process.

3624 Notoryctes: 1, without a distinctive process.

3625

3626 304. Postglenoid foramen position:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3627 (0) Posterior to the glenoid area; (1) Medial to the postglenoid process; (2) Anterior to the

3628 postglenoid process.

3629 Cronopio: 0, posterior.

3630 Necrolestes: 0, posterior.

3631 Notoryctes: ?, not applicable.

3632 s t n i 3633 305. Postglenoid foramen presence vs. absence and composition: r P e

r 3634 (0) Absent; (1) Present, in the squamosal; (2) Present, between the squamosal and petrosal; P 3635 (3) Present, between the squamosal and ectotympanic.

3636 Necrolestes: 2, between the squamosal and petrosal.

3637 Notoryctes: 0, absent.

3638

3639 306. Medial margin of the glenoid fossa:

3640 (0) Formed by the squamosal; (1) Formed by the alisphenoid.

3641 Necrolestes: 0, formed by the squamosal.

3642 Notoryctes: 0, formed by the squamosal.

3643

3644 307. Squamosal - epitympanic recess (this character may be ordered):

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3645 (0) No contribution to the “epitympanic area” of the petrosal; (1) Small contribution to the

3646 posterolateral wall of the epitympanic recess; (2) Large contribution to the lateral wall of the

3647 epitympanic recess; (3) Squamosal forming a large part of enlarged epitympanic sinus.

3648 Peligrotherium: 1, small contribution, (Páez Arango, 2008).

3649 Notoryctes: 1, small contribution.

3650 s t

n 3651 308. Contribution of the basisphenoid wing (parasphenoid ala) to the external bony i r

P 3652 housing of the cochlea: e r P 3653 (0) Participates in the rim of the fenestra vestibuli; (1) Does not reach the rim of the fenestra

3654 vestibuli; (2) Absent or excluded from the cochlear housing.

3655 Peligrotherium: 2, absent, (Rougier et al., 2012).

3656 Necrolestes: 2, absent, (Rougier et al., 2012).

3657 Notoryctes: 2, absent.

3658

3659 309. Relationship of the cochlear housing to the lateral lappet of the basioccipital:

3660 (0) Entirely covered by the basioccipital; (1) Medial aspect covered by the basioccipital; (2)

3661 Partially covered by the basioccipital; (3) Fully exposed as the promontorium.

3662 Peligrotherium: 3, fully exposed, (Rougier et al., 2012).

3663 Necrolestes: 3, fully exposed, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3664 Notoryctes: 3, fully exposed.

3665

3666 310. Thickened rim of the fenestra vestibuli:

3667 (0) Present; (1) Absent.

3668 Peligrotherium: 0, present.

s 3669 Necrolestes: 0, present. t n i r 3670 Notoryctes: 1, absent. P e r 3671 P

3672 311. Cochlear housing fully formed by the petrosal:

3673 (0) Absent; (1) Present.

3674 Reigitherium: 1, present.

3675 Notoryctes: 1, present.

3676

3677 312. Ventromedial surface of the promontorium:

3678 (0) Flat; (1) Inflated and convex.

3679 Reigitherium: 1, inflated and convex.

3680 Peligrotherium: 1, inflated and convex.

3681 Necrolestes: 1, inflated and convex.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3682 Notoryctes: 1, inflated and convex.

3683

3684 313. Lateral wall and overall external outline of the promontorium:

3685 (0) Triangular, with a steep and slightly concave lateral wall; (1) Elongate and cylindrical; (2)

3686 Bulbous and oval shaped.

3687 Necrolestes: 2: bulbous and oval shaped. s t n i 3688 Notoryctes: 2: bulbous and oval shaped. r P e

r 3689 P 3690 314. Cochlea:

3691 (0) Cochlear recess (without a canal); (1) Short canal; (2) Elongate canal, to the fullest extent

3692 of the promontorium; (3) slightly curved; (4) Elongate and partly coiled; (5) Elongate and coiled

3693 to at least 360°.

3694 Dryolestes: 4, elongate and partly coiled, (Luo et al., 2012).

3695 Notoryctes: 5, coiled to a least 360º, (Ladèveze et al., 2008).

3696

3697 315. Internal acoustic meatus - cribriform plate:

3698 (0) Absent; (1) Present.

3699 Dryolestes: 1, present.

3700 Coloniatherium: 0, absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3701 Reigitherium: 0, absent.

3702 Peligrotherium: 1, present.

3703 Necrolestes: 1, present.

3704 Notoryctes: 1, present.

3705

s 3706 316. Internal acoustic meatus depth: t n i r 3707 (0) Deep with thick prefacial commissure; (1) Shallow with thin prefacial commissure. P e r 3708 Henkelotherium: 1, shallow. P

3709 Coloniatherium: 0, deep.

3710 Reigitherium: 0, deep.

3711 Cronopio: 0, deep.

3712 Necrolestes: 1, shallow.

3713 Notoryctes: 1, shallow.

3714

3715 317. Primary bony lamina within the cochlear canal:

3716 (0) Absent; (1) Present.

3717 Necrolestes: 1, present, (Rougier et al., 2012).

3718 Notoryctes: 1, present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3719

3720 318. Secondary bony lamina for the basilar membrane within the cochlear canal:

3721 (0) Absent; (1) Present.

3722 Necrolestes: 1, present, (Rougier et al., 2012).

3723 Notoryctes: 1, present.

s 3724 t n i r 3725 319. Crista interfenestralis: P e r 3726 (0) Horizontal, broad, and extending to the base of the paroccipital process; (1) Vertical, P 3727 delimiting the back of the promontorium; (2) Horizontal, narrow, and connecting to the caudal

3728 tympanic process.

3729 Necrolestes: 1, vertical, (Rougier et al., 2012).

3730 Notoryctes: ?, unknown.

3731

3732 320. Post-promontorial tympanic recess:

3733 (0) Absent; (1) Present.

3734 Dryolestes: 1, present, (Luo et al., 2012).

3735 Notoryctes: 1, present.

3736

3737 321. Rostral tympanic process of the petrosal:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3738 (0) Absent or low ridge; (1) Tall ridge, but restricted to the posterior half of the

3739 promontorium; (2) Well-developed ridge reaching the anterior pole of the promontorium.

3740 Dryolestes: 0, absent, (Luo et al., 2012).

3741 Coloniatherium: 0, absent, (Rougier et al., 2009).

3742 Peligrotherium: 0, absent, (Páez Arango, 2008).

3743 Necrolestes: 2, well-developed ridge, (Ladevèze et al., 2008). s t n i 3744 Notoryctes: 2, well-developed ridge, (Ladevèze et al., 2008). r P e

r 3745 P 3746 322. Caudal tympanic process of the petrosal:

3747 (0) Absent; (1) Present as a continuos crest; (2) Present, notched; (3) Present, hypertrophied

3748 and buttressed against the exoccipital paracondylar process.

3749 Dryolestes: 1, present, (Luo et al., 2012).

3750 Peligrotherium: 1, present.

3751 Necrolestes: 1, present.

3752 Notoryctes: 1, present, (Ladevèze et al., 2008).

3753 Comentaries: Rougier et al. (2012) codified this character as absent (state 0) for

3754 Peligrotherium. However, Páez Arango (2008) remarks the presence of the caudal tympanic

3755 process, delimiting posteriorly to the post-promontorial tympanic recess. Conseuqently,

3756 Peligrotherium is here coded as present (state 1).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3757 Asher et al. (2007) indicated that in Necrolestes the caudal tympanic process was absent.

3758 However, most recently Ladevèze et al. (2008) and Rougier et al. (2012) described and figured

3759 such structure in Necrolestes. For instance, in this work the caudal tympanic process is here

3760 codified as present (state 1).

3761 323. Petrosal - tympanic process:

3762 (0) Absent; (1) Present. s t 3763 Necrolestes: 0, absent, (Rougier et al., 2012). n i r

P 3764 Notoryctes: 0, absent, (Ladevèze et al., 2008). e r

P 3765

3766 324. Rear margin of the auditory region:

3767 (0) Marked by a steep wall; (1) Extended onto a flat surface.

3768 Necrolestes: 1, flat surface, (Rougier et al., 2012).

3769 Notoryctes: 1, flat surface.

3770

3771 325. Prootic canal (modified state 2):

3772 (0) Absent; (1) Present, vertical; (2) Present, horizontal.

3773 Dryolestes: 2, present, (Luo et al., 2012).

3774 Necrolestes: 0, absent.

3775 Notoryctes: 0, absent, (Ladevèze et al., 2008).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3776 Comentaries: In contrast to Asher et al. (2007) Ladevèze et al. (2008) indicates the presence

3777 of a small tympanic opening of the prootic canal in Necrolestes. However, Rougier et al. (2012)

3778 codified this opening as absent (state 0) due to a reexamination of the available middle ear

3779 material of Necrolestes (Rougier, 2012 pers. com.).

3780

3781 326. Position of the sulcus for the anterior distributary of the transverse sinus relative to the

s 3782 subarcuate fossa. t n i r 3783 (0) Anterolateral; (1) Posterolateral. P e r 3784 Dryolestes: 0, anterolateral, (Luo et al., 2012). P

3785 Necrolestes: 0, anterolateral, (Ladevèze et al., 2008).

3786 Notoryctes: 0, anterolateral, (Ladevèze et al., 2008).

3787

3788 327. Lateral trough floor anterior to the tympanic aperture of the prootic canal and/or the

3789 primary facial foramen:

3790 (0) Open lateral trough, no bony floor; (1) Bony floor present; (2) Lateral trough absent.

3791 Dryolestes: 1, bony floor present, (Luo et al., 2012).

3792 Reigitherium: 1, bony floor present, (Rougier et al., 2012).

3793 Peligrotherium: 1, bony floor present, (Rougier et al., 2012)..

3794 Necrolestes: 1, bony floor present, (Rougier et al., 2012).

3795 Notoryctes: 1, bony floor present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3796

3797 328. Anteroventral opening of the cavum epiptericum:

3798 (0) Present; (1) Present, with reduced size (due to the anterior expansion of the lateral trough

3799 floor); (2) Present, partially enclosed by the petrosal; (3) Present, enclosed by the alisphenoid and

3800 petrosal; (4) Present, as large piriform fenestra.

3801 Dryolestes: 2, partially enclosed by the petrosal, (Luo et al., 2012). s t

n 3802 Henkelotherium: 2, partially enclosed by the petrosal, (Rougier et al., 2012). i r

P 3803 Reigitherium: 2, partially enclosed by the petrosal, (Rougier et al., 2012). e r P 3804 Coloniatherium: 2, partially enclosed by the petrosal, (Rougier et al., 2009).

3805 Peligrotherium: 2, 3, partially enclosed by the petrosal and alisphenoid, (Rougier et al.,

3806 2012).

3807 Cronopio: 2, partially enclosed by the petrosal, (Rougier et al., 2012).

3808 Necrolestes: 2, partially enclosed by the petrosal, (Rougier et al., 2012).

3809 Notoryctes: 3, enclosed by the alisphenoid and petrosal, (Archer, 1976).

3810

3811 329. Enclosure of the geniculate ganglion by the bony floor of the petrosal in the cavum

3812 supracochleare:

3813 (0) Absent; (1) Present.

3814 Notoryctes: 1, present, (Archer, 1976).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3815

3816 330. Hiatus Fallopii:

3817 (0) Present, in the petrosal roof of the middle ear; (1) Present, at the anterior end of the

3818 petrosal; (2) Absent (applicable only to those taxa with a cavum supracochleare).

3819 Dryolestes: 0, present, in the petrosal roof, (Luo et al., 2012).

3820 Henkelotherium: 0, present, in the petrosal roof, (Luo et al., 2012. Ruf et al., 2009). s t n i 3821 Coloniatherium: 1, present, at the anterior end, (Rougier et al., 2009). r P e

r 3822 Peligrotherium: 0, present, in the petrosal roof, (Páez-Arango, 2008). P 3823 Necrolestes: 0, present, in the petrosal roof, (Ladevèze et al., 2008).

3824 Notoryctes: 0, present, in the petrosal roof, (Archer, 1976).

3825

3826 331. Foramen ovale - composition:

3827 (0) Between the petrosal and alisphenoid; (1) Secondary foramen partially or fully enclosed

3828 by the alisphenoid, in addition to the primary foramen between the petrosal and alisphenoid; (2)

3829 In the petrosal (anterior lamina); (3) Between the alisphenoid and squamosal; (4) Within the

3830 alisphenoid.

3831 Notoryctes: 1, (Archer, 1976).

3832

3833 332. Foramen ovale - position:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3834 (0) On the lateral wall of the braincase; (1) On the ventral surface of the skull.

3835 Notoryctes: 1, ventral surface, (Archer, 1976).

3836

3837 333. Number of exit(s) for the mandibular branch of the trigeminal nerve (V3):

3838 (0) One; (1) Two.

s 3839 Peligrotherium: 1, two, (Rougier et al., 2012). t n i r 3840 Notoryctes: 1, two, (Archer, 1976). P e r 3841 P

3842 334. Quadrate ramus of the alisphenoid:

3843 (0) Forming a rod underlying the anterior part of the lateral flange; (1) Absent.

3844 Peligrotherium: 1, absent, (Rougier et al., 2012).

3845 Notoryctes: 1, absent.

3846

3847 335. Alisphenoid canal (for the ramus inferior and/or ramus infraorbitalis):

3848 (0) Absent; (1) Present.

3849 Peligrotherium: 1, present, (Páez Arango, 2008).

3850 Notoryctes: 0, absent.

3851

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3852 336. Anterior lamina exposure on the lateral braincase wall:

3853 (0) Present; (1) Reduced or absent.

3854 Henkelotherium: 0, present, (Ruf et al., 2009).

3855 Coloniatherium: 0, present, (Rougier et al., 2009).

3856 Peligrotherium: 0, present, (Páez Arango, 2008).

s 3857 Cronopio: 0, present, (Rougier et al., 2011). t n i r 3858 Necrolestes: 0, present, (Rougier et al., 2012). P e r 3859 Notoryctes: ?, unknown. P

3860

3861 337. Orientation of the anterior part of the lateral flange:

3862 (0) Horizontal shelf; (1) Ventrally directed; (2) Medially directed and contacting the

3863 promontorium; (3) Vestigial or absent.

3864 Coloniatherium: 1, ventrally directed, (Rougier et al., 2009).

3865 Peligrotherium: 1, ventrally directed, (Páez Arango, 2008).

3866 Necrolestes: 1, ventrally directed, (Rougier et al., 2012).

3867 Notoryctes: ?, unknown.

3868

3869 338. Vertical component of the lateral flange:

3870 (0) Present; (1) Absent.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3871 Notoryctes: ?, unknown.

3872

3873 339. Vascular foramen in the posterior part of the lateral flange (and anterior to the

3874 pterygoparoccipital foramen):

3875 (0) Present; (1) Absent.

3876 Henkelotherium: 1, absent, (Rougier et al., 2012). s t n i 3877 Coloniatherium: 1, absent, (Rougier et al., 2012). r P e

r 3878 Peligrotherium: 1, absent, (Rougier et al., 2012). P 3879 Necrolestes: 0, present, (Rougier et al., 2012).

3880 Notoryctes: ?, unknown.

3881

3882 340. Relationship of the lateral flange to the crista parotica (or the anterior paroccipital

3883 process that bears the crista):

3884 (0) Widely separated; (1) Narrowly separated; (2) Continuous.

3885 Dryolestes: 2, continuos, (Luo et al., 2012).

3886 Henkelotherium: 2, continuous, (Rougier et al., 2012).

3887 Coloniatherium: 1, narrowly separated, (Rougier et al., 2009).

3888 Peligrotherium: 0, widely separated, (Páez Arango, 2008).

3889 Necrolestes: 1, narrowly separated, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3890 Notoryctes: ?, unknown.

3891

3892 341. Pterygoparoccipital foramen (for the ramus superior of the stapedial artery):

3893 (0) Laterally open notch; (1) Foramen enclosed by the petrosal or squamosal; (2) Absent.

3894 Dryolestes: 1, enclosed by the petrosal, (Luo et al., 2012).

s 3895 Henkelotherium: 1, enclosed by the petrosal, (Rougier et al., 2012). t n i r 3896 Coloniatherium: 1, enclosed by the petrosal, (Rougier et al., 2009). P e r 3897 Peligrotherium: 1, enclosed by the petrosal, (Páez Arango, 2008). P

3898 Necrolestes: 1, enclosed by the petrosal, (Rougier et al., 2012).

3899 Notoryctes: ?, unknown.

3900

3901 342. Position of the pterygoparoccipital foramen relative to the level of the fenestra vestibuli:

3902 (0) Posterior or lateral; (1) Anterior.

3903 Coloniatherium: 0, posterior, (Rougier et al., 2012).

3904 Peligrotherium: 0, posterior, (Rougier et al., 2012).

3905 Necrolestes: 0, posterior, (Rougier et al., 2012).

3906 Notoryctes: ?, unknown.

3907

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3908 343. “Bifurcation of the paroccipital process” - presence vs. absence:

3909 (0) Absent; (1) Present.

3910 Dryolestes: 0, present, (Luo et al., 2012).

3911 Henkelotherium: 0, absent, (Rougier et al., 2012).

3912 Coloniatherium: 1, present, (Rougier et al., 2012).

s 3913 Peligrotherium: 1, present, (Rougier et al., 2012). t n i r 3914 Cronopio: 1, present, (Rougier et al., 2012). P e r 3915 Necrolestes: 1, present, (Rougier et al., 2012). P

3916 Notoryctes: ?, unknown.

3917

3918 344. Posterior paroccipital process of the petrosal:

3919 (0) No ventral projection below the level of the surrounding structures; (1) Projecting below

3920 the surrounding structures.

3921 Dryolestes: 1, projecting below the surrounding structures, (Luo et al., 2012).

3922 Henkelotherium: 0, no ventral projection, (Rougier et al., 2012).

3923 Coloniatherium: 0, no ventral projection, (Rougier et al., 2012).

3924 Peligrotherium: 1, projecting below the surrounding structures, (Rougier et al., 2012).

3925 Necrolestes: 1, projecting below the surrounding structures, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3926 Notoryctes: 1, projecting below the surrounding structures.

3927

3928 345. Morphological differentiation of the anterior paroccipital region:

3929 (0) Anterior paroccipital is bulbous and distinctive from the surrounding structures; (1)

3930 Anterior paroccipital region has a distinct crista parotica.

3931 Dryolestes: 1, distinct crista parotica, (Luo et al., 2012). s t n i 3932 Henkelotherium: 1, distinct crista parotica, (Rougier et al., 2012). r P e

r 3933 Peligrotherium: 0, 1, (Rougier et al., 2012). P 3934 Notoryctes: 1, distinct crista parotica.

3935

3936 346. Epitympanic recess lateral to the crista parotica:

3937 (0) Absent; (1) Present.

3938 Notoryctes: 1, present, (Ladevèze et al., 2008).

3939

3940 347. Tympanohyal contact with the cochlear housing:

3941 (0) Absent; (1) Present.

3942 Henkelotherium: 0, absent, (Ruf et al., 2009).

3943 Peligrotherium: 0, absent, (Páez Arango, 2008).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3944 Necrolestes: 0, absent, (Rougier et al., 2012).

3945 Notoryctes: 0, absent.

3946

3947 348. Relationship of the squamosal to the paroccipital process:

3948 (0) Squamosal covers the entire paroccipital region; (1) No squamosal cover on the anterior

3949 paroccipital region; (2) Squamosal covers a part of the paroccipital region, but not the crista s t

n 3950 parotica (the squamosal wall and the crista parotica are separated by the epitympanic recess). i r

P 3951 Coloniatherium: 2, (Rougier et al., 2012). e r P 3952 Peligrotherium: 2, (Rougier et al., 2012).

3953 Notoryctes: 2, (Ladevèze et al., 2008).

3954

3955 349. Medial process of the squamosal reaching toward the tympanic cavity:

3956 (0) Absent; (1) Present (near or bordering on the foramen ovale).

3957 Henkelotherium: 0, absent, (Rougier et al., 2012).

3958 Necrolestes: 0, absent, (Rougier et al., 2012).

3959 Notoryctes: 0, absent, (Archer, 1976).

3960

3961 350. Stapedial artery sulcus on the petrosal:

3962 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3963 Cronopio: 1, present, (Rougier et al., 2012).

3964 Necrolestes: 1, present.

3965 Notoryctes: ?, unknown.

3966 Comentaries: Asher et al. (2007) and Ladevèze et al. (2008) indicate for Necrolestes the

3967 absence of the stapedial artery, denoted by the loss of the stapedial artery sulcus. However,

3968 Rougier et al. (2012) codified this character as present (state 1) due to a reexamination of s t 3969 available material (Rougier, 2012 pers. com.). n i r

P 3970 e r

P 3971 351. Transpromontorial sulcus for the internal carotid artery on the cochlear housing:

3972 (0) Absent; (1) Present.

3973 Dryolestes: 1, present, (Luo et al., 2012).

3974 Peligrotherium: 1, present, (Rougier et al., 2012).

3975 Necrolestes: 1, present, (Rougier et al., 2012).

3976 Notoryctes: 0, absent, (Ladevèze et al., 2008).

3977

3978 352. Deep groove on the anterior pole of the promontorium:

3979 (0) Absent; (1) Present.

3980 Dryolestes: 1, present, (Luo et al., 2012).

3981 Coloniatherium: 0, absent, (Rougier et al., 2009).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

3982 Peligrotherium: 0, absent, (Páez Arango, 2008).

3983 Necrolestes: 1, present, (Ladevèze et al., 2012).

3984 Notoryctes: 0, absent.

3985

3986 353. Perbullar canal or sulcus for the internal carotid artery (SICA).

s 3987 (0) Absent; (1) Present. t n i r 3988 Dryolestes: 1, present, (Luo et al., 2012). P e r 3989 Henkelotherium: 1, present, (Ruf et al., 2009). P

3990 Peligrotherium: 1, present, (Páez Arango, 2008).

3991 Notoryctes: ?, unknown.

3992

3993 354. Epitympanic wing medial to the promontorium:

3994 (0) Absent; (1) Present.

3995 Necrolestes: 1, present, (Ladevèze et al., 2008).

3996 Notoryctes: ?, unknown.

3997

3998 355. Ectopterygoid process of the alisphenoid:

3999 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4000 Necrolestes: 0, absent, (Rougier et al., 2012).

4001 Notoryctes: 0, absent.

4002

4003 356. Tympanic process of the alisphenoid:

4004 (0) Absent; (1) Present, but limited to the “piriform” region of the basicranium; (2)

4005 Intermediate; (3) Well-developed, extending to near the jugular foramen. s t n i 4006 Notoryctes: 2, intermediate, (Archer, 1976). r P e

r 4007 P 4008 357. Hypotympanic recess in the junction of the alisphenoid, squamosal, and petrosal:

4009 (0) Absent; (1) Present.

4010 Coloniatherium: 0, absent, (Rougier et al., 2012).

4011 Peligrotherium: 0, absent, (Rougier et al., 2012).

4012 Necrolestes: 0, absent, (Rougier et al., 2012).

4013 Notoryctes: 1, present, (Archer, 1976).

4014

4015 358. Separation of the fenestra cochleae from the jugular foramen:

4016 (0) Absent; (1) Separate but within the same depression; (2) Separate (not within the same

4017 depression).

4018 Dryolestes: 2, separate, (Luo et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4019 Coloniatherium: 2, separate, (Rougier et al., 2009).

4020 Peligrotherium: 2, separate, (Páez Arango, 2008).

4021 Necrolestes: 2, separate, (Rougier et al., 2012).

4022 Notoryctes: 2, separate, (Ladevèze et al., 2008).

4023

s 4024 359. Channel of the perilymphatic duct: t n i r 4025 (0) Open channel and sulcus; (1) At least partially enclosed channel. P e r 4026 Dryolestes: 1, partially enclosed, (Luo et al., 2012). P

4027 Coloniatherium: 1, partially enclosed, (Rougier et al., 2009).

4028 Peligrotherium: 1, partially enclosed, (Páez Arango, 2008).

4029 Notoryctes: 1, partially enclosed, (Ladevèze et al., 2008).

4030

4031 360. Jugular foramen size relative to the fenestra cochleae (applicable only to those taxa with

4032 a jugular foramen fully separated from the fenestra cochleae):

4033 (0) Jugular subequal to the fenestra cochleae; (1) Jugular larger than the fenestra cochleae.

4034 Dryolestes: 0, subequal, (Luo et al., 2012).

4035 Henkelotherium: ?, unknown, (Ruf et al., 2012).

4036 Coloniatherum: 0, subequal, (Rougier et al., 2009).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4037 Peligrotherium: 0, subequal, (Páez Arango, 2008).

4038 Notoryctes: 0, subequal, (Ladevèze et al., 2008).

4039

4040 361. Relationship of the jugular foramen to the opening of the inferior petrosal sinus:

4041 (0) Confluent; (1) Separate.

s 4042 Dryolestes: 1, separate, (Luo et al., 2012). t n i r 4043 Henkelotherium: 1, separate, (Ruf et al., 2009). P e r 4044 Coloniatherium: ?, unknown, (Rougier et al., 2009). P

4045 Notoryctes: 1, separate, (Ladevèze et al., 2008).

4046

4047 362. Stapedial muscle fossa size:

4048 (0) Absent; (1) Present, small; (2) Present, large (twice the size of the fenestra vestibuli).

4049 Dryolestes: 1, present, small, (Luo et al., 2012).

4050 Peligrotherium: 1, present, small, (Páez Arango, 2008).

4051 Notoryctes: 2, present, large, (Ladevèze et al., 2008).

4052

4053 363. Alignment of the stapedial fossa relative to the crista interfenestralis:

4054 (0) aligned with crista interfenestralis; (1) lateral to the crista interfenestralis.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4055 Dryolestes: 0, aligned, (Luo et al., 2012).

4056 Coloniatherium: 1, lateral, (Rougier et al., 2012).

4057 Peligrotherium: 1, lateral, (Páez Arango, 2008).

4058 Cronopio: 1, lateral, (Rougier et al., 2012).

4059 Necrolestes: 1, lateral, (Rougier et al., 2012).

s 4060 Notoryctes: ?, unknown. t n i r 4061 P e r 4062 364. Hypoglossal foramen: P

4063 (0) Indistinct, either confluent with the jugular foramen or sharing a depression with the

4064 jugular foramen; (1) Separated from the jugular foramen; (2) Separated from the jugular foramen;

4065 the latter has a circular, raised external rim.

4066 Necrolestes: 1, separate, (Rougier et al., 2012).

4067 Notoryctes: 1, separate.

4068

4069 365. Number of separate hypoglossal foramina:

4070 (0) Single; (1) Double.

4071 Necrolestes: 0, single, (Rougier et al., 2012).

4072 Notoryctes: 0, single.

4073

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4074 MIDDLE EAR OSSICLE CHARACTERS

4075 366. Geometry (shape) of the incudo-mallear contact:

4076 (0) Trochlear (convex and cylindrical) surface of the incus; (1) Trough; (2) Saddleshaped

4077 contact on the incus; (3) Flat surface.

4078 Notoryctes: 3, flat, (Segall, 1970).

4079 s t n i 4080 367. Alignment of the incus and the malleus: r P e

r 4081 (0) Posterior-anterior; (1) Posteromedial to anterolateral; (2) Dorsoventral. P 4082 Notoryctes: 1, posteromedial to anterolateral, (Segall, 1970).

4083

4084 368. Twisting of the dorsal plate relative to the trochlea on the quadrate:

4085 (0) Dorsal plate aligned with the trochlea; (1) Dorsal plate twisted relative to the trochlea, (2)

4086 Dorsal plate twisted and elevated from the trochlea; (3) Dorsal plate reduced to a conical process

4087 (crus longum).

4088 Notoryctes: 2, twisted and elevated from the trochlea, (Segall, 1970).

4089

4090 369. Presence of a quadrate/incus neck (slightly constricted region separating the dorsal plate

4091 or crus brevis from the trochlea; this represents the differentiation between the ‘body’ and crus

4092 brevis of the incus):

4093 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4094 Notoryctes: 1, present, (Segall, 1970).

4095

4096 370. Dorsal plate (= crus brevis) of the quadrate/incus:

4097 (0) Broad plate; (1) Pointed triangle; (2) Reduced.

4098 Notoryctes: 2, reduced, (Mason, 2001).

s 4099 t n i r 4100 371. Incus - angle of the crus brevis to crus longum of the incus (this is equivalent to the P e

r 4101 angle between the dorsal plate and the stapedial process of the quadrate): P 4102 (0) Alignment of the stapedial process (crus longum) and the dorsal plate (crus brevis) (or an

4103 obtuse angle between the two structure) (distinctive process is lacking, stapes/incus contact is on

4104 the medial side of the quadrate trochlea); (1) Perpendicular or acute angle of the crus brevis and

4105 crus longum (“A-shaped” incus).

4106 Notoryctes: 0, alignment, (Segall, 1970).

4107

4108 372. Primary suspension of the incus/quadrate on the basicranium:

4109 (0) By quadratojugal in addition to at least one other basicranial bone; (1) By squamosal only;

4110 (2) By petrosal (either by the preserved direct contact of the incus or by inference from the

4111 presence of a well-defined crista parotica).

4112 Coloniatherium: 2, by petrosal, (Rougier et al., 2012).

4113 Peligrotherium: 2, by petrosal, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4114 Necrolestes: ?, unknown, (Rougier et al., 2012).

4115 Notoryctes: 2, by petrosal.

4116

4117 373. Quadratojugal:

4118 (0) Present; (1) Absent.

s 4119 Notoryctes: 1, absent. t n i r 4120 P e r 4121 374. Morphology of the stapes: P

4122 (0) Columelliform–macroperforate; (1) Columelliform–imperforate (or microperforate); (2)

4123 Bicrurate–perforate.

4124 Notoryctes: 1, columnelliform-imperforate, (Segall, 1970; Mason, 2001).

4125

4126 375. Stapedial ratio:

4127 (0) Less than 1.4; (1) 1.4-1.8; (2) ≥1.8.

4128 Dryolestes: 0, ratio = 1.3, (Luo et al., 2012).

4129 Coloniatherium: 1, ratio = 1.5, (Rougier et al., 2009).

4130 Notoryctes: 1, ratio > 1.4, (Segall, 1970; Ladevèze et al., 2008).

4131

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4132 376. Bullate stapedial footplate:

4133 (0) Absent; (1) Present.

4134 Notoryctes: ?, unknown.

4135

4136 377. Malleolar neck:

s 4137 (0) Absent; (1) Present. t n i r 4138 Notoryctes: 1, present, (Segall, 1970). P e r 4139 P

4140 378. Length of the malleus manubrium:

4141 (0) Shorter than the combined width of the surangular and prearticular anterior to the

4142 incudomalleolar joint; (1) longer than the combinted width of surangular and prearticular.

4143 Notoryctes: 1, longer, (Segall, 1970).

4144

4145 379. Thickness of malleolar manubrium:

4146 (0) robust; (1) gracile.

4147 Notoryctes: 1, gracile, (Mason, 2001).

4148

4149 380. Distinctive angle or bending of Meckel’s bone (=anterior portion of postdentary rod)

4150 anterior to the level of ectotympanic (angular) bone:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4151 (0) Absent; (1) Present.

4152 Notoryctes: ?, unknown.

4153

4154 381. Medio-lateral contact vs. separation of Meckel’s element (either independent or as an

4155 ossified component of the “postdentary rod”) from the posterior (pterygoid) region of mandible:

4156 (0) Presence of medio-lateral contact either in adult or in embryonic stage until Meckel’s s t

n 4157 cartilage re-absorption; (1) Embryonic Meckel’s cartilage medio-laterally separated from the i r

P 4158 posterior part of mandible; (2) Ossified Meckel’s cartilage medio-laterally separated from the e r 4159 posterior part of mandible: P

4160 Notoryctes: ?, unknown.

4161

4162 382. Ectotympanic size/shape (may be ordered):

4163 (0) Plate-like; (1) Curved and rod-like; (2) Ring-shaped; (3) Slightly expanded (fusiform); (4)

4164 Expanded; (5) Tube-like.

4165 Notoryctes: 4, expanded, (Segall, 1970).

4166

4167 383. Ectotympanic arc

4168 (0) about 70 degrees: (1) ≤ 90 – 135 degrees; (2) ≥ 135 degrees.

4169 Notoryctes: ?, unknown.

4170

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4171 384. Anterior process of the ectotympanic (angular):

4172 (0) Present; (1) Absent.

4173 Notoryctes: 1, absent, (Archer, 1976).

4174

4175 385. Position/orientation of the incisura tympanica:

s 4176 (0) Posteroventral; (1) Posterior; (2) Postero-dorsal; (3) Dorsal. t n i r 4177 Notoryctes: 2, postero-dorsal, (Segall, 1970). P e r 4178 P

4179 386. Fusion of the ectotympanic to other bones:

4180 (0) Absent; (1) Fused to other bones.

4181 Notoryctes: 1, fused to alisphenoid and periotic tympanic wing, (Archer, 1976).

4182

4183 387. Entotympanic and its contribution to the bullar structure:

4184 (0) Absent; (1) Present.

4185 Notoryctes: 0, absent, (Segall, 1970).

4186

4187 OTHER CRANIAL CHARACTERS

4188 388. Posterior extent of the bony secondary palate:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4189 (0) Anterior to the posterior end of the tooth row; (1) Level with the posterior end of the tooth

4190 row; (2) Extending posterior to the tooth row; (3) Extending to the basisphenoid-basioccipital

4191 suture.

4192 Notoryctes: 1, level with the posterior end of the tooth row.

4193

4194 389. Posterior median spine (or torus) on the palate: s t

n 4195 (0) Absent; (1) Present. i r

P 4196 Necrolestes: 0, absent, (Rougier et al., 2012). e r P 4197 Notoryctes: 0, absent.

4198

4199 390. Pterygopalatine ridges:

4200 (0) Present; (1) Absent.

4201 Necrolestes: 1, absent, (Rougier et al., 2012).

4202 Notoryctes: 1, absent.

4203

4204 391. Transverse process of the pterygoid:

4205 (0) Present and massive; (1) Present but reduced (as the hamulus); (2) Greatly reduced (with a

4206 vestigial crest on pterygoid) or absent.

4207 Peligrotherium, 2, greatly reduced, (Páez Arango, 2008).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4208 Necrolestes: 1, 2, (Rougier et al., 2012).

4209 Notoryctes: 2, absent.

4210

4211 392. Pterygoids contact on midline on pharyngeal roof:

4212 (0) Present; (1) Absent.

s 4213 Notoryctes: 1, absent. t n i r 4214 P e r 4215 393. Ventral opening of the minor palatine foramen: P

4216 (0) Encircled by the pterygoid (and ectopterygoid if present) in addition to the palatine; (1)

4217 Encircled by the palatine and maxilla, separated widely from the subtemporal margin; (2)

4218 Encircled completely by the palatine (or between palatine and maxilla), large, with thin bony

4219 bridge from the subtemporal margin; (3) Large, posterior fenestration; (4) Notch.

4220 Notoryctes: ?, unknown.

4221

4222 394. Transverse canal foramen:

4223 (0) Absent; (1) Present.

4224 Peligrotherium: 1, present, (Páez Arango, 2008).

4225 Notoryctes: 1, present, (Archer, 1976).

4226

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4227 395. Carotid foramen position:

4228 (0) Within the basisphenoid; (1) Within the basisphenoid/basioccipital suture; (2) Within the

4229 basisphenoid/petrosal suture; (3) Through the opening of the cavum epiptericum.

4230 Peligrotherium: 3, through the opening of the cavum epiptericum, (Paéz Arango, 2008).

4231 Necrolestes: 0, within the basisphenoid, (Rougier et al., 2012).

4232 Notoryctes: 2, within the basisphenoid/petrosal suture. s t n i 4233 r P e

r 4234 396. Overhanging roof of the orbit: P 4235 (0) Absent; (1) Present, formed by the frontal.

4236 Necrolestes: 0, absent, (Rougier et al., 2012).

4237 Notoryctes: 0, absent.

4238

4239 397. Exit(s) of the infraorbital canal:

4240 (0) Single; (1) Multiple.

4241 Peligrotherium: 0, single, (Páez Arango, 2008).

4242 Notoryctes: 0, single.

4243

4244 398. Composition of the posterior opening of the infraorbital canal (maxillary foramen):

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4245 (0) Between the lacrimal, palatine, and maxilla; (1) Exclusively enclosed by the maxilla; (2)

4246 Enclosed by the maxilla, frontal and palatine.

4247 Notoryctes: 1, enclosed by the maxilla.

4248

4249 399. Size and shape of the lacrimal:

4250 (0) Small, oblong-shaped on the facial part of the rostrum; (1) Large, triangle-shaped on the s t

n 4251 facial portion of rostrum; (2) Crescent shaped on the facial portion of the rostrum; (3) Reduced to i r

P 4252 a narrow strap; (4) Absent from the facial portion of the rostrum. e r

P 4253 Peligrotherium: 1, triangle-shaped, (Páez Arango, 2008).

4254 Notoryctes: 1, triangle-shaped on the facial portion of rostrum.

4255

4256 400. Location of the lacrimal foramen:

4257 (0) Within the orbit; (1) On the facial side of the lacrimal (anterior to or on the anterior orbital

4258 margin).

4259 Cronopio: 0, whitin the orbit, (Rougier et al., 2012).

4260 Notoryctes: 1, on the facial side.

4261

4262 401. Number of lacrimal foramina:

4263 (0) One; (1) Two.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4264 Cronopio: 0, one, (Rougier et al., 2012).

4265 Notoryctes: 0, one.

4266

4267 402. Lacrimal foramen composition:

4268 (0) Within the lacrimal; (1) Bordered by or within the maxilla.

s 4269 Notoryctes: 0, within the lacrimal. t n i r 4270 P e r 4271 403. Maximum vertical depth of the zygomatic arch relative to the length of the skull (this P 4272 character is designed to indicate the robust vs. gracile nature of the zygomatic arch):

4273 (0) Between 10-20%; (1) Between 5-7%; (2) Zygoma incomplete.

4274 Peligrotherium: 0, between 10-20%, (Rougier et al., 2012).

4275 Necrolestes: 0, between 10-20%, (Rougier et al., 2012).

4276 Notoryctes: 0, between 10-20%.

4277

4278 404. Ultimate upper molar implanted in the anterior root of zygoma.

4279 (0) Absent. (1) Present.

4280 Notoryctes: 0, absent.

4281

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4282 405. Frontal/alisphenoid contact:

4283 (0) Dorsal plate of the alisphenoid contacting the frontal at the anterior corner; (1) Dorsal

4284 plate of the alisphenoid with more extensive contact with the frontal (~50% of its dorsal border);

4285 (2) Absent.

4286 Cronopio: 1, (Rougier et al., 2012).

4287 Notoryctes: 0. s t

n 4288 i r

P 4289 406. Frontal-maxilla facial contact: e r P 4290 (0) Absent; (1) Present.

4291 Notoryctes: 1, present.

4292

4293 407. Nasal-frontal suture - medial process of the frontals wedged between the two nasals:

4294 (0) Absent; (1) Present.

4295 Peligrotherium: 1, present, (Páez Arango, 2008).

4296 Notoryctes: 1, present.

4297

4298 408. Posterior width of the nasal bones:

4299 (0) Narrow; (1) broader than the width at the mid-length of the nasal.

4300 Notoryctes: 1, broader.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4301

4302 409. Pila antotica:

4303 (0) Present; (1) Absent.

4304 Henkelotherium: 1, absent, (Rougier et al., 2012).

4305 Notoryctes: ?, unknown.

s 4306 t n i r 4307 410. Fully ossified medial orbital wall of the orbitosphenoid: P e r 4308 (0) Absent; (1) Present, forming the ventral floor of the braincase but not the entire orbital P 4309 wall; (2) Present, forming both the braincase floor and the medial orbital wall.

4310 Notoryctes: ?, unknown.

4311

4312 411. Separation of the optic foramen from the sphenorbital fissure:

4313 (0) Absent; (1) Present.

4314 Notoryctes: 0, absent, (Archer, 1976).

4315

4316 412. Exit for maxillary nerve:

4317 (0) Separate from sphenorbital fissure, behind alisphenoid; (1) Separate from sphenorbital

4318 fissure, within alisphenoid; (2) Confluent with sphenorbital fissure.

4319 Notoryctes: ?, unknown.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4320

4321 413. Separate anterior opening of orbitotemporal canal:

4322 (0) Absent; (1) Present.

4323 Notoryctes: ?, unknown.

4324

s 4325 414. Orbital opening for the minor palatine nerve: t n i r 4326 (0) Absent; (1) Present. P e r 4327 Notoryctes: ?, unknown. P

4328

4329 415. Anterior part of the jugal on the zygoma:

4330 (0) Anterior part of the jugal extends to the facial part of the maxilla and forms a part of the

4331 anterior orbit; (1) Anterior part of the jugal does not reach the facial part of the maxilla and is

4332 excluded from the anterior orbit margin.

4333 Henkelotherium: 0, (Rougier et al., 2012).

4334 Peligrotherium: 0, (Páez Arango, 2008).

4335 Notoryctes: 0.

4336

4337 416. Posterior part of the jugal:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4338 (0) Contributes to the squamosal glenoid; (1) Borders on but does not contribute to the

4339 squamosal glenoid; (2) Terminates anterior to the squamosal glenoid.

4340 Henkelotherium: 0, contributes, (Páez Arango, 2008).

4341 Peligrotherium: 0, contributes, (Páez Arango, 2008).

4342 Notoryctes: 1, borders on but does not contribute.

4343 s t n i 4344 417. Maxillary in the sub-temporal margin of the orbit: r P e

r 4345 (0) Absent; (1) Present; (2) Present and extensive. P 4346 Henkelotherium: 2, present and extensive, (Rougier et al., 2012).

4347 Peligrotherium: 2, present and extensive, (Rougier et al., 2012).

4348 Cronopio: 2, present and extensive, (Rougier et al., 2012).

4349 Necrolestes: 2, present and extensive, (Rougier et al., 2012).

4350 Notoryctes: 2, present and extensive.

4351

4352 418. Orbital process of the frontal borders on the maxilla within orbit:

4353 (0) Absent; (1) Present.

4354 Notoryctes: ?, unknown.

4355

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4356 419. Anterior ascending vascular channel in the temporal region:

4357 (0) Open groove; (1) Partially enclosed in a canal; (2) Completely enclosed in a canal or

4358 endocranial; (3) Absent.

4359 Dryolestes: 0, open groove, (Luo et al., 2012).

4360 Peligrotherium: 2, completely enclosed, (Rougier et al., 2012).

4361 Necrolestes: 1,2, (Rougier et al., 2012). s t n i 4362 Notoryctes: ?, unknown. r P e

r 4363 P 4364 420. Posttemporal canal for the arteria and vena diploëtica:

4365 (0) Present, large; (1) Small; (2) Absent.

4366 Dryolestes: 0, present, large, (Luo et al., 2012).

4367 Peligrotherium: 0, present, large, (Páez Arango, 2008).

4368 Notoryctes: ?, unknown.

4369

4370 421. Nuchal crest:

4371 (0) Overhanging the concave or straight supraoccipital; (1) Weakly developed with convex

4372 supraoccipital.

4373 Peligrotherium: 0, (Páez Arango, 2008).

4374 Necrolestes: 1, weakly developed, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4375 Notoryctes: 1, weakly developed.

4376

4377 422. Sagittal crest:

4378 (0) Prominently developed; (1) Weakly developed; (2) Absent.

4379 Peligrotherium: 0, (Páez Arango, 2008).

s 4380 Notoryctes: 2, absent. t n i r 4381 P e r 4382 423. Tabular bone: P

4383 (0) Present; (1) Absent.

4384 Peligrotherium: 1, absent, (Rougier et al., 2012).

4385 Notoryctes: 1, absent.

4386

4387 424. Occipital slope:

4388 (0) Occiput sloping posterodorsally (or vertically oriented) from the occipital condyle; (1)

4389 Occiput sloping anterodorsally from the occipital condyle (such that the lambdoidal crest is

4390 leveled anterior to the occipital condyle and condyle is fully visible in dorsal view of the skull).

4391 Peligrotherium: 1, sloping anterodorsally, (Rougier et al., 2012).

4392 Necrolestes: 1, sloping anterodorsally, (Rougier et al., 2012).

4393 Notoryctes: 1, sloping anterodorsally.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4394

4395 425. Occipital artery groove on the occiput extending dorsal to the posttemporal foramen:

4396 (0) Absent; (1) Present.

4397 Notoryctes: ?, unknown.

4398

s 4399 426. Foramina on the dorsal surface of the nasals: t n i r 4400 (0) Absent; (1) Present. P e r 4401 Peligrotherium: 0, absent, (Rougier et al., 2012). P

4402 Cronopio: 0, absent, (Rougier et al., 2012).

4403 Necrolestes: 0, absent, (Rougier et al., 2012).

4404 Notoryctes: 0, absent.

4405

4406 427. Septomaxilla:

4407 (0) Present, with the ventromedial shelf; (1) Present, without the ventromedial shelf; (2)

4408 Absent.

4409 Peligrotherium: 0, 1, (Páez Arango, 2008; Rougier et al., 2012).

4410 Cronopio: 0, 1, (Páez Arango, 2008; Rougier et al., 2012).

4411 Notoryctes: 1, present, whitout the ventromedial shelf.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4412

4413 428. Internarial process of the premaxilla:

4414 (0) Present; (1) Absent.

4415 Peligrotherium: 1, absent, (Rougier et al., 2012).

4416 Cronopio: 1, absent, (Rougier et al., 2012).

s 4417 Necrolestes: 0, present, (Rougier et al., 2012). t n i r 4418 Notoryctes: ?, unknown. P e r 4419 P

4420 429. Posterodorsal process of the premaxilla:

4421 (0) Does not extend beyond canine ("short or absent"); (1) Extends beyond canine

4422 ("intermediate"); (2) Contacts frontal posteriorly (“long”).

4423 Peligrotherium: 1, intermediate, (Páez Arango, 2008).

4424 Cronopio, 0, short, (Rougier et al., 2011).

4425 Notoryctes: 0, short.

4426

4427 430. Facial part of the premaxilla borders on the nasal:

4428 (0) Absent; (1) Present.

4429 Necrolestes: 1, present, (Rougier et al., 2012).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4430 Notoryctes: 0, absent.

4431

4432 431. Premaxilla - palatal process relative to the canine alveolus:

4433 (0) Does not reach to the level of the canine alveolus; (1) Reaches the level of the canine

4434 alveolus.

4435 Peligrotherium: 0, does not reach to the level of the canines, (Páez Arango, 2008). s t n i 4436 Necrolestes: 0, does not reach to the level of the canines, (Rougier et al., 2012). r P e

r 4437 Notoryctes: 0, does not reach to the level of the canines. P 4438

4439 432. Incisive foramina size:

4440 (0) Small (one or two incisors); (1) Intermediate (three or four incisors); (2) Large (more than

4441 half the palatal length).

4442 Necrolestes: 1, intermediate, (Asher et al., 2007).

4443 Notoryctes: 0, small.

4444

4445 433. Palatal vacuities:

4446 (0) Absent; (1) Present, near palatomaxillary border; (2) Present, either positioned near or

4447 extended to the posterior edge of bony palate.

4448 Peligrotherium: 0, absent, (Páez Arango, 2008).

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4449 Necrolestes: 0, absent, (Rougier et al., 2012).

4450 Notoryctes: 0, absent.

4451

4452 434. Major palatine foramina:

4453 (0) Absent; (1) Present.

s 4454 Peligrotherium: 0, absent, (Páez Arango, 2008). t n i r 4455 Necrolestes: 0, absent, (Rougier et al., 2012). P e r 4456 Notoryctes: 0, absent. P

4457

4458 435. Ossified ethmoidal cribriform plate of the nasal cavity:

4459 (0) Absent; (1) Present.

4460 Notoryctes: 1, present, (Macrini, 2012).

4461

4462 436. Posterior excavation of the nasal cavity into the bony sphenoid complex:

4463 (0) Absent; (1) Present; (2) Present and partitioned from the nasal cavity.

4464 Peligrotherium: 1,2, (Rougier et al., 2012).

4465 Notoryctes: ?, unknown.

4466

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4467 Cranial Vault and Brain Endocast Characters (7 characters)

4468 437. External bulging of the braincase in the parietal region:

4469 (0) Absent; (1) Expanded (the parietal part of the cranial vault is wider than the frontal part,

4470 but the expansion does not extend to the lambdoidal region); (2) Greatly expanded (expansion of

4471 the cranial vault extends to the lambdoidal region).

4472 Peligrotherium: 1, expanded, (Rougier et al., 2012). s t

n 4473 Cronopio: 2, greatly expanded, (Rougier et al., 2012). i r

P 4474 Necrolestes: 2, greatly expanded, (Rougier et al., 2012). e r P 4475 Notoryctes: 2, greatly expanded.

4476

4477 438. Anterior expansion of the vermis (central lobe of the cerebellum):

4478 (0) Absent; (1) Present.

4479 Notoryctes: 0, absent.

4480

4481 439. Overall size of the vermis:

4482 (0) Small; (1) Enlarged.

4483 Notoryctes: 1, small.

4484

4485 440. Lateral cerebellar hemisphere (excluding the paraflocculus):

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4486 (0) Absent; (1) Present.

4487 Notoryctes: 0, absent.

4488

4489 441. External division on the endocast between the olfactory lobe and the cerebral

4490 hemisphere (well-defined transverse sulcus separating the olfactory lobes from the cerebrum):

4491 (0) Absence of external separation of the olfactory lobe from cerebral hemisphere; (1) s t

n 4492 Enlarged olfactory lobes; (2) Clear division of transverse sulcus. i r

P 4493 Peligrotherium: 2, clear division, (Rougier et al., 2012). e r P 4494 Cronopio: 2, clear division, (Rougier et al., 2012).

4495 Necrolestes: 2, clear division, (Rougier et al., 2012).

4496 Notoryctes: 2, clear division.

4497

4498 442. Encephalization quotient

4499 (0) Below 0.13; (1) Between 0.15-0.25, (2) Above 0.26.

4500 Notoryctes: ?, unknown.

4501

4502 443. Expansion of the posterior cerebral hemisphere (for each hemisphere, not the combined

4503 width of the posterior hemispheres):

4504 (0) Absent; (1) Present.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4505 Cronopio: 1, present, (Rougier et al., 2012).

4506 Notoryctes: 1, present.

4507

4508 SOFT-TISSUE CHARACTERS

4509 444. Trophoblasts in the :

s 4510 (0) Absent; (1) Present. t n i r 4511 Notoryctes: ?, unknown. P e r 4512 P

4513 445. Mullerian ducts ( and uterus) pass in between the ureters:

4514 (0) Absent; (1) Present.

4515 Notoryctes: 0, absent.

4516

4517 MISCELANEOUS TRAITS

4518 446. Proximal end of femur:

4519 (0) craniocaudally flattened; (1) subcircular in cross-section.

4520 Notoryctes: 0, craniocaudally flattened.

4521

4522 447. Trochanteric fossa:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4523 (0) absent; (1) present.

4524 Notoryctes: 0, absent.

4525

4526 448. Coronoid ridge on dentary:

4527 (0) subhorizontal or oblique; (1) close to vertical.

s 4528 Notoryctes: 0, oblique. t n i r 4529 P e r 4530 449. Upper molar series: P

4531 (0) sub-parallel; (1) labially convex and anteriorly convergent.

4532 Peligrotherium: 0, sub-parallel, (Páez Arango, 2008).

4533 Cronopio: 1, labially convex and anteriorly convergent, (Rougier et al., 2011).

4534 Notoryctes: 1, labially convex and anteriorly convergent.

4535

4536 450. Bulbous check-teeth with low and blunt cusps:

4537 (0) cusps thin and acute; (1) present.

4538 Notoryctes: 1, present.

4539

4540 451. Molars:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4541 (0) brachyodont; (1) hypsodont-like.

4542 Necrolestes: 1, hypsodont-like, (Asher et al., 2007).

4543 Notoryctes: 1, hypsodont-like.

4544

4545 452. Upper molar root number (Rougier et al., 2012):

s 4546 (0) one; (1) two; (2) three; (3) with extra roots, more than three. t n i r 4547 Dryolestes: 2, three, (Rougier et al., 2012). P e r 4548 Henkelotherium: 2, three, (Rougier et al., 2012). P

4549 Mesungulatum: 2, three, (Rougier et al., 2012).

4550 Coloniatherium: 2, three, (Rougier et al., 2009).

4551 Reigitherium: 2, three, (Rougier et al., 2012).

4552 Peligrotherium: 2, three, (Páez Arango, 2008).

4553 Groebertherium: 2, three, (Rougier et al., 2012).

4554 Leonardus: 1, two, (Rougier et al., 2012).

4555 Notoryctes: 1, two roots.

4556

4557 453. Lower molar root contour:

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4558 (0) subcilindrical in cross-section; (1) mesiodistally compressed and transversely wide,

4559 supporting the whole width of the crown.

4560 Notoryctes: 1, mesiodistally compressed.

4561

4562 454. Upper molars with posterior cingulum, stylocone, and posterior stylar cusp connected:

4563 (0) separated; (1) present. s t n i 4564 Notoryctes: ?, unknown. r P e

r 4565 P 4566 455. Upper molars anterior and posterior cingula:

4567 (0) reduced; (1) forming very wide platforms.

4568 Notoryctes: 0, reduced.

4569

4570 456. Upper molar cingula:

4571 (0) located at the base of the crown; (1) elevated and continuous with occlusal planes.

4572 Notoryctes: ?, not applicable.

4573

4574 457. Upper molars parastyle:

4575 (0) straight or slightly curved; (1) hooked; (2) Absent or poorly developed.

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4576 Notoryctes: ?, unknown.

4577

4578 458. Peculiar junction between the lateral and posterior semicircular canals at the point at

4579 which the latter passes under the former:

4580 (0) absent; (1) present.

4581 Notoryctes: 1, present, (Ladevèze et al., 2008). s t n i 4582 r P e

r 4583 P 4584

4585

4586

4587

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4588

4589 Appendix 2. Data matrix.

4590 Thrinaxodon 000000000000000000000000000?0?0?0?01000??????0?00000????00????

4591 00?????0000000??0????????????????00?????????????????????????0??000?????????????

4592 0000000000????00?0?0000001?0??000000010000000000?0?00000?

4593 0000000000000000000000????000000??000000000000000000000?00000000000000?

s 4594 0000000011000000??000000000?00????????0000??000??00?0?00?000?0000010?1000000?? t n i 4595 0????0?00?00??0?0?00000000000000000000000000000000000000000000000000? r

P 4596 000000000000000100000000000??0000000000000 e r

P 4597 Massetognathus 000001000000000001000000000?0?0?0001000????????20000????20????

4598 00?????0000000???????????????????00?????????????????????????0??011?????????????

4599 0000000000????00?0?000000100??00??????000000??0?0?????0?????00????

4600 0000000000000????10???0??00000?????0????00??????????????????????????????????????0???

4601 0??00?00????????1000??000??00?0?00?000?000001001000000??0????0?00?00??0?0?

4602 10100000000000001000000000000300000000000000100000?0000000000?

4603 0000000000000010??0000000000000

4604 Probainognathus 000000000000000001000000000?000?0001000????????00000????00????

4605 00?????0000000??0????????????????00?????????????????????????0??000?????????????

4606 0000000000????00?0?000000??0??00??????010000??0?0?0???0?????00??????????0????0?????

4607 10???0??000?0?????0????00??????????????????????????????????????????0??00?00?????0??

4608 1000??000??00?0?00?000?000001001100000??0????0?00?00??0?0?001000000?

4609 0000001000000000000000000000000000100000?0000000000?0000000000000101??

4610 0000000000000

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4611 Tritylodontids 000001000000000000000000010?000?3000200????????20?00??2?21????

4612 24?????0000000???????????????????00?00????????????1??????0??033023?????????????

4613 3300002?2???0000?2?10??11201000000000?

4614 010000000000000000000000000000000[01]1000000????2000010?000000000000000000000?

4615 000000000000000000000001?000?0?00000000000?00?0???0?01111??1000000?00000000?

4616 000001000000100??000000?00000?0100?

4617 0021000000000000100000000[01]010301000000000000200100? s t 4618 1000000000000[01]00000100?0111??0000000000000 n i r 4619 Pachygenelus 0000000000000100000000000000000?2000010??????1?00000????00???? P e r 4620 00?????0000000?000???????????????00?????????????????????????0??000????????????? P 4621 3300001000??0000?1?2000001?1??00000?0??10??0000100?00000?

4622 00000000000000010000001000210001????00?000000????

4623 00??????????????????????????????????????????0000000100?0?0?01111??1?00000?0000?000?

4624 000001011000000??000000?00010000?1?

4625 00210011000000001000000001000001010101000000100000?

4626 1000000000000000000000???????0000000000000

4627 Adelobasileus ????????????????????????????????????????????????????????0??????0?????

4628 0000000?000??????????????????????????????????????????????

4629 00????????????????????????????????????????????

4630 0?????????????????????????????????????????????????????????????

4631 0?????????????????????????????????????????????????????????00000?????????0221100?????

4632 0000001?11??101000010010000???00000000010000?10?????????0???????????0??0?0?

4633 000????????00??0200??????0001100???????????0????????????00000000?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4634 Sinoconodon 000000100000000000000000001101000000010?????01100000?00000????

4635 00?20??0[123]000001000???0000???0????00?00???0????????0??????0??000000?0?0??????

4636 00000000000003311220200000001????1000??0?01????

4637 00100000000000000000000000001000000?????????????????00000?0??

4638 00???????????????????????????????????????????000000010000?

4639 00022110010000000000101110101000000000100?

4640 000000000001000101010210011000000001000001001010001010001000000200010020000000 s t 4641 0100000000010000102??000?000000000 n i r 4642 Morganucodon 000010100000000000000000002[01]010000000100000000100000? P e r 4643 00000?0??11?20??20000020000???0000???0????00?40???0????????0??????0??00001100? P 4644 0??????000[01][01]0000000000?1000000001101????0000000??111?00??1???00100?00000?

4645 0000000001000000????2100010???00001000010?000?000?00000000000000000000000??

4646 0???????0??00000010100[01][01]?

4647 000231111201000000001011101010001101001110010000000001000101000210021000000001

4648 0000010010100010101010000002000100200001100110000000010000112??0000000000000

4649 Megazostrodon 0000100000000000000000000020020010000100000000000000?00000?

4650 0??12?20??20000020000???0000???0????00?40???0????????0??????0??00001100?0??????

4651 00011000000000011000000001001????2?00000?011100???????0?100000000?

4652 000000000100000??0??2100010?00000010000?000000000?00000000000?00??0??0?0?1?

4653 00000000000000?0010100???0002311012010?00000010111010000011?1001110?

4654 10000000001000101?00210?21???0??001?000010?1??000101010100000?2?00100200001?

4655 00???????00??0????????0000000000000

4656 0000011000100010001000000021010010000100000000100001?10000?0??

4657 11?20??20032000000???0000???0????00?11???0????????0??????0??03201100?0??????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4658 00010000000012200000000001100????00?????????????????????100001000?00?00000120000?

4659 0???????????????000?0000?0??0???????????????????????????????????????0???000001020011?

4660 000231100201000000001?1210100?001????01010010000000001000101000????21000???00??

4661 00002011?100010101010000002000100201001110110000000000???2??????00001000000

4662 00?00110001???1?000000000021010010000100???0??10000?010000?0??

4663 11?2???20032000?00????000???0????????????????????????????????0?01100?0??????0001?

4664 00????01?00??0??0??01100?????0??????000000??????????????????????? s t

n 4665 000012000000000011000000000000000001010000000????0000000000000000??00?0?0? i r 4666 0000001100??? P e r 4667 010?????????????????????????????????????????????????????????????????????????????? P 4668 1100010000?????????0??????10?000?2????0?2????1???11?00???????????????000?00000000?

4669 Hadrocodium 1??2?130010?40211000000000200100200?0100000101000000?0?000?0??

4670 12?20???0000000000???0000???0????00?00???0????????0??????0??00001100?0??????

4671 00000000001003344430000001101?????0?????????????????????????????????????????????

4672 0?????????????????????????????????????????????????????????????????????????10000020101?

4673 000231112301000000001?111010?100110210101101000000000100?1010??????21?0??????

4674 1????02012?103010100010000012?2?10020101211001?00??000?2??1213????0?00000000?

4675 0010110??0000021??000?00?0????0?0001010??????1111111??0013?

4676 200120100?132321001110003100???0????11?110220100?0??0000000?0100120221100??

4677 0100111????????????3?????0????????????

4678 0???????????????????????????????????????????????????????????????????????????????????????

4679 ????????????????????????????????????????????????????????????????????????????????????????

4680 ????????????????????????????????????????????????????????????????????????????????????????

4681 ???????????0??0?0?????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4682 Pseudotribos 0?10011000?0001???00??????2101010001110?0???011111?1110013?

4683 200120100?132321001110003100???0????11?110220100?0??0000000?0100120221100??

4684 01001111??0??1010003310000??01100?????0?????101?0000010001???????????0????0???

4685 12000000????2110??00000?10?000010?001??????????????????????????????????????0???

4686 0???????????????????????????????????????????????????????????????????????????????????????

4687 ????????????????????????0????????????2???1????????????????????????000?00000000?

4688 Asfaltomylos 0012112110000021??0022000021310120010????????11011?????013?2?? s t

n 4689 13??13?0210001?111022141100011112???????????????????????????01?02211?11021? i r 4690 0000?????????????????? P e r 4691 0??????????????????????????????????????????????????????????????????????????????????????? P 4692 ????????????????????????????????????????????????????????????????????????????????????????

4693 ????????????????????????????????????????????????????????????????????????????????????????

4694 ????????????????????????0??0?0?????

4695 Ambondro ?????1???00????1????????0?????0???0?0????????12131110??013?2??130?

4696 1330012100?111022241120?11112???????????????????????????01?02211?

4697 1102010000??????????????????

4698 0???????????????????????????????????????????????????????????????????????????????????????

4699 ????????????????????????????????????????????????????????????????????????????????????????

4700 ????????????????????????????????????????????????????????????????????????????????????????

4701 ???????????????????????????0?0?????

4702 0010012010000021??002200002??1012001010??????1213111011013?2??

4703 130213300121000221022141220032123???????????????????????????03?02221?

4704 1112111000????????????3????

4705 00??????????????????????????????????????????????????????????????????????????????????????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4706 ????????????????????????????????????????????????????????????????????????????????????????

4707 ????????????????????????????????????????????????????????????????????????????????????????

4708 ?????????????????????????0??0?0?????

4709 Bishops 01?10120100?0021??0022000021310120010?0??????12131?1011013?2??

4710 130213300121001221022141220032123???????????????????????????03?02221?

4711 1112111000???????????03??0?00????????????

4712 0??????????????????????????????????????????????????????????????????????????????????????? s t

n 4713 ???????????????????????????????????????????????????????????????????????????????????????? i r 4714 ???????????????????????????????????????????????????????????????????????????????????????? P e r 4715 ???????????0??0?0????? P

4716 Teinolophos 1100212010013021??0022000?21310120010????????????????????3?2??

4717 13111120012010?222042231210?02?23????????????????????????????3?02221?

4718 2113002000?????????????????????????????????????????????????????????????????????????????

4719 ????????????????????????????????????????????????????????????????????????????????????????

4720 ????????????????????????????????????????????????????????????????????????????????????????

4721 ?????????????????????????????????????????????????????0??0?0?????

4722 Steropodon 011001???0??00?1???????????????????10??????????????????013?2??

4723 131111200121100222042231210?02?23???????????????????????????03?02221?

4724 2113002000????????????3??

4725 3???????????????????????????????????????????????????????????????????????????????????????

4726 ????????????????????????????????????????????????????????????????????????????????????????

4727 ????????????????????????????????????????????????????????????????????????????????????????

4728 ???????????????????????????0?00000000?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4729 Obdurodon 11?2?1201001302110112200012131112111010??????1013100???013?2??

4730 131111200120100222042231210?02?2320?1??????????????0????????03302221?

4731 211310200054????2?2?333443??0????1???????

4732 0???????????????????????????????????????????????????21???1????

4733 11???????????????????????????????????????????????????????100002110110?000231111?????

4734 0000001?111?1101001112101110?100000000000?00?0????????1?0???????????03012?10000?

4735 40?110211?120201122?0012110011?0??00002????2?????00100?1000? s t

n 4736 Ornithorhynchus 11?2?1001001302110112200012131112111[123]10?????????????????13? i r 4737 2??1?1?1?????20100222042231210??2?2320?1????????????????????0??0330?????2?1?1?2??? P e r 4738 54????2?2?334443??0????1??????0? P 4739 1110111100000010001000001010000000000001200000010012111110000111000002201001000

4740 0?00000010110000000000001100011010011[01]0100002110010?

4741 0002311114110000000010111011010011121011101100000000000?00?0?

4742 323121211001110121010030110100002400110211212020112210012110011?0?

4743 100002111223000000????????0

4744 Tachyglossus 11?2?10??00140211000000000213111??1?

4745 010?????????????????????????????????????????????????????????????????????????????????????

4746 ?????????????????54????2?2?334443????????????????

4747 1110111100000010001000001010000000000001200000010012111110100111000002201001000

4748 0?00000010110000000000001100011010011[01]0100002110010?

4749 0002311114110000000010111011010011121011101100000000010?00?0?

4750 32312121100111012101003012110200240011?211212021112210012110011?0?

4751 10010211122300000?????????0

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4752 Fruitafossor 11?0014000000021??110000112101011001?1000000010?0000?0?0??????

4753 10?????0??00000??????????????????00?0????????????????????0???4400??????????????2??0??

4754 1010223332000?001100????31??????010001???????0?000011000?

4755 0010000012000100100121??????0000???0??01001000?0???????000000000000?

4756 00000??????????01??0????10???

4757 11??????????????????????????????????????????????????????????????????????????????????????

4758 ??????????????0???????????2?1???????????????????????????000??0?0????? s t

n 4759 11?1010??0001021101221001121140010010100000001001010000000?0?? i r 4760 12?10??10100010?00???0000???0????00?10???0????????0??????0??00101201?0?????? P e r 4761 00032000010101112000000001010????20????010100000000? P 4762 101121111111001110000010100000000?

4763 210021000000000000010000000000000000000100000000000000?????????

4764 0010000001020011?000231111301000000001?121120000011110011100200000000011??

4765 1011???????1?1????12????002002110000110000000011200111221210110001?000001??0??0?

4766 00??001?00000000?

4767 Repenomamus 11?1010??0011021101221001121140010010100000001101010000000?

4768 0??12?10??10100010?00????000???0????00?10???0????????0??????0??00101101?0??????

4769 00032000010101122000000001010?????

4770 0000001010000000011011211111110011100000101000000???

4771 210021000000000000010000000000000000000100000000000000??0??0??00?

4772 10000001020011?000231111301000000001?12112000001111001110020000?000011??

4773 101???????21?1????12?????02002110000110000000011200111221210110001?000001010??

4774 0100??001000000000?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4775 11?11?0??001102???122??0??211400200201???????1101000000000?0??12?

4776 10??10100010?00???0000???0????00?????????????????????????00?01201?0??????000????????

4777 00?21??0000??????0?????

4778 0???????????????????????????????????????????????????????????????????????????????????????

4779 ????????????????????????????????????????????????????????????????????????????????????????

4780 ???????????????????????????????????????????????????????

4781 1???????????????????????????????????????????0000000000? s t

n 4782 Yanoconodon 11?1010??0011021101221001?22140010000100000000000000000000?0?? i r 4783 11?10??02000031?00????000???0????00?00???0????????0??????0??00001100?0?????? P e r 4784 00033000000003333430001001110????? P 4785 0000001010000000011011211111110011100000101010000001210021000000000000010000000

4786 000000000000100000000000000??0?00??00000000001020?11??00??????????????????????????

4787 0???????????????????????????????32312121???11012210100?00?????0??????11?????2????

4788 122????????????0???????????????0000?0?0?????

4789 Jeholodens 11?1010??00?10211012??001?22140010000100000000101000000000?0??

4790 11?10??02000011?00???0000???0????00?00???0????????0??????0??00001100?0??????

4791 00011000010103322320000001111?????0000001010000000011011211111110011100??

4792 010101000000121002100000000000001000000000000000000010000000000000000000010000

4793 0000000102?011?0002311?130100??0???10??1???????????????????0??0?0???????????????

4794 21????????1221????????????00?10??11???00?????122???011??01??0??????1????????

4795 0000000000000

4796 11?10?0??0011021??12210010221400100001000000?0101000100000?0??

4797 11?10??1[123]000031?00???0000???0????00?10????????????1??????1??00001100?0??????

4798 0003?00??0000123321000??01100?????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4799 0???????????????????????????????????????????????????????????????????????????????????????

4800 ???????????????????????????????0??????????????02311?????????0??0?0??1010???

4801 0???????????????0??0???1??10???????????0???????????0???????0????????1???????????????

4802 0???????????????????????????0?00000000?

4803 Priacodon 11?1010??0011021??1221001022140010000100000000001010100000?0??

4804 11?10??12000031?00???0000???0????00?10???0????????1??????1??00001100?0??????0003?

4805 00??0000122221000??01101????10????????????? s t

n 4806 0??????????????????????????????????????????????????????????????????????????????????????? i r 4807 ?????????????????0?????0????1??00231111301??000000101?12100??0111100??100??000??0?? P e r 4808 1100101???????2??0???????????020?????000??????1???????1??122?10??????????0??0?? P 4809 1??????????0?00000000?

4810 0100110??000002???000000002?010?100021?????????2?000??2021????

4811 24?????0??0?000???????????????????0?00????????????1??????0??033023?????????????1?

4812 00001?1?1133?1?00??0??121000?

4813 0???????????????????????????????????????????????????????????????????????????????????????

4814 ????????????????????????????????????????????????????????????????????????????????????????

4815 ???????????????????????????????????????????????????????0????????????

4816 2??????????????????????????????1?10000000?

4817 Plagiaulacidans 11?2?10??00[01]302110102110102224001000210?????0??2?000??

4818 2021????24?????0??0?000???????????????????0?00????????????1??????0??

4819 033023?????????????420000102?[12][12]44[12]202103?1112100100??????

4820 01111000001101111101111001100100200001011000121?1110000000111100?01001001??00?

4821 002211120?1000110011000001010012?01?0001010110?000231111301??

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4822 000000101211101100211???1111?10?000000010001111??????21?0??????2???

4823 0000020100100200010?0000202?112202000100[01]11010000?21????????0111100000000

4824 Cimolodontans 11?2?10??0013021101021101022140[01]1000210?????0??2?000??

4825 2021????24?????0??0?000???????????????????0?00????????????1??????0??

4826 033023?????????????4300002?2?33444302123?

4827 11120111200010000111100000110111110111100110010010000[01]01100??

4828 21011100000001111002010000010? s t

n 4829 0000022111200100[01]11001100000101001210100001010[01]10? i r 4830 00023111130100100[01]0010121110110021121[01]111[01]010[01] P e r 4831 [01]0000001[01]00111032312121100111?? P 4832 21110000010100100200010200002[01]21112202001100121010000021110223??0111100000000

4833 1??11?????001021??121?00???104?130?00????????0101000?0001201??12?

4834 100010100010?110000100???00??010?10???00???0???0????0?00002102211?0???0??

4835 000????????1??22??1??

4836 0???????????????????????????????????????????????????????????????????????????????????????

4837 ????????????????????????????????????????????????????????????????????????????????????????

4838 ????????????????????????????????????????????????????????????????????????????????????????

4839 ????????????????????????0?00000000?

4840 Akidolestes 1????10??00?20????12210010211401100111000000?

4841 1101000120113020112010001000004012200?0100???00??020?11???000??0??0000000?

4842 2000220222100??00000001100??10110001000000001110?????0?????

4843 001100001001101121111111001110111110111010000121111201000011?

4844 000021010100100000001002010010001100001000121000021010?001020??

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4845 1???????????????????????????????????????????????????????????????????????????????????????

4846 ?????0??????10?0???2?????12????????0???0???????????????000?00000000?

4847 1111010??000202?????210010211401100111000000?

4848 1101000100113120012010001000004011200?0100???00??020?11???000??0??0000000?

4849 2000220222100??0000000????????10?000?0000000??10?????

4850 0???????????????????????????????????????????????????????????????????????????????????????

4851 ???????????????????????????????????????????????????????????????????????????????????????? s t

n 4852 ??????????????????????????????????????????????????????? i r 4853 0???????????????????????????????????????????0000000000? P e r

P 4854 11?1010??0002020??1221001021140101011100000011101001?

4855 00013110012010001000004011100?0100???00??020?11???000??0??0000000?

4856 2000220222100??000000022?0??1010220000010000??10?????0?1?000011110??0?1?011211?

4857 11110?1110111110111010000121112200000001?1100210100001000000?13020100????

4858 1100001000020000021010?00102??11?00?231111????????1????1???1????0??1????????2?

4859 00000???????1????????????????????????????????????22??100000???2???12????????1??

4860 00???????????????110000000000?

4861 Zhangheotherium 11?1010??0002020??1221001?21140101011100000011101001?

4862 00013110012010001000004011100?0100???00??020?10???000??0??0000000?

4863 2000220222100??00000002200??10102200000100001110????20?

4864 1100001111001001101121111111001110111110111010000121112200000001?

4865 11002101000010000000130201001000110000100002000002101????1020111?0012311112????

4866 1101001?1?1?10???0??12101111020000000001?0?1??1??????21??????0??????0??????0??

4867 1?????10???0???2???12??2????????00???????????????110000000000?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4868 11?1111100002021??1121010121030120011101100200002000?

4869 000130100130001000100010011[01]0002110000[01]?0121121?0?010000??

4870 0001002020001102211110000000002??????000003310?00??0???

4871 0???????????????????????????????????????????????????????????????????????????????????????

4872 ????????????????????????????????????????????????????????????????????????????????????????

4873 ????????????????????????????????????????????????????????????????????????????????????????

4874 ?????????????????0000000000? s t

n 4875 Vincelestes 11?2?111000[01]2021??1111010121130120011100000101000000? i r 4876 0001301001300000020000000110000210??000?0120?11?0?010000?? P e r 4877 000101200000110221100?000000003100000100333342000030??00??????0111100111101201? P 4878 101?211011110011101010001110?0000121012200000001110002110001020?

4879 00100130201011000110100?????210??0?00111002020011?00123?112400?

4880 111010010111010010011[01]21111110201100000011002111??????21?0???????????

4881 010110100010201000001012000100202000100111000000??1????????1101100000000

4882 Nanolestes 11?1011100002021??112?0??12103012001110??????0000000?

4883 000130100130001002100010011000021000?00?0121?11?0?0?0000??

4884 10120120200011022111100000000011?????001?02??0?00??0???0?????

4885 0???????????????????????????????????????????????????????????????????????????????????????

4886 ????????????????????????????????????????????????????????????????????????????????????????

4887 ????????????????????????????????????????????????????????????????????????????????????????

4888 ???????????0?00000000?

4889 Kielantherium 11?101110?002?21??111101?2????0130011?0??????0000000?0001301??

4890 13000110211001011102015110000[01]001???????????????????????????01?02221?

4891 1001000000????????0??12??0??0??????0?????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4892 0???????????????????????????????????????????????????????????????????????????????????????

4893 ????????????????????????????????????????????????????????????????????????????????????????

4894 ????????????????????????????????????????????????????????????????????????????????????????

4895 ???????????0000000000?

4896 ????????????????????????????????????????????????????????1?01??

4897 13000110211001?111020151100?11001????????????????????????????1??2221?

4898 1001000000??????????????????????????????? s t

n 4899 0??????????????????????????????????????????????????????????????????????????????????????? i r 4900 ???????????????????????????????????????????????????????????????????????????????????????? P e r 4901 ???????????????????????????????????????????????????????????????????????????????????????? P 4902 ?????????????00000000?

4903 Montanalestes 11?2?13100004021??111201032103013001110??????1202001000013?2??

4904 130102102110012012021151100111002???????????????????????????0??02221?

4905 1001110000???????????03??0?

4906 00??????????????????????????????????????????????????????????????????????????????????????

4907 ????????????????????????????????????????????????????????????????????????????????????????

4908 ????????????????????????????????????????????????????????????????????????????????????????

4909 ??????????????1??????????0??0?0?????

4910 Prokennalestes 11?1113100001021??1112010221030120011101[01]112?

4911 1202000020013022013020110111001201202115110011100221022020010011001011010020001

4912 20222121001110000???????1010033?0000?00?1?0?????

4913 0???????????????????????????????????????????????????????????????????????????????????????

4914 ???????????????????????????????????????????????23111251111110100102?10?????13?1?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4915 111011???11001???110?21????????2??1?????????????????????0???????????1??????????

4916 1????????????0??????????????0?000000000

4917 Murtoilestes ????????????????????????????????????????????????????????13022013?

4918 20210111001?012021151100?1100?210220200?00110010110000200012?222121001?

4919 10000???????????????????????????????

4920 0???????????????????????????????????????????????????????????????????????????????????????

4921 ???????????????????????????????????????????????????????????????????????????????????????? s t

n 4922 ???????????????????????????????????????????????????????????????????????????????????????? i r 4923 ?????????????00000000? P e r

P 4924 Eomaia 11?1113100001021??

4925 1112010221030120011101011111201000020013022013020?101110012??202?151100111??

4926 2210220200100110010??000?20001202221210011??0001000000000003310010000?100?????

4927 011?1100111101200?101122101111002110111200221021000121112200000001?

4928 1110211000012210021223020101301111010000100210001200111?0?1????2??0????1??51?

4929 11??????????1????????????????????????????11???????????????????????????0????????00??0??

4930 10?0???2???10?20???????02??1??????1??????????0?00000000?

4931 Kennalestes 11?2?1310000402110111200022???0?

4932 2001110111120100200010001302201302021021100122220311511001110022102201101001101

4933 1010000?200012022212100111000021????01011[01]33200100001101?????

4934 001?????????????????????????????????????????????????????????????????????????????????????

4935 ??2?????????????????????????????110021221122102231112511??210211002?1?2001013?????

4936 10110201000110011002110??????21?2??????321300?0110200000200??0?

4937 01012121100202201110021010?00??1011223????00000000000

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4938 Asioryctes 11?2?

4939 1310000402110111200022103013001110111220110200001001302201302021021100120120311

4940 5110011100221022011010011001000000?

4941 20001202221210011100001000000101113321010000?101?????001111??

4942 11110??????????????????????0?????0???0?11000?????2?0??00??????0??

4943 10000122100212230201013011110100000?0200001?0011100212211221022311125?1??

4944 2102110?241?2001013???1110110201000110011002110??????21?2?????? s t 4945 32130020110200000200?101010?2121100202201110021010000??1011223??110000000000? n i r 4946 Ukhaatherium ?1???????00?40??????????022???0??00? P e r 4947 1101112201102000020013022013020?102110012012031151100111? P 4948 0221022011010011001000000?20001202221210011100001000000000113321010030?101?????

4949 0?1??1?011110??0???0?1221011110?211011120022102100?1210?2200000001?

4950 1110211000012210021223020101301111010000???200??1??01??00?1?2??221???3?????????

4951 2??21????4?0????0???????1???????0?0?1??????21?1?????????2???????21??0?0?????0????????

4952 0?010???21??0????????0??????0?????????????110000000000?

4953 Zalambdalestes 11?2?

4954 1[023]1000[01]40211011120[01]022103012001110111221021220012001302201312031021100

4955 1022204205110001110220?12012011011000000000?20001202221210011100002?11?

4956 001101133?1010200?111?????0??1110011110??0???01?221011110?

4957 2110111200221021000121112200000001?1110211210?12210021223?201013?

4958 0113000000000200001?0011100312211221022311125?1??2102110024112001013???

4959 1110110201000110011002111??????21?2??????32130020110200000201?

4960 1010101211110[01]202101100021010000??1011223??1100000000000

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4961 Daulestes 11?2?1310001402110111200022103012001110???1??????????

4962 00013022013020210211001?11202115110011100220?12021010011111010000?

4963 20001202221210011100001?00??00101133200?0??0?100?????

4964 0???????????????????????????????????????????????????????????????????????????????????????

4965 ????????????????????????????????110021201120102231112511???10?????2?????01013???????

4966 11?201100??001????????1????2??1??????3???00?01?1??000?100?10?000?212110[01]20???1??

4967 00??????00??2??????????0?10000000? s t

n 4968 Aspanlestes ?????1????0??0?????????1??????0???0?1?011112?1?010000? i r 4969 0013023113110210211001?11201215110001100220?120321110312100?0000? P e r 4970 2100120222121001110000???????????033?0??0????1?0????? P 4971 0???????????????????????????????????????????????????????????????????????????????????????

4972 ????????????????????????????????????????????????3?????????1?0?0?1????0?????

4973 1??????????????00?1????????1???????????1?????????????????????

4974 0???????????????????????????????????????????????????010000000?

4975 Eoungulatum ?????1?????????????????1??????0???0?1??10110???????????

4976 013024213110310211001?11201215111001200320?12232111031210010000?

4977 0100120222121001110000???????????1332???0????1?0?????

4978 0???????????????????????????????????????????????????????????????????????????????????????

4979 ????????????????????????????????????????????????3?????????1???0?1????

4980 0???????????????????000??????????1???????????

4981 1??????????????????????????????????????????????????????????????????????????10000000?

4982 Cimolestes 1??2?1010?0140211?111200?22103012?0111010122?

4983 1101000010013023113020210211001221203115110011200221012111010011110000000?

4984 20001202221210011100002?00??0000113321?00????1?0????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

4985 20??????????????????????????????????????????????????????????????????????????????????????

4986 ????????????????????????????????????????????????????????????????????????????????????????

4987 ??

4988 0???????????????????????????????????????????????????????????????????????????????????????

4989 ??????????0000000000?

4990 Gypsonictops 1??2?101000140211?111200?22103012?0111011122?

4991 1212000110013023113120210211001221204115110011200221012111010011110000000? s t

n 4992 2000120222121001110000??????0000113320?00????1?0???? i r 4993 20?????????????????????????????????????????????????????????????????????????????????????? P e r 4994 ???????????????????????????????????????????????????????????????????????????????????????? P 4995 ????????????????????????????????????????????????????????????????????????????????????????

4996 ????????????0?00000000?

4997 Protungulatum 11?2?101000140211?11120002210301200111010120?

4998 1211000010013024213110210211001211201215111001201320?12232111031000000000?

4999 0100120222121001110000??????0000113321?00????100????

5000 20?????????????????????????????????????????????????????????????????????????????

5001 2220032122312?1013011132011??????????????????????????????2311125?1??1?0?0?00??

5002 [01]0?????1?????????????11001????1??21???????????

5003 2????????????????????????????????????????????1???????????????????????????0?10000000?

5004 Erinaceus 11?2?

5005 1310001412110111200022103013001110101101121220010001302201311031021100101120221

5006 5111001211220?12122111020??0000000?

5007 010033022212111111000032000010103333420002001110????201111100111101200?

5008 11112110111101211011120022102100012111221?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5009 0000011111121021012220032122512010130111320110000020010120011100312111201022311

5010 12511112102110023113001113???

5011 11101102011001100110021112131112122011101421300211113000002001101101121211?

5012 2212101110021110020122011223111100000000000

5013 11?2?

5014 1310001402110111200022103013001110111221121220010001302221311031021100121120411

5015 5110001101220?12111110011110000000? s t

n 5016 01001202221211111100002200000010113321000200?100?????0??????0111101200?101?22?? i r 5017 111?012110111200221021????2111221? P e r 5018 00000111111211210122200321223120101301113201100??0200?01?? P 5019 01110031211120102231112511111102010023113001113???

5020 1110110201100110011002110??????21?20?????

5021 32130121111200000300010110112121110202101110021010000122011223??1100000000000

5022 Canis 111??

5023 1310101402110111100022113013001110010001001100001011102301200101000000000000010

5024 210?001210000?01020211011000110000?0310121212100?

5025 0210000022000000002332310000000100????21111111011110120??

5026 10112120111101211111120022112100002111221?

5027 0000011011011121022212022122510010130111?30110??

5028 0020000120011100302111311022311125111?11?3??0?23111101113?????

5029 101102000010000110?

5030 112[01]2131112122011101421311201114010013000101101121101022022121000211111001220

5031 01223111100000000001

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5032 Felis 111??

5033 1310101402110111100022113013001110010001001100001011102301200101000000000000000

5034 210?001210000?01020211000?00110000?0310121212100?02100???22000000003443430?

5035 00000100????21111111011110120??10112120111101211111120022112100002111221?

5036 0000011011011121022212022122510010130111?30110??

5037 0020000120011100302111311022311125111?11?3??0?23111101113?????

5038 101102000010000110? s t 5039 1120213111212201110142131120111401001300010110112110102202212100021111100122001 n i r 5040 223111100000000001 P e r 5041 Rattus 1112?111000141211011112000222?011000210????????????????013???21313? P 5042 0004000000????42041100013?1400??2022211020??????????0?003102???????01?0???4311112?

5043 2?333343???1?02112????201111100111101200?

5044 10112210111000110100021022112000012111211?

5045 001011111112111001221003212250001011011?

5046 310110110001000120011100201011002012311125111111010000241101011131??2?

5047 1011010100111002111111021311121220111014213002011121200140011011001212011221321

5048 210002121?200121111223111100100000000

5049 Oryctolagus 1112?111000140211011111000222?011?1121000120000100001??013???

5050 01313?0004000000????210410?00?3?1300??2012111030??????????0?013202???????01?0???

5051 4311112?2?333343??0??02112????211111100111101201?

5052 10112210111000200101120022102000012111201?001011111112101100?

5053 2111321225000101301013101101100010001200111002010110020?

5054 2311125111111010000241101011131??2?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5055 1011010000111001110111021311121220111015213000011111210030011?

5056 21111212011221321210002121?200121111223111100000000000

5057 Bradypus 111??1310101412110111100022113013?01110????????????????0??????

5058 15???????????03?????????????????????????????????????????????0440???????????????55????1?

5059 2?????00??????01??????31111111011111120??

5060 10112120111210211111120022112100002111321?

5061 1100011011011000012212012122510010130111?30110?? s t

n 5062 0020000120011100302111311022311125111?11?3??0?23021101013????? i r 5063 1011020000[01]0000110?112021311121220111014213113011110300101001?11021211011220? P e r 5064 212100021011001122001223111100010000000 P

5065 Tamandua 111??1310101412110??????0?21?30???1??10????????????????

5066 0?????????????????????????????????????????????????????????????????????????????????????

5067 55????1?2?????????????01??????3?111111011111120??

5068 10112120111210211110120022112100002111321?

5069 1100011011011020022212012122510010130??1?30110??

5070 0020000120011100312111311022311125111?11?3??0?231?1101013?????

5071 101102001000000110?112021311121220111014213113011110300101002?11021211011220?

5072 212100021011001122001223111100010000000

5073 Glyptotherium 111??1310101412110111100022113013101111????????????????0??????

5074 15???????????03?????????????????????????????????????????????0330???????????????55????1?

5075 2?????00??????01??????31111111011111120??

5076 10112120111200211110120022112100002111321?

5077 1100011011011021022212012122510010130111?30110??

5078 0020000120011110302111311022311125111?11?3??0?230?1101013?????1011020000?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5079 0000110?1120????11??220111014213113011110300101001011021212111220?212101021011?

5080 01122???223111100010000000

5081 Dasypus 111??1310101412110111100022113013101111????????????????0??????

5082 15???????????03?????????????????????????????????????????????0440???????????????55????1?

5083 2?????43??????01??????31111111011111120??

5084 10112120111200211110120022112100002111321?

5085 1100011011111021022212022122510010130111?30110?? s t

n 5086 0020000120011110302111311022311125111?11?3??0?23011101013????? i r 5087 101102000000000110?112021311121220111014213113011111300101002011011212111220? P e r 5088 212101021011001122001223111100010000000 P

5089 Chaetophractus 111??1310101412110111100022113013101111????????????????0??????

5090 15???????????03?????????????????????????????????????????????0440???????????????55????1?

5091 2?????43??????01??????31111111011111120??

5092 10112120111200211110120022112100002111321?

5093 1100011011111021022212022122510010130111?30110??

5094 0020000120011111302111311022311125111?11?3??0?23021101013?????

5095 1011020000[01]0000110?

5096 112[01]21311121220111014213113011111300101002011021212111220?

5097 212101021011001122001223111100010000000

5098 Euphractus 11???1310101412110111100022113013101111????????????????0??????

5099 15???????????03?????????????????????????????????????????????0440???????????????55????1?

5100 2?????43??????01??????31111111011111120??

5101 10112120111200211110120022112100002111321?

5102 1100011011111021022212022122510010130111?30110??

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5103 0020000120011111302111311022311125111?11?3??0?23021101013?????

5104 1011020000[01]0000110?

5105 112[01]21311121220111014213113011111300101002011021212111220?

5106 212101021011001122001223111100010000000

5107 Holoclemensia ??????????????????????????????????0?1???????????????????

5108 130210130201102110011111021151100?2100120?120111100010010011121200012?

5109 222121001000000??????????????????0???????????? s t

n 5110 0??????????????????????????????????????????????????????????????????????????????????????? i r 5111 ???????????????????????????????????????????????????????????????????????????????????????? P e r 5112 ???????????????????????????????????????????????????????????????????????????????????????? P 5113 ?????????????00000000?

5114 Sinodelphys 11???131010?4021??111?0??2210301300111000??11?1010?00?001302??

5115 130101100110011111?21151100121??121122???110??????01101212100??02221?

5116 10010000001100000000113211120?10?100?????0?????00111?0120??101123101111012?

5117 111112?0221121111021????00000001?1??0?100000121201??1242202011021?

5118 210001111021000020011??

5119 0???????????????????????????????????????????????????????????????????????????????????????

5120 ????????????0??????10?0???2????0?2?3??????0??????????1????????110?00000000?

5121 Deltatheridium 11?2?14101012021??

5122 1111000421030130011100000110001000000013021013000110[123]11001111102115110001100

5123 121122010110001001001001022201202221210010000001100??00002222211100?12100????

5124 20?????????????????????????????????????????????????????????????????????????????

5125 12???????2??????110212???00??????????????11100?020112????231112510??110100212312???

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5126 1013???2?1011?2?00001???1101111???????2??1???????????02?11?2?000?201010?000121???

5127 0[01]2031????002?011000?????????????00000000000

5128 Atokatheridium ??????????????????????????????????0?????????????????????1?

5129 021013000110011001?111021151100?0??0121?220101100010010010010222012?

5130 222121001000000???????????????????????????????

5131 0???????????????????????????????????????????????????????????????????????????????????????

5132 ???????????????????????????????????????????????????????????????????????????????????????? s t

n 5133 ???????????????????????????????????????????????????????????????????????????????????????? i r 5134 ?????????????00000000? P e r

P 5135 Sulestes ??????????????????????????????????0?????????????????????13?

5136 21013000110011001?111121151100?11102211220101100010010011110222012?

5137 222121001010000???????????????????????????????

5138 0???????????????????????????????????????????????????????????????????????????????????????

5139 ????????????????????????????????????????????????????????????????????????????????????????

5140 ????????????????????????????????????????????????????????????????????????????????????????

5141 ????????????000000000?

5142 Marsasia 11?2?14101012021??11112014??1?013?0?????????????????????13????130?

5143 02?0011001?111121151100?22112???????????????????????????0??02???????????

5144 000????????????2??????????????????

5145 0???????????????????????????????????????????????????????????????????????????????????????

5146 ????????????????????????????????????????????????????????????????????????????????????????

5147 ????????????????????????????????????????????????????????????????????????????????????????

5148 ???????????0000000000?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5149 Asiatherium 11?1?141010140211?111100142?0?

5150 0130011100000110001000000013022013010310211001011112215110112211221022021111121

5151 1?000100102100120222121001110000??????00?0222221010?????0??????0????10011110??

5152 0????11231011110?2110111200221121111021012200000001?111011010001????????

5153 2???????????????????????????0?001110?3020112010?2311125????1111?0??23??4101013?????

5154 10?1?2??0?0101111???11???????2??????????????02011?2?00??21??10?0?0?2????0[01]20???

5155 11000??????10??2????????110000000000? s t

n 5156 Kokopellia ?1?1?1410?012??1??1?1100??2?????3?01110????1? i r 5157 0001000000013021013010210211001001112215110112210221?220201100111? P e r 5158 1001111021001202221210011100001?????0000?222?1?10??0?100???? P 5159 20??????????????????????????????????????????????????????????????????????????????????????

5160 ????????????????????????????????????????????????????????????????????????????????????????

5161 ????????????????????????????????????????????????????????????????????????????????????????

5162 ??????????????00000000?

5163 Anchistodelphys ??????????????????????????????????0????????????????????01?

5164 021013020310211001?011122051101132102211220221210210101011110?

5165 200120222111001110000???????????????????????????????

5166 0???????????????????????????????????????????????????????????????????????????????????????

5167 ????????????????????????????????????????????????????????????????????????????????????????

5168 ????????????????????????????????????????????????????????????????????????????????????????

5169 ?????????????00000000?

5170 Albertatherium ??????????????????????????????????0????????????????????0?

5171 3022013???????????????1???????????????2112202221102101100111112200?2?222111??????

5172 000?????????????2?????????????????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5173 0???????????????????????????????????????????????????????????????????????????????????????

5174 ????????????????????????????????????????????????????????????????????????????????????????

5175 ????????????????????????????????????????????????????????????????????????????????????????

5176 ?????????????00000000?

5177 Didelphodon 11?2?14101011021??11110014211301?001110001???

5178 00011000000130220130003102110012111122051201?

5179 321122112202222102010100201102210120222111001110000????????00222221?00????1? s t

n 5180 0????20?????????????????????????????????????????????????????????????????????????????? i r 5181 21201101231101011021221011????????????????10?30201120102231112??0????1??0?1?? P e r 5182 11?????1??????1?????0?00?1?????0111?????????1?1??????????? P 5183 0????????????????????????????0???1????0???????1??????????????0?10000000?

5184 Pediomys ???2?14101011021??11110014211301?001110???????????????

5185 0013022013010310211001111112205120113211221122022221021100001111021001202221110

5186 01110000????????00222221100??????0????

5187 20??????????????????????????????????????????????????????????????????????????????

5188 21201101242202011021221011?????????????????????????????123111???0????0??0?1???1?????

5189 1??????1???????00?1?????0111???????????1?????????????????2???0??????????????????????

5190 1????????????1????????????????00000000?

5191 Turgidodon ???2?141010110211?111100?4?11301?001110??????

5192 0001000000013021013010310211001111113215120113211221122022211021100001111022001

5193 20222111001110000????????00222221?00???21?0????

5194 20??????????????????????????????????????????????????????????????????????????????????????

5195 ??????????2????????????????????????????????????223111???0????0??0?1??11?????1??????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5196 1???????00?1?????0?11???????????1????????????????????????????????????????????

5197 1?????????????????????????????00000000?

5198 Mayulestes 11?2?14101014?

5199 2110111100142103013001110000011000100000001302101301031021100111111221512011311

5200 0221122022220021100001011022101202221110011100001000000000222221100111?100?????

5201 01111100111101201?101123101111012111111200221121?1??

5202 2111220000000111110111000012???????242202011021211011?????210??0? s t

n 5203 0011100302011201112311125????110100??24110101013????? i r 5204 10110210010100111111111??????21?????????????0201102000002110101000?201010020?? P e r 5205 01100021111100??2????????110000000000? P

5206 Pucadelphys 11?2?

5207 1410101402110111100142103013001110000011000100000001302101312031021100101111221

5208 5120113210221022022221121110002111121001202221110011100001000000000222221110111

5209 2100?????01111100111101201?10112310111101211111121022112?????

5210 21112200000001111101110000121301101242202011021221011?11?0210??0?

5211 001110030201120111231112511??1101002124110101013?????

5212 10110210010100111111111??????21?1??????2????02011?

5213 200000211010111012010100203101100021011100?21????????1100000000000

5214 Andinodelphys 11?2?

5215 1410101402110111100142103013001110000011000100000001302101312031021100121111221

5216 5120103211221022022221121110002111121001202221110011100001000000000222221110111

5217 ?100?????0??????0???????0???0??????????????????????????????????????????????????

5218 0????????????????2???????????????????????????0???111003?2011201122311125????1101002?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5219 24110101013?????1011021001010001111111???????21?1???????????02?111?1000021?

5220 01011001201?10020310110002101111??21??????????0?00000000?

5221 Didelphis 11?2?

5222 1410101412110111100142103013001110000021000100000001302101302031021100101111221

5223 5120103211221022022221120?

5224 000021111220012022211100111000010000000002222211101112100????201111100111101201?

5225 1011231011110121111112[01]022112121102111220000000111110111000012130110124220211 s t

n 5226 102123201111110210010200111003020112011123111251111111100212311[01]101013????? i r 5227 1011020000010111101111121311121210111002212002011121000021001011001201010020310 P e r 5228 0100021111110121011223001100000000000 P

5229 Marmosa 11?2?

5230 1410101412110111100142103013001110000021000100000001302101302031021100111111211

5231 5120103212221022022221120?

5232 000021111210012022211100111000010000000102222210001112100?????01111100111101201?

5233 10112310111101211111120022112121102111220000000111110111000012130110124220211102

5234 1222011111102100102001110030201120111231112511111111002123111101013?????

5235 1011020000010111101111121311121210111002212002011121000021001011011201010020311

5236 2110021111110121011223001100000000000

5237 Caenolestes 11???14101014?2110111100142103013001110???????????????00?

5238 3021013020310211001111113215120103212221022022221120?

5239 001021010210012022211100111?00011000000002222210100202100???0?

5240 01111100111101201?

5241 101123101111012111111200221121211021112200000001111101110000121302?

5242 01242201011021221011110002101002001110030201120?11231112511111113002?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5243 23110101013?????10?102000000021110111112131??21110111003212002011131000021?

5244 01011?0120101002032??10002111?220121???223001100000000000

5245 Dasyurus 11?2?

5246 141010140211011110014210301300111000[01]021000100000001302101302031021100111111

5247 2215120103212221122022221120?

5248 001021010220012022211100111000021000000003322311000112100?????01111100111101201?

5249 1011231011110121111112002211212110211122000000011111011100001213121012510010121 s t

n 5250 213?1011110002101002001110030201120113231112511111113002123101101013????? i r 5251 10110200000102111011121?131?? P e r 5252 2111011100421200201111120002110101101120101002032011000211111101210112230011000 P 5253 00000001

5254 Dromiciops 1112?

5255 1410101402110111100142103013001110000021000100000001302101302031021100110111320

5256 5120103212221122022221120?

5257 000000011210012022211100111000010000000102222210100212100?????

5258 01111100111101201?

5259 101123101111012111111200221121211021112200000001111101110000121302?

5260 112510020121213?2011111002100102001110030201120111231112511111113002?231?

5261 4101013?????101102000001021110011102131??

5262 2122011100321300201111100003110101100120?

5263 0100203212110021011110121011223001100000000000

5264 Thylacomyidae 111??14101014?2110111100142103013001110???????????????00?

5265 30??????????????001??11132??1????3???4????2042??1120?00100001?2?01120222101???

5266 1100002000000???222221??0?2?210??????01111100111101201?10112310111101211?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5267 11120022112111102111220000000111110111000012130????2510020121213???11???002?0?

5268 0020111100302?112?113231112511111113002?2310?101013?????101102?0000102?1???11??

5269 2131??21??0?1100421?0020111?1000021?01011?012?101?020?2??1?0021?1???0121???

5270 223001100000000000

5271 Macropus 111??1410101402110111100142103013001110???????????????00?3?

5272 25313130300200001330113204131004312400?32042211120?00100000?

5273 2300120222101110110???4200001???332232?110202112?110?01111100111101201? s t

n 5274 101123101111012111111200221121111021112200100001111101110000121312? i r 5275 112510010121213?1011111002000002011110030211131303231112511111113002? P e r 5276 23114101013?????101102000001031110011112131?? P 5277 21220111005213002011111100131101011001201010030321211002101?020121???

5278 223001100000000000

5279 Acrobates 111??1410101412110111100142103013001110???????????????00?3?

5280 35313130210200001010113215120004212420?32042211120?

5281 0010000112100120222101001110???30000000102222310000202110?????01111100111101201?

5282 101123101111012111111200221121111021112200000001111101110000121302?

5283 112510020121213?2?11111002?0?102011110030211131303231112511111113002?

5284 23114101013?????101102000001011110111202131??212?

5285 11110052131020111310000311010110012010100203212110021111120121???

5286 223001100000000000

5287 Phascolarctos 111??1310101402110111100142103013001100???????????????00?3?

5288 35313130320200001330113204130004312420?32042211120?00100100?

5289 2301120222101110110???4200001???332233?200102111?????01111100111101201?

5290 101123101111012111111200221121111021112200100001111101110000121302?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5291 112510020121213?1011111002100102011210030211100103231112511111113002?

5292 23114101013?????101102000001021110111112131??

5293 211201110032130020111311001410010111012010100303201100021111020121???

5294 223001100000000000

5295 Vombatus 111??1410101402110111100142103013001100???????????????00?3?

5296 35313130320200001330113204131004312420?32032211120?00100000?

5297 2301120222101110110???4301012???332233?201?02112?????01111100111101201? s t

n 5298 101123101111012111111200221121111021112200100001111101101000121302? i r 5299 112510020121213?101111100210010201121003021110?003231112511111113002? P e r 5300 23023101013?????101102000001011110011112131?? P 5301 211201110052130020111310001411010110012010100303202100021111001121???

5302 223001100100000000

5303 Phalanger 111??1410101402110111100142103013001110???????????????00?3?

5304 35313130320200001330013215120004312420?32042211120?00100100?

5305 2300120222101110110???32000000102222220210202111?????01111100111101201?

5306 101123101111012111111200221121111021112200000001111101110000121302?

5307 112510020121213?2011111002100102011210030211131303231112511111113002?

5308 23114101013?????101102000001031110011112131??

5309 212211110052131020111311001310010110012010100303202100021111120121???

5310 223001100000000000

5311 Pseudocheirus 111??1410101402110111100142103013001110????????????????0?3?

5312 35313130320200001330013204130004212420?32042211120?00100100?

5313 2301120222101110110???32000010103322320000202111?????01111100111101201?

5314 101123101111012111111200221121111021112200000001111101110000121302?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5315 112510020121213?2011111002100102011210030211131303231112511111113002?

5316 23114101013?????101102000001031110011212131??

5317 212211110052131020111210000311010110012010101203212100021111120121???

5318 223001100000000000

5319 Petauroides 111??1410101402110111100142103013001110????????????????0?3?

5320 35313130320200001330013204130004212420?32042211120?00100100?

5321 2300120222101110110???32000000103322320000202111?????01111100111101201? s t

n 5322 101123101111012111111200221121111021112200000001111101110000121312? i r 5323 112510020121213?2011111002100102011210030211131303231112511111113002? P e r 5324 23114101013?????101102000001031110011212131?? P 5325 212211110052131020111210000211010110012010101203212110021011120121???

5326 223001100000000000

5327 Perameles 11???1410101412110111100142103013001110???????????????00?

5328 3021013020210211001211113215120003212221022022221120?

5329 001021010220012022211100111?00020000000002222210100212101?????

5330 01111100111101201?

5331 101123101111012111111200221121211021112200000001111101101000121302?

5332 112510020121213?1011111002001002011110030201120211231112511111113002?

5333 23114101013?????101102000001021110111112131??

5334 211101110042120020111210000210010110112010100203212100021110110121???

5335 223001100000000000

5336 Dryolestes 11?1111100002020??

5337 1021000021110130011100000010101001100113011012120000400000001100001?0??000?

5338 0020?00???000??0??0001000?0000220221110??01000001100??01011100000000301110????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5339 20???????????????????????????????????????1?

5340 110??????????????????????????????????????????????????????????????????????????

5341 1???????????????????????????????????????????????????????????????????????????????????????

5342 ?????????????????1???10?0????????????????????????0???0??????????????01000000011

5343 Henkelotherium 11?1011100002021??102100?0211101300111000000?

5344 0101001100113011012120000400000001100001?0??000?0020?00???000??0??0001000?

5345 0000220221110??0100000??????010?110000000??01??0??????0?????011110??0???01121111? s t

n 5346 110?111011?000000021000121?022000000011100011100010???????? i r 5347 1???????????????????????0???0?1011???1020?11?00?2311124??11?1?1??2? P e r 5348 1[12]1??????????????0????011??????21??[12]?????????????????????????[12]????1?????20001? P 5349 1???????????20???????????????????????????000?00000001?

5350 Crusafontia 11?1011100012021??

5351 1121000121130130011100000010101001100113000012120000200000001100001?0??000??

5352 020?00???[03]????0??0001000?0000220221110??010?0001100??0?011100000000?011?

5353 0???????????????????????????????????????????????????????????????????????????????????????

5354 ????????????????????????????????????????????????????????????????????????????????????????

5355 ????????????????????????????????????????????????????????????????????????????????????????

5356 ?????????????????0?00000001?

5357 Leonardus ???2?1???????????????????????????????????0???11101002??01301101212?

5358 0?0?000000?2?0?000?0???0????20?00???3????0??0001000?0100220221110??010?

5359 000?????????????3???

5360 1???????????????????????????????????????????????????????????????????????????????????????

5361 ????????????????????????????????????????????????????????????????????????????????????????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5362 ????????????????????????????????????????????????????????????????????????????????????????

5363 ??????????????????????????101010000?

5364 Mesungulatum 1????1?????????????0?????1?????????????0000??1113?011?

5365 0013001112120000103010001100001?00?000?0020?00??03????0??0001000??000320221110??

5366 010?000??????????223342?10????

5367 1???????????????????????????????????????????????????????????????????????????????????????

5368 ???????????????????????????????????????????????????????????????????????????????????????? s t

n 5369 ???????????????????????????????????????????????????????????????????????????????????????? i r 5370 ???????????????????1?10011111? P e r

P 5371 Coloniatherium 11?2?1110??1???1??1011?[01]11???3?????01100000?

5372 01113100120013001112120000403010001100001?00?000?0020?01???3????0??0001000?

5373 01003202?1110??010?000??????0101223342?10???

5374 11??????????????????????????????????????????????????????????????????????????????????????

5375 ?????????????????????????????????????????????????????????311125011111?

5376 [12]00221111??????????????011?211101???121121?????????

5377 2??????????????????????????????????????????????????????????????????????????1?10011111?

5378 Reigitherium 1??2?1?????1???????011???1??????2??11????0???10131000001130011121?

5379 0000403010001100001?00??00?002???????3?????????????0?0??0320220110??010?

5380 000???????????2?3????0????

5381 1???????????????????????????????????????????????????????????????????????????????????????

5382 ????????????????????????????????????????????????????????3??125??1111?[12]???2?

5383 11??????????????????????????????????????????????????????????????????????????????????????

5384 ??????????????????????????????????10111111?

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5385 Paraungulatum ???????????????????????????????????????????????1?????????

5386 3001113???????????0??????????????????????????????????????????????0?20??1100??010?

5387 000?????????????????????????????????????????????????????????????????????????????????????

5388 ????????????????????????????????????????????????????????????????????????????????????????

5389 ????????????????????????????????????????????????????????????????????????????????????????

5390 ???????????????????????????????????????????????101?1111?

5391 Groebertherium ?????????????????????????????????????????0?????????????? s t

n 5392 23011112120000402010?01100?01?0??1???0020000???3????0??0001000?0100220221110?? i r 5393 010? P e r 5394 000????????????????????????????????????????????????????????????????????????????????????? P 5395 ????????????????????????????????????????????????????????????????????????????????????????

5396 ????????????????????????????????????????????????????????????????????????????????????????

5397 ???????????????????????????????????????????????10010001?

5398 Peligrotherium 11?2?1110??1??11??1011?020??2[13]?13??0?10??0??

5399 0111311022001300111212?0002030100?1?0?000?0???0??0020?00???3????0??0001000?

5400 0100330221110??010?0001?????0101223342?10???

5401 11?????????????????????????????????????????????????????????????10??????????????????

5402 0?????????????????????????????????????????????????????0??????????125????11?0??1?

5403 1[23]1???????????????1[01]???2?11??????21?12?????????2?????????????2????????????????

5404 0??????????????????0?1??[01]??????????????????0?10111110?

5405 Amphitherium 11?1111100002021??11210?01210301200111011?0?00000001?

5406 0001301101300010020000000110000210?0000??111100???000??0??0001000?

5407 20002102211100000000001?00????0??000?0?

5408 00??????????????????????????????????????????????????????????????????????????????????????

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5409 ????????????????????????????????????????????????????????????????????????????????????????

5410 ????????????????????????????????????????????????????????????????????????????????????????

5411 ?????????????????????????0000000000?

5412 Cronopio 1112?1310001401110101100?021111110001??

5413 0000010113000200013011012120000400000002100000?0?0000?0020?00???3????0??0101000?

5414 0200220221110??010?000?3??0?01012233??01001?1100?????

5415 0??????????????????????????????????????????????????????????????????????????????????????? s t

n 5416 ????????????????????????????????0000101?011?1??231112[45]010?1111012?1?1??10?011? i r 5417 01101011?2?110010?0210?21????????21[02]?????????????0??????????1???0?1011?????? P e r 5418 0???????????0[01]100?000??2??02?1????01001?0001 P

5419 Necrolestes 1?12?

5420 110000141211010110010211311200011100000001101002200130210121100?0400000002200?

5421 00?0?0?0????20?00???3????0??0101000?0200220222100??010?

5422 0001000000101223330010010?0000?1?100?1?1???1??0??????????1????10???11?

5423 111010101111??????10?????????00??101??0????1?2??1???????????????????????????????2??

5424 10000?01?01113?1??01115?1???111??0?2?11?????????????01112?00101?0?110121????????21?

5425 11???????????11????10100?00?11???1?0???????0???2?0??2???1000???????????0001100100??1

5426 Notoryctes 1112?12100014121101111001121031120001100000?

5427 00110100110013011013020000400000002100001?0?0?00??110?00???3????0??0001000?

5428 2000220221100?001000002[23]00001020233332010000??00????101111110011100201?

5429 101121111111012111110110110021?00?2111220?000001110000110001221303?

5430 1115000201110100101102?1100110110011?001020111???123111230111?11100011??1?

5431 101013?????10110200000102?11012???21200021100??000421??02[01]1102???

5432 102100101111??????0100??1110?02?00?000??2???2??000001010000001

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5433 Appendix 3. Diagnosis of selected clades

5434

5435 Theriiformes (Multituberculata + Zatheria) 60-1, 124-2, 179-0, 181-1, 182-1, 183-1, 208-1,

5436 219-1, 228-1, 238-1, 139-1, 240-1, 244-2, 252-1, 268-1, 272-1, 273-1, 292-1, 300-1, 345-1, 363-

5437 1, 384-1, 399-2, 418-0.

5438 Zatheria (Spalacotherioidea + derivados) 13-2, 36-1, 72-0, 175-1, 210-1, 216-1, 227-1, 230-1, s t 5439 245-1, 307-1, 320-1, 322-1, 397-1, 416-1. n i r

P 5440 Dryolestoidea + Vincelestes et al. 7-1, 20-1, 33-2, 115-1, 148-0, 150-0, 177-1, 178-1, 189-1, e r 5441 219-2, 254-1, 267-1, 293-1, 313-2, 350-1, 351-1, 362-2. P

5442 Vincelestes + et al. 24-1, 47-0, 64-3, 85-2, 95-1, 186-1, 213-0, 284-1, 294-1, 297-2, 342-1,

5443 416-0, 446-1.

5444 Theria 60-2, 82-1.

5445 Metatheria 10-1, 40-0, 104-1, 155-2, 157-1, 158-1, 162-1, 218-1, 221-1, 222-1, 223-0, 256-1,

5446 261-4, 262-2, 273-2, 274-1, 278-1, 279-1, 419-3.

5447 Marsupialia 44-2, 109-0, 111-0, 321-1, 328-3, 349-0, 352-0, 360-0, 429-1.

5448 Australidelphia 113-1, 117-0, 119-0, 161-0, 256-2, 286-1, 322-3, 420-2.

5449 Eutheria 22-2, 42-1, 43-1, 46-1, 47-2, 68-2, 80.2, 95-2, 98-0, 108-1, 118-0, 136-1, 137-1, 143-

5450 0, 189-0, 254-1, 257-2, 258-1, 268-3, 288-1, 298-1.

5451 Dryolestoidea 99-0, 136-1, 244-1, 325-2, 458-1

5452 Dryolestida 33-3, 45-1, 52-1, 56-1, 153-1, 154-0, 155-0, 457-1

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014 Reviewing Manuscript

5453 Notoryctes + Meridiolestida 4-2, 13-4, 21-1, 31-1, 36-0, 48-1, 50-1, 104-3, 143-3, 152-2, 159-

5454 1, 172-1, 220-1

5455 Notoryctes 7-4, 29-0, 54-1, 64-3, 95-1, 120-2, 142-2, 148-1, 150-2, 174-1, 211-0, 212-1, 244-

5456 0, 254-3, 289-1, 337-3, 350-0, 351-0, 356-2, 400-1, 406-1, 451-1

5457 Meridiolestida 20-0, 53-2, 85-0, 121-2, 162-1, 293-0, 299-1, 301-0, 450-1, 453-1

5458 Mesungulatoidea 60-0, 124-3, 454-1, 455-1, 456-1. s t

n 5459 i r P e r P

PeerJ reviewingPrePrints | PDFhttp://dx.doi.org/10.7287/peerj.preprints.755v1 | (v2014:12:3598:0:1:NEW 20 Dec 2014) | CC-BY 4.0 Open Access | rec: 21 Dec 2014, publ: 21 Dec 2014