Java Stand-Alone Applications on Z/OS Volume 1

Total Page:16

File Type:pdf, Size:1020Kb

Java Stand-Alone Applications on Z/OS Volume 1 Front cover Java Stand-alone Applications on z/OS Volume 1 Setting up an environment for managing Java programs on z/OS Building, deploying, running, and debugging applications Analyzing application performance and exploiting zAAP Alex Louwe Kooijmans Paul Anderson Kenichi Yoshimura Linfeng Yu ibm.com/redbooks International Technical Support Organization Java Stand-alone Applications on z/OS Volume 1 May 2006 SG24-7177-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (May 2006) This edition applies to IBM SDK for z/OS, Java 2 Technology Edition, productnumber 5655-I56. © Copyright International Business Machines Corporation 2006. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. x Become a published author . xi Comments welcome. xi Chapter 1. Scenarios for running Java stand-alone applications on z/OS 1 1.1 Definition of Java stand-alone applications . 2 1.1.1 Definition of batch applications . 2 1.2 Legacy system modernization. 3 1.3 Reasons to use Java for stand-alone applications . 5 1.3.1 Functionality . 6 1.3.2 XML processing . 6 1.3.3 Reusing J2EE online program logic . 7 1.3.4 Migrating Java applications for QoS and server consolidation . 7 1.3.5 Availability of skill set for the future . 8 1.3.6 zAAP processor . 8 1.4 Topologies of Java stand-alone applications . 9 Chapter 2. Job management . 11 2.1 The first Java program on z/OS . 12 2.2 Running a Java program as a batch job . 12 2.2.1 Overview of Job Control Language. 13 2.2.2 Writing JCL for a Java batch job . 18 2.2.3 Limitations of BPXBATCH. 20 2.2.4 BPXBATSL . 21 2.2.5 Comparison of JCLBATCH and JCLBATSL . 22 2.3 Developing multi-step jobs . 22 2.3.1 Specifying multiple steps in a JCL script. 23 2.3.2 Conditions on a step . 25 2.3.3 Conditional step execution using IF-ELSE . 26 2.4 Design considerations for multi-step jobs . 27 2.4.1 What skill sets are available in the development team? . 27 2.4.2 How much integration with legacy applications is necessary? . 27 2.4.3 How much control is required between steps? . 27 2.4.4 Return code from BPXBATCH and BPXBATSL . 28 © Copyright IBM Corp. 2006. All rights reserved. iii Chapter 3. Access to MVS data sets . 31 3.1 The JRIO library . 32 3.1.1 JRIO classes and interfaces . 32 3.1.2 JRIO usage examples. 35 3.2 Working with VSAM data sets . 41 3.2.1 VSAM overview. 41 3.2.2 Accessing records in a VSAM data set using the JRIO library . 42 3.3 Working with COBOL packed decimal numbers . 46 3.3.1 Converting from COBOL packed decimals to Java integers. 48 3.3.2 Converting from Java integers to COBOL packed decimals. 49 3.4 JRecord bean generator and supporting APIs . 50 3.4.1 JRecord utility APIs . 50 3.4.2 Generating a Java bean for a record . 50 3.4.3 JRecord runtime library and plug-in installation . 60 Chapter 4. Tools and techniques . 61 4.1 Introduction . 62 4.2 Application build and deployment . 62 4.2.1 Ant support in Eclipse . 62 4.2.2 Set up Ant ftp support in Eclipse . 65 4.2.3 Build and deployment Ant script . 66 4.2.4 Use the ANT buildfile . 70 4.2.5 Further discussion. 71 4.3 Debugging . 72 4.3.1 Remote debugging . 72 4.3.2 Preparing the Java program . 73 4.3.3 Creating a shell script and JCL . 75 4.3.4 Deploying and starting a Java application. 78 4.3.5 Work with the debugger in the Eclipse workbench . 82 4.3.6 Local debugging . 89 4.3.7 Rational Application Developer considerations. 90 Chapter 5. Measuring performance and application profiling . 91 5.1 Performance analysis . 92 5.1.1 Tooling overview . 92 5.1.2 Establishing a goal . 93 5.2 Overview of analysis strategies. 94 5.2.1 Statistical. 94 5.2.2 Fractional . 94 5.2.3 Elimination. 95 5.2.4 Accurate . 95 5.3 Statistical analysis . 95 5.4 Fractional analysis. 96 iv Java Stand-alone Applications on z/OS Volume 1 5.4.1 TIMEUSED . 103 5.5 Elimination analysis. 111 5.6 Accurate analysis . 112 5.6.1 Installing TPTP . 112 5.6.2 Profiling an application on z/OS . 126 5.6.3 Fractional analysis with TPTP. 155 5.7 Code listings . 165 Chapter 6. Exploiting zAAP . 173 6.1 zAAP prerequisites . 174 6.2 Overview of zAAP and runtime options. 174 6.3 Exploring zAAP utilization potentials . 175 6.3.1 zAAP utilization estimate and projection tool . 175 6.3.2 Experimental results of zAAP utilization estimates . 178 6.3.3 Hardware and software configuration . 181 Chapter 7. Problem determination. 183 7.1 Introduction . 184 7.2 Checking the z/OS environment . 184 7.2.1 Maintenance . ..
Recommended publications
  • ISO/IEC JTC 1/SC 22/WG4 N 0163 Information Technology
    ISO/IEC JTC 1/SC 22/WG4 N 0163 Date: 2002-05-21 Reference number of document: WDTR 19755 Version 1.1 Committee identification: ISO/IEC JTC 1/SC 22 /WG 4 Secretariat: ANSI Information Technology — Programming languages, their environments and system software interfaces — Object finalization for programming language COBOL Warning This document is an ISO/IEC proposed draft Technical Report. It is not an ISO/IEC International Technical Report. It is distributed for review and comment. It is subject to change without notice and shall not be referred to as an International Technical Report or International Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: Technical report Document subtype: n/a Document stage: (20) Preparation Document language: E ISO/WDTR 19755 Copyright notice This ISO/IEC document is a working draft and is copyright-protected by ISO/IEC. Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester: Copyright manager ISO Central Secretariat 1 rue de Varembé 1211 Geneva 20 Switzerland tel: +41 22 749 0111 fax: +41 22 734 0179 email: [email protected] Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be prosecuted. ii © ISO/IEC 2002 – All rights reserved ISO/IEC WDTR 19755 Acknowledgement notice COBOL originated in 1959 as a common business oriented language developed by the Conference on Data Systems Languages (CODASYL).
    [Show full text]
  • Stable/Build) • --Port PORT - Set the PORT Number (Default: 8000)
    Pyodide Release 0.18.1 unknown Sep 16, 2021 CONTENTS 1 Using Pyodide 3 1.1 Getting started..............................................3 1.2 Downloading and deploying Pyodide..................................6 1.3 Using Pyodide..............................................7 1.4 Loading packages............................................ 12 1.5 Type translations............................................. 14 1.6 Pyodide Python compatibility...................................... 25 1.7 API Reference.............................................. 26 1.8 Frequently Asked Questions....................................... 50 2 Development 55 2.1 Building from sources.......................................... 55 2.2 Creating a Pyodide package....................................... 57 2.3 How to Contribute............................................ 64 2.4 Testing and benchmarking........................................ 74 2.5 Interactive Debugging.......................................... 76 3 Project 79 3.1 About Pyodide.............................................. 79 3.2 Roadmap................................................. 80 3.3 Code of Conduct............................................. 82 3.4 Governance and Decision-making.................................... 83 3.5 Change Log............................................... 85 3.6 Related Projects............................................. 95 4 Indices and tables 97 Python Module Index 99 Index 101 i ii Pyodide, Release 0.18.1 Python with the scientific stack, compiled to WebAssembly.
    [Show full text]
  • Visual Smalltalk Enterprise ™ ™
    Visual Smalltalk Enterprise ™ ™ Language Reference P46-0201-00 Copyright © 1999–2000 Cincom Systems, Inc. All rights reserved. Copyright © 1999–2000 Seagull Systems, Inc. All rights reserved. This product contains copyrighted third-party software. Part Number: P46-0201-00 Software Release 3.2 This document is subject to change without notice. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Trademark acknowledgments: CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of Cincom Systems, Inc. Visual Smalltalk is a trademark of Cincom Systems, Inc., its subsidiaries, or successors and are registered in the United States and other countries. Microsoft Windows is a registered trademark of Microsoft, Inc. Win32 is a trademark of Microsoft, Inc. OS/2 is a registered trademark of IBM Corporation. Other product names mentioned herein are used for identification purposes only, and may be trademarks of their respective companies. The following copyright notices apply to software that accompanies this documentation: Visual Smalltalk is furnished under a license and may not be used, copied, disclosed, and/or distributed except in accordance with the terms of said license. No class names, hierarchies, or protocols may be copied for implementation in other systems. This manual set and online system documentation copyright © 1999–2000 by Cincom Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Cincom.
    [Show full text]
  • Gnu Smalltalk Library Reference Version 3.2.5 24 November 2017
    gnu Smalltalk Library Reference Version 3.2.5 24 November 2017 by Paolo Bonzini Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". 1 3 1 Base classes 1.1 Tree Classes documented in this manual are boldfaced. Autoload Object Behavior ClassDescription Class Metaclass BlockClosure Boolean False True CObject CAggregate CArray CPtr CString CCallable CCallbackDescriptor CFunctionDescriptor CCompound CStruct CUnion CScalar CChar CDouble CFloat CInt CLong CLongDouble CLongLong CShort CSmalltalk CUChar CByte CBoolean CUInt CULong CULongLong CUShort ContextPart 4 GNU Smalltalk Library Reference BlockContext MethodContext Continuation CType CPtrCType CArrayCType CScalarCType CStringCType Delay Directory DLD DumperProxy AlternativeObjectProxy NullProxy VersionableObjectProxy PluggableProxy SingletonProxy DynamicVariable Exception Error ArithmeticError ZeroDivide MessageNotUnderstood SystemExceptions.InvalidValue SystemExceptions.EmptyCollection SystemExceptions.InvalidArgument SystemExceptions.AlreadyDefined SystemExceptions.ArgumentOutOfRange SystemExceptions.IndexOutOfRange SystemExceptions.InvalidSize SystemExceptions.NotFound SystemExceptions.PackageNotAvailable SystemExceptions.InvalidProcessState SystemExceptions.InvalidState
    [Show full text]
  • Ardpower Documentation Release V1.2.0
    ardPower Documentation Release v1.2.0 Anirban Roy Das Sep 27, 2017 Contents 1 Introduction 1 2 Screenshot 3 3 Documentaion 5 3.1 Overview.................................................5 3.2 Installation................................................7 3.3 Usage................................................... 12 4 Indices and tables 13 i ii CHAPTER 1 Introduction Its a custom Oh-My-Zsh Theme inspired by many custom themes suited for a perfect ZSH Environment under Byobu with Tmux Backend. 1 ardPower Documentation, Release v1.2.0 2 Chapter 1. Introduction 3 ardPower Documentation, Release v1.2.0 CHAPTER 2 Screenshot 4 Chapter 2. Screenshot CHAPTER 3 Documentaion You can also find PDF version of the documentation here. Overview We will start with understanding the individual components of an entire CLI. Generally we don’t put much attention to what we do. We just fire up a terminal or some say sheel and start typing our commands and get the result. That’s all. But there are a lot of things that goes behind all this. Terminal The very first component is the Terminal. So what is a Terminal? A terminal emulator, terminal application, term, or tty for short, is a program that emulates a video ter- minal within some other display architecture. Though typically synonymous with a shell or text terminal, the term terminal covers all remote terminals, including graphical interfaces. A terminal emulator inside a graphical user interface is often called a terminal window.A terminal window allows the user access to a text terminal and all its applications such as command-line interfaces (CLI) and text user interface (TUI) applications.
    [Show full text]
  • A Tour of the Squeak Object Engine
    A Tour of the Squeak Object Engine A Tour of the Squeak Object Engine Tim Rowledge, [email protected] Introduction This chapter is intended to explain some basics of how a Virtual Machine (VM) works, why a VM is useful, what it does for the Squeak programmer and user, and how the Squeak VM might develop in the future. What is a Virtual Machine and why do we need one? A Virtual Machine provides us with a pretense of being a machine other than the actual hardware in use. Using one allows systems that behave differently than the host hardware to run as if on hardware designed for them. The term Object Engine is less commonly used but is a useful concept that includes the lowest system areas of the langauge environment running on the VM. Since there is often some flux in the definition of which components are within the actual VM and which are part of the supported environment, Object Engine is useful as a more inclusive term. The term Virtual Machine is used in several ways. When IBM refer to VM/CMS they are referring to a way of making a mainframe behave as if it is many machines, so that programs can assume they have total control even though they do not. Intel provide a somewhat similar facility in the x86 architecture(?), referred to as Virtual Mode. This sort of VM is a complete hardware simulation, often supported at the lowest level by the hardware. Another sort of VM is the emulator - SoftWindows for the Mac, Acorn's !PC, Linux's WINE are good examples - where another machine and/or OS is simulated to allow a Mac user to run Windows programs, an Acorn RiscPC or a Linux machine to run Windows98 programs and so on.
    [Show full text]
  • Unix Systems: Shell Scripting (III)
    Unix Systems: Shell Scripting (III) Bruce Beckles University of Cambridge Computing Service 1 Introduction • Who: ! Bruce Beckles, e-Science Specialist, UCS • What: ! Unix Systems: Shell Scripting (III) course ! Follows on from “Unix Systems: Shell Scripting (II)” ! Part of the Scientific Computing series of courses • Contact (questions, etc): ! [email protected] • Health & Safety, etc: ! Fire exits • Please switch off mobile phones! [email protected] Unix Systems: Shell Scripting (III) 2 As this course is part of the Scientific Computing series of courses run by the Computing Service, all the examples that we use will be more relevant to scientific computing than to system administration, etc. This does not mean that people who wish to learn shell scripting for system administration and other such tasks will get nothing from this course, as the techniques and underlying knowledge taught are applicable to shell scripts written for almost any purpose. However, such individuals should be aware that this course was not designed with them in mind. For details of the “Unix Systems: Shell Scripting (II)” course, see: http://www.cam.ac.uk/cs/courses/coursedesc/linux.html#script2 2 What we don’t cover • Different types of shell: ! We are using the Bourne-Again SHell (bash). • Differences between versions of bash • Very advanced shell scripting – try this course instead: ! “Programming: Python for Absolute Beginners” [email protected] Unix Systems: Shell Scripting (III) 3 bash is probably the most common shell on modern Unix/Linux systems – in fact, on most modern Linux distributions it will be the default shell (the shell users get if they don’t specify a different one).
    [Show full text]
  • Exposing C++ Functions and Classes with Rcpp Modules
    Exposing C++ functions and classes with Rcpp modules Dirk Eddelbuettela and Romain Françoisb ahttp://dirk.eddelbuettel.com; bhttps://romain.rbind.io/ This version was compiled on July 3, 2021 This note discusses Rcpp modules. Rcpp modules allow programmers to Here we use the (templated) Rcpp converter as() which can expose C++ functions and classes to R with relative ease. Rcpp modules transform from a SEXP to a number of different C++ and Rcpp are inspired from the Boost.Python C++ library (Abrahams and Grosse- types. The Rcpp function wrap() offers the opposite functionality Kunstleve, 2003) which provides similar features for Python. and converts many known types to a SEXP. This process is simple enough, and is used by a number of Rcpp | modules | R | C++ CRAN packages. However, it requires direct involvement from the programmer, which quickly becomes tiresome when many functions 1. Motivation are involved. Rcpp modules provides a much more elegant and Exposing C++ functionality to R is greatly facilitated by the Rcpp unintrusive way to expose C++ functions such as the norm function package and its underlying C++ library (Eddelbuettel et al., 2021; shown above to R. Eddelbuettel and François, 2011). Rcpp smoothes many of the We should note that Rcpp now has Rcpp attributes which ex- rough edges in R and C++ integration by replacing the traditional tends certain aspect of Rcpp modules and makes binding to simple R Application Programming Interface (API) described in ‘Writing functions such as this one even easier. With Rcpp attributes we can R Extensions’(R Core Team, 2018) with a consistent set of C++ just write classes.
    [Show full text]
  • FFI: Racket Foreign Interface
    FFI: Racket Foreign Interface Version 5.0 Eli Barzilay June 6, 2010 (require ffi/unsafe) The ffi/unsafe library enables the direct use of C-based APIs within Racket programs— without writing any new C code. From the Racket perspective, functions and data with a C-based API are foreign, hence the term foreign interface. Furthermore, since most APIs consist mostly of functions, the foreign interface is sometimes called a foreign function in- terface, abbreviated FFI. 1 Contents 1 Overview 4 2 Loading Foreign Libraries 5 3 C Types 8 3.1 Type Constructors . 8 3.2 Numeric Types . 9 3.3 Other Atomic Types . 10 3.4 String Types . 11 3.4.1 Primitive String Types . 11 3.4.2 Fixed Auto-Converting String Types . 11 3.4.3 Variable Auto-Converting String Type . 12 3.4.4 Other String Types . 12 3.5 Pointer Types . 13 3.6 Function Types . 14 3.6.1 Custom Function Types . 18 3.7 C Struct Types . 21 3.8 Enumerations and Masks . 24 4 Pointer Functions 26 4.1 Pointer Dereferencing . 27 4.2 Memory Management . 30 5 Derived Utilities 34 5.1 Safe Homogenous Vectors . 34 5.2 Safe C Vectors . 40 2 5.3 Tagged C Pointer Types . 42 5.4 Defining Bindings . 44 5.5 Allocation and Finalization . 46 5.6 Atomic Execution . 47 5.7 Objective-C FFI . 48 5.7.1 FFI Types and Constants . 48 5.7.2 Syntactic Forms and Procedures . 49 5.7.3 Raw Runtime Functions . 53 5.7.4 Legacy Library .
    [Show full text]
  • Korn Shell Variables
    V4.1 cover Front cover Korn and Bash Shell Programming (Course code AL32) Student Notebook ERC 1.0 IBM Certified Course Material Student Notebook Trademarks IBM® is a registered trademark of International Business Machines Corporation. The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both: AIX® AIX 5L™ Language Environment® OS/2® POWER™ RISC System/6000® RS/6000® Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Windows is a trademark of Microsoft Corporation in the United States, other countries, or both. UNIX® is a registered trademark of The Open Group in the United States and other countries. Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others. October 2007 edition The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is” basis without any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will result elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk. © Copyright International Business Machines Corporation 2007.
    [Show full text]
  • Bash Tutorial
    Bash Shell Lecturer: Prof. Andrzej (AJ) Bieszczad Email: [email protected] Phone: 818-677-4954 Bash Shell The shell of Linux • Linux has a variety of different shells: – Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh), Bour ne Again shell (bash). • Certainly the most popular shell is “bash”. Bash is an sh- compatible shell that incorporates useful features from the Korn shell (ksh) and C shell (csh). • It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools standard. • It offers functional improvements over sh for both programming and interactive use. Bash Shell Programming or Scripting ? • bash is not only an excellent command line shell, but a scripting language in itself. Shell scripting allows us to use the shell's abilities and to automate a lot of tasks that would otherwise require a lot of commands. • Difference between programming and scripting languages: – Programming languages are generally a lot more powerful and a lot faster than scriptin g languages. Programming languages generally start from source code and are compil ed into an executable. This executable is not easily ported into different operating syste ms. – A scripting language also starts from source code, but is not compiled into an executabl e. Rather, an interpreter reads the instructions in the source file and executes each inst ruction. Interpreted programs are generally slower than compiled programs. The main a dvantage is that you can easily port the source file to any operating system. bash is a s cripting language. Other examples of scripting languages are Perl, Lisp, and Tcl.
    [Show full text]
  • Individual Coursework 5: Implementing a UNIX Shell Introduction
    UCL CS 0019 Brad Karp Individual Coursework 5: Implementing a UNIX Shell Due date: 5:05 PM GMT, 30th March 2020, EXTENDED to 6th April 2020 Value: 6% of marks for module Introduction The design of the UNIX1 system call APIs for creating and controlling processes and plumbing together their inputs and outputs is one of the gems of modern software systems architecture. To help you become fluent in using this powerful set of mechanisms in C, in this assignment you will use fork(), exec(), and several other interesting system calls to build a command shell, or shell for short. A shell reads commands on its standard input and executes them. Modern UNIXes include multiple shells (and developers over the years have created still more shells with different syntaxes and features). In your shell, you will implement simple commands, background commands, conditional commands (i.e., using the && and || operators), I/O redirection, and pipes. You will also imple- ment command interruption (i.e., with Ctrl-C). Your shell will implement a subset of the bash shell’s syntax, as defined at: http://www.gnu.org/software/bash/manual/bashref.html and will be generally compatible with bash for the features they share. You may find a tutorial on how to use the UNIX shell useful preparation for CW5; one such tutorial is available at: http://www.linuxcommand.org/lc3_learning_the_shell.php This coursework must be done in a UNIX programming environment. We recommend that all 0019 students develop in the 0019 Linux virtual machine (VM) provided for use in this class, available at: http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2020/cw.html If you happen to have another UNIX machine at your disposal (including a Mac OS machine), you may find that you can develop your solution to CW5 in that environment, but the only development environment the 0019 staff can support is the 0019 VM.
    [Show full text]