Atmos. Chem. Phys., 21, 12189–12206, 2021 https://doi.org/10.5194/acp-21-12189-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology Ákos Horváth1, James L. Carr2, Olga A. Girina3, Dong L. Wu4, Alexey A. Bril5, Alexey A. Mazurov5, Dmitry V. Melnikov3, Gholam Ali Hoshyaripour6, and Stefan A. Buehler1 1Meteorological Institute, Universität Hamburg, Hamburg, Germany 2Carr Astronautics, Greenbelt, MD, USA 3Institute of Volcanology and Seismology, Far East Branch of the Russian Academy of Sciences (IVS FEB RAS), Petropavlovsk-Kamchatsky, Russia 4NASA Goddard Space Flight Center, Greenbelt, MD, USA 5Space Research Institute of the Russian Academy of Sciences (SRI RAS), Moscow, Russia 6Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Correspondence: Ákos Horváth (
[email protected],
[email protected]) Received: 21 February 2021 – Discussion started: 23 March 2021 Revised: 2 July 2021 – Accepted: 6 July 2021 – Published: 16 August 2021 Abstract. A geometric technique is introduced to estimate atmospheric dispersion models, which require the eruptive the height of volcanic eruption columns using the gener- source parameters, especially plume height and the mass ally discarded near-limb portion of geostationary imagery. eruption rate (MER), as key inputs (Peterson et al., 2015). Such oblique observations facilitate a height-by-angle esti- Plume height and MER are related by dynamics, and the lat- mation method by offering close-to-orthogonal side views ter scales approximately as the fourth power of the former.