Risk Management Handbook (FAA-H-8083-2) Note

Total Page:16

File Type:pdf, Size:1020Kb

Risk Management Handbook (FAA-H-8083-2) Note Risk Management Handbook (FAA-H-8083-2) Note An errata sheet indicating the content and grammatical errors discovered in this handbook since its publication can be found at http://www.faa.gov/library/manuals/aviation/. These errors will be corrected in the next version of the handbook. Risk Management Handbook 2009 U.S. Department of Transportation FEDERAL AVIATION ADMINISTRATION Flight Standards Service ii Preface Accident Categories – Pilot Related Maneuvering Accident Trend This handbook is a tool designed to help recognize and 30% 4.3% (42) Total manage risk. It provides a higher level of training to the Preflight/Taxi 2.3% (5) 27.5% 16.4% (160) Fatal 25.8% 26.1% pilot in command (PIC) who wishes to aspire to a greater Takeoff/Climb 25.2% 25.0% 14.4% (31) 24.1% 25% understanding of the aviation environment and become Fuel 8.8% (86) a better pilot. This handbook is for pilots of all aircraft Management 5.1% (11) 22.3% 5.2% (51) from Weight-Shift Control (WSC) to a Piper Cub, a Twin Weather 14.8% (32) 20% Beechcraft, or a Boeing 747. A pilot’s continued interest 1.6% (16) 20.2% Other Cruise Total 6.5% (14) in building skills is paramount for safe flight and can assist Fatal Descent/ 6.7% (65) in rising above the challenges which face pilots of all Approach 19.0% (41) backgrounds. 4.4% (43) 15% Go-Around 2.3% (5) 9.7% (94) Some basic tools are provided in this handbook for developing Maneuvering 25.0% (54) 9.9% 9.3% 9.7% 9.5% 9.8% 9.7% a competent evaluation of one’s surroundings that allows for 40.3% (392) 10% 9.2% Landing 7.7% assessing risk and thereby managing it in a positive manner. 3.7% (8) 2.5% (24) Risk management is examined by reviewing the components Other 6.9% (15) that affect risk thereby allowing the pilot to be better prepared 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 5% '99 '00 '01 '02 '03 '04 '05 '06 to mitigate risk. Fig. 4 Fig. 5 Figure I-1. The percentage of aviation accidents by phase of The pilot’s work requirements vary depending on the mode flight. accounted for 73.8 percent of total and 79.1 percent of Descent and Approach Accident Trend of flight. As for a driver transitioning from an interstate onto fatal GA accidents. As previously discussed, pilot-relat- 20% the city streets of New York, the tasks increase significantly 18.3% 19.0% ed accidents also represented a smaller proportion of 17.8% 17.1% during the landing phase, creating greater risk to the pilot and overall accidents in 2006. 16.7% warranting actions that require greater precision and attention. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such This handbook attempts to bring forward methods a pilot can The accident categories shown in Figure 4 are defined 15% language is not intended to add to, interpret, or relieve a use in managing the workloads, making the environment safer by the phase of flight in which the accident occurred 14.3% duty imposed by Title 14 of the Code of Federal Regulations for the pilot and the passengers. [Figure I-1] (for example, landing or maneuvering), or by primary (14 CFR). 12.4% factor (such as fuel management or weather). Accidents 11.2% This handbook may be purchased from the Superintendent in the categories of weather, other cruise, 10% Comments regarding this publication should be sent, in email Total of Documents, United States Government Printing Office descent/approach, maneuvering, and “other” resulted in 7.7% Fatal (GPO), Washington, DC 20402-9325, or from the GPO form,disproportionate to the followingly hig address:h numbers of fatal accidents when 6.8% 7.0% website at http://bookstore.gpo.gov. compared to total accidents for that category. 6.7% [email protected] 5% 5.6% 5.2% 4.9% 4.8% This handbook is also available for download, in PDF format, Leading causes of pilot-related fatal accidents in 2006 were: from the Regulatory Support Division (AFS-600) website at •Maneuvering: 25.0 percent (54) • Descent/Approach: 19.0 percent (41) http://www.faa.gov. 0% •Weather: 14.8 percent (32) '99 '00 '01 '02 '03 '04 '05 '06 •Takeoff/Climb: 14.4 percent (31) Fig. 6 Maneuvering accidents, which accounted for one of four 2005 to 19.0 percent in 2006. This area will be tracked (25.0 percent) fatal GA accidents, showed an improve- closely over the next several years to monitor progress. ment from the 27.5 percent recorded the previous year. These accidents often involve questionable pilot judg- Pilot-related weather crashes were comparable to the ment, such as decisions to engage in buzzing, low passes, previous year, registering 51 (5.2 percent) total and 32 or other high-risk activities. The trend in maneuvering (14.8 percent) fatal pilot-related accidents. Most often, accidents shows a slight increase in the percentage of these fatal accidents resulted from pilots continuing both total and fatal maneuvering accidents since 1999. VFR flight into instrument meteorological conditions (IMC). In the long term, weather accidents continue Fatal descent and approach accidents, on the other their gradual increase. Figure 7 charts the trend of hand, increased from 11.2 percent of the fatal crashes in weather-related accidents. iii 5 iv Introduction According to National Transportation Board (NTSB) statistics, in the last 20 years, approximately 85 percent of aviation accidents have been caused by “pilot error.” Many of these accidents are the result of the tendency to focus flight training on the physical aspects of flying the aircraft by teaching the student pilot enough aeronautical knowledge and skill to pass the written and practical tests. Risk management is ignored, with sometimes fatal results. The certificated flight instructor (CFI) who integrates risk management into flight training teaches aspiring pilots how to be more aware of potential risks in flying, how to clearly identify those risks, and how to manage them successfully. “A key element of risk decision-making is determining if the risk is justified.” The risks involved with flying are quite different from those experienced in daily activities. Managing these risks requires a conscious effort and established standards (or a maximum risk threshold). Pilots who practice effective risk management have predetermined personal standards and have formed habit patterns and checklists to incorporate them. If the procedures and techniques described in this handbook are taught and employed, pilots will have tools to determine the risks of a flight and manage them successfully. The goal is to reduce the general aviation accident rate involving poor risk management. Pilots who make a habit of using risk management tools will find their flights considerably more enjoyable and less stressful for themselves and their passengers. In addition, some aircraft insurance companies reduce insurance rates after a pilot completes a formal risk management course. This Risk Management Handbook makes available recommended tools for determining and assessing risk in order to make the safest possible flight with the least amount of risk. The appendices at the end of this handbook contain checklists and scenarios to aid in risk management consideration, flight planning, and training. v vi Acknowledgments The Risk Management Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America. The FAA wishes to acknowledge the following contributors: Dr. Pat Veillette for information used on human behaviors (chapter 2) Cessna Aircraft Company and Garmin Ltd. for images provided and used throughout the Handbook Additional appreciation is extended to the Aircraft Owners and Pilots Association (AOPA), the AOPA Air Safety Foundation, and the National Business Aviation Association (NBAA) for their technical support and input. vii viii Table of Contents Preface....................................................................iii Visual Illusions ...........................................................3-7 E = External Pressures ...................................................3-9 Introduction .............................................................v Chapter Summary ..........................................................3-9 Acknowledgments ................................................vii Chapter 4 Assessing Risk ....................................................4-1 Table of Contents ..................................................ix Introduction ....................................................................4-1 Quantifying Risk Using a Risk Matrix ..........................4-2 Chapter 1 Likelihood of an Event ...............................................4-2 Defining Elements of Risk Management ...........1-1 Severity of an Event ...................................................4-2 Introduction ....................................................................1-1 Mitigating Risk ...........................................................4-4 Hazard .......................................................................1-2 Chapter Summary ..........................................................4-4 Risk .............................................................................1-5 Managing Risks .............................................................1-5 Chapter 5 Chapter Summary ..........................................................1-8 Aeronautical Decision-Making: A Basic Staple......................................................5-1 Chapter 2 Introduction ....................................................................5-1
Recommended publications
  • Remote Pilot – Small Unmanned Aircraft Systems Study Guide
    F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................
    [Show full text]
  • Let's Count: Evaluation of a Pilot Early Mathematics Program in Low
    Let’s Count: Evaluation of a Pilot Early Mathematics Program in Low Socioeconomic Locations in Australia Bob Perry Ann Gervasoni Charles Sturt University Australian Catholic University <[email protected]> <[email protected]> Sue Dockett Charles Sturt University <[email protected]> The Let’s Count pilot early mathematics program was implemented in five early childhood educational contexts across Australia during 2011. The program used specifically formulated materials and workshops to enlist the assistance of early childhood educators to work with parents and other family members of children in their settings to help develop these children’s awareness, confidence and skills in early mathematics. The pilot program was evaluated by the authors of this paper using a multi-methods approach. The evaluation was focused on the success of the Let’s Count program in bringing early childhood educators, parents and other family members together, to enhance children’s mathematical engagement, learning outcomes and dispositions. Let’s Count is a new early mathematics program commissioned by The Smith Family to assist parents and other family members to help their young children aged 3-5 years notice, explore and talk about powerful mathematical ideas in ways that develop positive dispositions to learning as well as mathematical knowledge and skills. It relies on parents and other family members providing the opportunities for the children to engage with, talk about, and document the mathematics in their everyday lives, and to extend it in ways that are relevant to them. Let’s Count is not a mathematics teaching program. However, it does involve early childhood educators in the role of advisers to parents and family members of the children in their settings.
    [Show full text]
  • 10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
    EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch.
    [Show full text]
  • Definition of Brittleness: Connections Between Mechanical
    DEFINITION OF BRITTLENESS: CONNECTIONS BETWEEN MECHANICAL AND TRIBOLOGICAL PROPERTIES OF POLYMERS Haley E. Hagg Lobland, B.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS August 2008 APPROVED: Witold Brostow, Major Professor Rick Reidy, Committee Member and Chair of the Department of Materials Science and Engineering Dorota Pietkewicz, Committee Member Nigel Shepherd, Committee Member Costas Tsatsoulis, Dean of the College of Engineering Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Hagg Lobland, Haley E. Definition of brittleness: Connections between mechanical and tribological properties of polymers. Doctor of Philosophy (Materials Science and Engineering), August 2008, 51 pages, 5 tables, 13 illustrations, 106 references. The increasing use of polymer-based materials (PBMs) across all types of industry has not been matched by sufficient improvements in understanding of polymer tribology: friction, wear, and lubrication. Further, viscoelasticity of PBMs complicates characterization of their behavior. Using data from micro-scratch testing, it was determined that viscoelastic recovery (healing) in sliding wear is independent of the indenter force within a defined range of load values. Strain hardening in sliding wear was observed for all materials—including polymers and composites with a wide variety of chemical structures—with the exception of polystyrene (PS). The healing in sliding wear was connected to free volume in polymers by using pressure- volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with again the exception of PS. The exceptional behavior of PS has been attributed qualitatively to brittleness.
    [Show full text]
  • New Model of Brittleness Index to Locate the Sweet Spots for Hydraulic Fracturing in Unconventional Reservoirs
    VOL. 14, NO. 18, SEPTEMBER 2019 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences ©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. www.arpnjournals.com NEW MODEL OF BRITTLENESS INDEX TO LOCATE THE SWEET SPOTS FOR HYDRAULIC FRACTURING IN UNCONVENTIONAL RESERVOIRS Omer Iqbal1, Maqsood Ahmad1 and Eswaran Padmanabhan2 1Department of Petroleum Engineering, Institute of Hydrocarbon recovery (IHR), Universiti Teknologi PETRONAS, Malaysia 2Department of Petroleum Geoscience, Institute of Hydrocarbon recovery (IHR), Universiti Teknologi PETRONAS, Malaysia E-Mail: [email protected] ABSTRACT Rock characterization in term of brittleness is necessary for successful stimulation of shale gas reservoirs. High brittleness is required to prevent healing of natural and induced hydraulic fractures and also to decrease the breakdown pressure for fracture initiation and propagation. Several definitions of brittleness and methods for its estimation has been reviewed in this study in order to come up with most applicable and promising conclusion. The brittleness in term of brittleness index (BI) can be quantified from laboratory on core samples, geophysical methods and from well logs. There are many limitations in lab-based estimation of BI on core samples but still consider benchmark for calibration with other methods. The estimation of brittleness from mineralogy and dynamic elastic parameters like Young’s modulus, Poison’s ratio is common in field application. The new model of brittleness index is proposed based on mineral contents and geomechanical properties, which could be used to classify rock into brittle and ductile layers. The importance of mechanical behavior in term of brittle and ductile in shale gas fracturing were also reviewed because shale with high brittleness index (BI) or brittle shale exist natural fractures that are closed before stimulation and can provide fracture network or avenues through stimulation.
    [Show full text]
  • Aircraft Pilot and Passenger Protection Act 3 O.S
    Aircraft Pilot and Passenger Protection Act 3 O.S. § 120.1 – 120.14 SECTION 120.1 A. This act shall be known and may be cited as the “Aircraft Pilot and Passenger Protection Act”. B. It is the intent of this act to: 1. Regulate obstructions to air navigation that have the potential of endangering the lives and property of aircraft pilots and passengers and those that live or work in the vicinity of public-use airports; that may affect existing and future instrument approaches to a public-use airport; and that may reduce the size of areas available for the landing, takeoff and maneuvering of aircraft thus impairing the utility of a public-use airport and the public investment therein; 2. Regulate the use of land in close proximity to a public-use airport to ensure compatibility with aircraft operations; and 3. Provide specific powers and duties to the Oklahoma Aeronautics Commission in the interest of the health, safety and welfare of the public so that the state may properly fulfill its duty to ensure that land use around a public-use airport is compatible with normal airport operations including the landing and takeoff of aircraft. C. All heights or surfaces set forth in this act are from the standards set forth in Subpart C of Federal Aviation Regulations (FAR) Part 77. D. Depending upon the type of survey used, an adjustment will be made in accordance with Federal Aviation Administration standards to the horizontal and vertical measurements of the proposed structure as follows: Survey Horizontal Survey Vertical Type Adjustment Type Adjustment 1 +20 ft (6 m) A +3 ft (1 m) 2 +50 ft (15 m) B +10 ft (3 m) 3 +100 ft (30 m) C +20 ft (6 m) 4 +250 ft (75 m) D +50 ft (15 m) 5 +500 ft (150 m) E +125 ft (38 m) If the survey type (horizontal and vertical) is not certified by a licensed engineer or a licensed surveyor, a horizontal adjustment of plus or minus two hundred fifty (250) feet and a vertical adjustment of fifty (50) feet will be applied to the structure measurements.
    [Show full text]
  • A Clean Slate Airbus Pivots to Hydrogen For
    November 2020 HOW NOT TO DEVELOP DEVELOP TO NOT HOW FIGHTERYOUR OWN SPACE THREATS SPACE AIR GETSCARGO LIFT A A CLEAN SLATE AIRBUS HYDROGEN TO PIVOTS FOR ZERO-CARBON ‘MOONSHOT’ www.aerosociety.com AEROSPACE November 2020 Volume 47 Number 11 Royal Aeronautical Society 11–15 & 19–21 JANUARY 2021 | ONLINE REIMAGINED The 2021 AIAA SciTech Forum, the world’s largest event for aerospace research and development, will be a comprehensive virtual experience spread over eight days. More than 2,500 papers will be presented across 50 technical areas including fluid dynamics; applied aerodynamics; guidance, navigation, and control; and structural dynamics. The high-level sessions will explore how the diversification of teams, industry sectors, technologies, design cycles, and perspectives can all be leveraged toward innovation. Hear from high-profile industry leaders including: Eileen Drake, CEO, Aerojet Rocketdyne Richard French, Director, Business Development and Strategy, Space Systems, Rocket Lab Jaiwon Shin, Executive Vice President, Urban Air Mobility Division, Hyundai Steven Walker, Vice President and CTO, Lockheed Martin Corporation Join fellow innovators in a shared mission of collaboration and discovery. SPONSORS: As of October 2020 REGISTER NOW aiaa.org/2021SciTech SciTech_Nov_AEROSPACE PRESS.indd 1 16/10/2020 14:03 Volume 47 Number 11 November 2020 EDITORIAL Contents Drone wars are here Regulars 4 Radome 12 Transmission What happens when ‘precision effects’ from the air are available to everyone? The latest aviation and Your letters, emails, tweets aeronautical intelligence, and social media feedback. Nagorno-Karabakh is now the latest conflict where a new way of remote analysis and comment. war is evolving with cheap persistent UAVs, micro-munitions and loitering 58 The Last Word anti-radar drones, striking tanks, vehicles, artillery pieces and even SAM 11 Pushing the Envelope Keith Hayward considers sites with lethal precision.
    [Show full text]
  • Cohesive Crack with Rate-Dependent Opening and Viscoelasticity: I
    International Journal of Fracture 86: 247±265, 1997. c 1997 Kluwer Academic Publishers. Printed in the Netherlands. Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling ZDENEKÏ P. BAZANTÏ and YUAN-NENG LI Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208, USA Received 14 October 1996; accepted in revised form 18 August 1997 Abstract. The time dependence of fracture has two sources: (1) the viscoelasticity of material behavior in the bulk of the structure, and (2) the rate process of the breakage of bonds in the fracture process zone which causes the softening law for the crack opening to be rate-dependent. The objective of this study is to clarify the differences between these two in¯uences and their role in the size effect on the nominal strength of stucture. Previously developed theories of time-dependent cohesive crack growth in a viscoelastic material with or without aging are extended to a general compliance formulation of the cohesive crack model applicable to structures such as concrete structures, in which the fracture process zone (cohesive zone) is large, i.e., cannot be neglected in comparison to the structure dimensions. To deal with a large process zone interacting with the structure boundaries, a boundary integral formulation of the cohesive crack model in terms of the compliance functions for loads applied anywhere on the crack surfaces is introduced. Since an unopened cohesive crack (crack of zero width) transmits stresses and is equivalent to no crack at all, it is assumed that at the outset there exists such a crack, extending along the entire future crack path (which must be known).
    [Show full text]
  • Report A-045/2011 Location Flight Data Report Crew
    REPORT A-045/2011 DATA SUMMARY LOCATION Date and time Saturday, 12 November 2011, at 11:12 local time1 Site Andratx, wooded area in La Trapa (Balearic Islands) AIRCRAFT Registration G-WOOW Type and model HUGHES 369E Operator Private Engines Type and model ROLLS ROYCE 250-C20B Number 1 CREW Pilot in command Age 53 years old Licence Private Helicopter Pilot (PPL(H)) Total flight hours 110 h Flight hours on the type 40 h INJURIES Fatal Serious Minor/None Crew 1 Passengers 1 Third persons DAMAGE Aircraft Destroyed Third parties 450 m2 of low lands and shrubs FLIGHT DATA Operation General aviation – Private Phase of flight Low level maneuvering – Flight REPORT Date of approval 28 November 2012 1 All times in this report are local unless otherwise specified. To obtain UTC subtract one hour from local time. 133 Report A-045/2011 Addenda Bulletin 5/2012 1. FACTUAL INFORMATION 1.1. History of the flight On Saturday, 12 November 2011, a Hughes 369E aircraft, registration G-WOOW, took off from the Son Bonet Airport (Balearic Islands) at approximately 10:40 on a private flight with two persons onboard. The flight plan filed indicated the flight was to last 1 hour and 15 minutes. The destination was the same departure airport and the aircraft had enough fuel to last 2 hours and 40 minutes. The aircraft’s two occupants were the pilot, who flew this aircraft frequently due to his friendship with its owner, and a passenger, who was sitting in the free front seat next to the pilot’s and who had been friends with the pilot for about 20 years.
    [Show full text]
  • Pilot Stories
    PILOT STORIES DEDICATED to the Memory Of those from the GREATEST GENERATION December 16, 2014 R.I.P. Norm Deans 1921–2008 Frank Hearne 1924-2013 Ken Morrissey 1923-2014 Dick Herman 1923-2014 "Oh, I have slipped the surly bonds of earth, And danced the skies on Wings of Gold; I've climbed and joined the tumbling mirth of sun-split clouds - and done a hundred things You have not dreamed of - wheeled and soared and swung high in the sunlit silence. Hovering there I've chased the shouting wind along and flung my eager craft through footless halls of air. "Up, up the long delirious burning blue I've topped the wind-swept heights with easy grace, where never lark, or even eagle, flew; and, while with silent, lifting mind I've trod the high untrespassed sanctity of space, put out my hand and touched the face of God." NOTE: Portions Of This Poem Appear On The Headstones Of Many Interred In Arlington National Cemetery. TABLE OF CONTENTS 1 – Dick Herman Bermuda Triangle 4 Worst Nightmare 5 2 – Frank Hearne Coming Home 6 3 – Lee Almquist Going the Wrong Way 7 4 – Mike Arrowsmith Humanitarian Aid Near the Grand Canyon 8 5 – Dale Berven Reason for Becoming a Pilot 11 Dilbert Dunker 12 Pride of a Pilot 12 Moral Question? 13 Letter Sent Home 13 Sense of Humor 1 – 2 – 3 14 Sense of Humor 4 – 5 15 “Poopy Suit” 16 A War That Could Have Started… 17 Missions Over North Korea 18 Landing On the Wrong Carrier 19 How Casual Can One Person Be? 20 6 – Gardner Bride Total Revulsion, Fear, and Helplessness 21 7 – Allan Cartwright A Very Wet Landing 23 Alpha Strike
    [Show full text]
  • Bachelor of Science in Aviation Sciences
    BACHELOR OF SCIENCE IN AVIATION SCIENCES “What can I do with my degree?” AVS_1603C 2/2019 Flight Careers AREAS EMPLOYERS STRATEGIES Seek out internships, build Airline Pilot Regional and Major Airlines flight experience, sign up for pilot pathway programs Individual aircraft owners, Networking, internships, build Corporate Pilot businesses, and corporations flight experience ROTC, OCS/OTS, Warrant Military Pilot USAF, USMC, USN, USCG, USA Officer Extensive flight time, variety of ratings/endorsements and Churches, Missionary flight time (instrument, high- Missionary Pilot Organizations performance, etc.); may need mechanic skills or additional religious training Federal, State, and local law Law Enforcement Law enforcement certification enforcement agencies Extensive flight experience, NASA, airlines, military, graduate military or civilian Test Pilot general aviation test pilot school Letter of authorization from FSDO, may need 500+ flight Sight Seeing Tourism companies or depts. hours for insurance purposes Military, law enforcement, Civil Air Patrol, law Search and Rescue fire/rescue agencies enforcement certification Extensive flight time (jet, high-performance, or multi- Aerial Firefighting Fire/rescue agencies engine may be required), extensive single-engine time a big plus Display professionalism, Flight Instructor Part 61 and 141 schools competence as pilot and instructor, desire to teach Unmanned Aircraft Pilot FedEx, UPS, DHL, Atlas, and (see airline pilot), night Cargo Pilot other airlines, USPS experience a plus Agriculture
    [Show full text]
  • The Forest Resiliency Burning Pilot Project
    R E S O U C The Forest Resiliency Burning Pilot Project December 2018 N A T U R L The Forest Resiliency Burning Pilot Project Report to the Legislature December 2018 Prepared by Washington State Department of Natural Resources and Washington Prescribed Fire Council Cover photo by © John Marshall. ii Executive Summary More than 100 years of fire suppression and land management practices have severely degraded Eastern Washington’s fire-adapted dry forests. Without the regular, low-intensity fires that created their open stand structure and resiliency, tree density has increased and brush and dead fuels have accumulated in the understory. The impact of these changes in combination with longer fire seasons have contributed to back-to-back record-breaking wildfire years, millions spent in firefighting resources and recovery, danger to our communities, and millions of acres of severely burned forest. Forest resiliency burning, also called prescribed fire or controlled burning, returns fire as an essential ecological process to these forests and is an effective tool for reducing fuels and associated risk of severe fires. Forest experts have identified 2.7 million acres of Central and Eastern Washington forests in need of restoration (Haugo et al. 2015). The agency’s 20-year Forest Health Strategic Plan addresses the need to increase the pace and scale of forest restoration treatments, which includes the use of prescribed fire. Successful implementation of prescribed fire in dry forest ecosystems faces a number of challenges, primarily unfavorable weather conditions, smoke management regulations, and some public opposition. Recognizing these challenges, the urgent need for large-scale forest restoration, and the usefulness and benefits of prescribed fire, the Legislature passed Engrossed Substitute House Bill (ESHB) 2928.
    [Show full text]