Sub-Barrier Fusion and Elastic Scattering in S + Ni Systems

Total Page:16

File Type:pdf, Size:1020Kb

Sub-Barrier Fusion and Elastic Scattering in S + Ni Systems CRN/PN 90-23 • STRASBOURG! "^^^^^_H ^^_H I Sub-Barrier fusion and elastic scattering in S + Ni systems RJ. TIGHE, JJ. VEGA, Genbao UU, A. MORSAD*. and JJ. KOLATA Physics Department, University of Notre Dame, Notre Dame, In. 46556 S.H. FRICKE, H. ESBENSEN, and S. LTVNDOWNE Physics Division, Argonne National Laboratory. Argonne, IL 60439 P/jys. Rev. C (to be published) Centre de Recherches Nucléaires, IN2P3-CNRS/Université Louis Pasteur, B.P. 20. F67037 STHASBOURG CEDEX, France CENTRE DE RECHERCHES NUCLEAIRES STRASBOURG IN2P3 UNIVERSITE CNRS LOUIS PASTEUR SUB-BARRIER FUSION AND ELASTIC SCATTERING in S+Ni SYSTEMS RJ. Tighe, JJ. Vega, Genbao Liu, A.Morsad*. and J J.Kolata Physics DepL, Univ. of Notre Dame, Notre Dame, IN 46556 S.H. Fricke, R Esbensen, and S. Landowne Physics Division, Argonne National Laboratoiy, Argonne, IL 60439 ABSTRACT 32 The elastic scattering of S on 58.64^1 a^j fusiOn excitation functions for 32s+58,64i»ji and 34S^64Ni have been measured at energies near the Coulomb barrier. Our results differ in several important respects from previous measurements on these systems. Coupled- channels calculations which explicitly allow for collective inelastic excitations and single- nucléon transfer reactions simultaneously reproduce the main features of the new elastic scattering and fusion data. I. INTRODUCTION In recent years there has been considerable interest in heavy-ion reactions at energies near to and well below the Coulomb barrier. Observations of enhanced low energy heavy ion fusion rates, as compared with the predictions of conventional barrier penetration models, have accelerated the exploration of how nuclear structure influences the fusion process. At the opposite end of the reaction spectrum, optical model analyses of heavy ion elastic scattering data are found to require strongly energy-dependent complex potentials in the region of the barrier. In particular, the magnitude of the imaginary part of the optical- model potential has been found to decrease, and the magnitude of the attractive real potential to increase, as the bombarding energy is lowered. It is natural to expect that increased low energy fusion rates should be correlated with increased attraction in the optical model potential1, since both phenomena reflect the dynamic polarizability of the colliding nuclei. The interpretation of these recent developments relies upon having a consistent body of data for both fusion and elastic scattering cross sections. The measurements of the S + Ni systems by the Legnaro group2»3 have played a prominent role in discussions of the physical basis behind the observed phenomena. An analysis of the 32St58^64Ni elastic- scattering data presented in Réf. 2 tried to directly correlate the energy dependence of the optical model potentials with the corresponding low-energy fusion data3 using an energy- dependent barrier penetration model as suggested in Réf. 1. However, the theoretical basis of this procedure has been questioned in Réf. 4. A later analysis of the 32St5^64Ni elastic scattering and fusion data was carried out by Udagawa, et al.5 in the context of an absorption model, and a recent discussion of this particular analysis is given in Réf. 6. Quite recently7, the Legnaro group has published tables of their 32St58^64Ni elastic scattering data. There are, however, some unusual features of the 32St58^64Ni data presented in Refs. 2 and 3 which must be clarified before one attempts to draw conclusions from them. In the former case, elastic scattering angular distributions for 32S + 58-64Ni, near to and below fhe Coulomb barrier, are characterized by strong deviations from Rutherford scattering at angles that are well forward of the expected "grazing" angle. For example, the 32 58 experimental S + Ni elastic angular distribution at E0n = 56.7 MeV (4 MeV below the barrier) begins to deviate from Rutherford scattering at 9crn = 80°, whereas "normal" nuclear potentials predict little or no deviation even at 8cm = 160°. Coulomb excitation of low-lying excited states of the target and/or projectile, which might conceivably provide a mechanism for explaining part of the observed behavior8, is in fact far too weak to make a significant impact on the predictions. As emphasized in Réf. 5, this seems to imply that an anomalously large, unknown direct reaction process is occurring in these systems. With regard to the fusion channel, we note that the barrier parameters extracted from the analysis presented in Réf. 3 do not follow the systematics as closely as one might expect, nor do they show the same sensitivity to nuclear structure effects that we have found in detailed 9 10 studies of the ^Cl + 58.60.62.64Ni ^112?Ai + 70.72,73.74,76Ge systems - in the same general mass and charge regime. In order to gain a better insight into the behavior of the S + Ni systems, we have made new measurements of the elastic scattering and fusion channels near the barrier. Our measurements disagree with the previous results in several important respects, and in fact do not show the unusual features noted above. The new elastic scattering and fusion data have been simultaneously analyzed in the context of a coupled-channels barrier penetration model, and a good overall description of the data is achieved. The results of the experiments, presented in the next section, are followed by a discussion of the theoretical calculation. II. EXPERIMENTALMETHODANDRESULTS A. Elastic Scattering As mentioned above, the low-energy elastic scattering results of Réf. 2 could possibly be interpreted5 by invoking a significant flux-loss to unmeasured reaction channels. We therefore used a kinematic coincidence technique, which should be a sensitive way to search for strong inelastic and/or transfer channels that might be responsible for the observed anomalies. Two sets of two silicon surface-barrier position sensitive detectors (PSDs) each were placed on either side of the beam at a distance of 131mm from the target. Both detectors of one set were collimated using an array of six slits, each 2.4mm wide by 12.7mm high and separated from the adjoining slit by a center-to-center distance of 9mm. Thus, twelve angles could in principle be measured simultaneously with a single setting of the detector array, but the angle of incidence on the outermost slit of each detector was such that it did not give reproducible results and only ten angles were simultaneously measured. The two-detector array was oriented such that the plane of the collimator was perpendicular to the line from the target to the center-point of the array, and the length of this line was 131mm. The solid angle subtended by each slit therefore varied according to its distance from the target, and also because of the changing orientation of the normal to each slit relative to the target direction. The two PSDs on the opposite side of the beam were uncollimated. Each was 52mm long by 15mm high, and this array was also perpendicular at its centerpoint to the line to, and at a distance of 131mm from, the target. The coincidence efficiency in this geometry can be computed from kinematics. However, die elastic-scattering angular distribution was in fact determined from the singles rather than the coincidence counting rate so that efficiency corrections were not needed in this case. The center-of-mass (cm) angular range from 40° to 160° was covered with four settings of the detector arrays. There was considerable overlap between detector angles measured at these settings, so that many normalization checks were possible. We were also able to obtain elastic scattering information by de;ecting the recoiling Ni ions in many cases. The data set typically included 45-50 individual measurements at each beam energy. The targets consisted of 187 jig/cm2 58Ni and 160 jig/cm2 64Ni self-supporting foils. The isotopic purity of the 58Ni foil was >99.8%, while that of 64Ni was 97.3%, with 1 % 58.60NJ and 0.7% 62Ni contaminants. Further discussion of the determination of the thickness and isotopic purity of the targets can be found in Réf. 9. The beam current was collected in a magnetically-suppressed Faraday cup. The absolute elastic-scattering cross section was obtained by normalizing to Rutherford at the most forward angles. In all cases, the ratio to Rutherford was found to be very close to unity over the cm range from 40° to 80°, so that at least 15 data points could be used to determine the normalization at each energy. The elastic-scattering angular distributions obtained in this experiment are compared with the results of the previous work, as tabulated in Réf. 7, in Fig. 1. Consider, for 32 58 example, elastic scattering in the St Ni system at Ecn,= 56.0 MeV (corrected for energy loss to the center of the target). In marked contrast to the Legnaro results at nearly the same energy, no deviation from Rutherford scattering beyond the experimental uncertainty is observed over the entire cm angular range from 40° to 160° covered in the present experiment. 32 Strong population of the first excited states of S or 58,64Nj v{a inelastic scattering was not evident at any angle or beam energy and for either target, except for the two most backward angles at the highest energy measured for 32S + 58js|i. On the other hand, from the latter two data points it was determined that the experimental energy resolution (1.2 MeV FWHM) was marginal for separating thes? HVO states from the clastic yield. Therefore, we compare our data (Fig. 1) with theoretical predictions for true elastic scattering (dashed curves), as well as with the sum of elastic scattering plus inelastic scattering to the first excited states of 32S and 58.64Ni (solid curves).
Recommended publications
  • Part B. Radiation Sources Radiation Safety
    Part B. Radiation sources Radiation Safety 1. Interaction of electrons-e with the matter −31 me = 9.11×10 kg ; E = m ec2 = 0.511 MeV; qe = -e 2. Interaction of photons-γ with the matter mγ = 0 kg ; E γ = 0 eV; q γ = 0 3. Interaction of neutrons-n with the matter −27 mn = 1.68 × 10 kg ; En = 939.57 MeV; qn = 0 4. Interaction of protons-p with the matter −27 mp = 1.67 × 10 kg ; Ep = 938.27 MeV; qp = +e Note: for any nucleus A: mass number – nucleons number A = Z + N Z: atomic number – proton (charge) number N: neutron number 1 / 35 1. Interaction of electrons with the matter Radiation Safety The physical processes: 1. Ionization losses inelastic collisions with orbital electrons 2. Bremsstrahlung losses inelastic collisions with atomic nuclei 3. Rutherford scattering elastic collisions with atomic nuclei Positrons at nearly rest energy: annihilation emission of two 511 keV photons 2 / 35 1. Interaction of electrons with1.E+02 the matter Radiation Safety ) 1.E+03 -1 Graphite – Z = 6 .g 2 1.E+01 ) Lead – Z = 82 -1 .g 2 1.E+02 1.E+00 1.E+01 1.E-01 1.E+00 collision 1.E-02 radiative collision 1.E-01 stopping pow er (MeV.cm total radiative 1.E-03 stopping pow er (MeV.cm total 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E-02 energy (MeV) 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Electrons – stopping power 1.E+02 energy (MeV) S 1 dE ) === -1 Copper – Z = 29 ρρρ ρρρ dl .g 2 1.E+01 S 1 dE 1 dE === +++ ρρρ ρρρ dl coll ρρρ dl rad 1 dE 1.E+00 : mass stopping power (MeV.cm 2 g.
    [Show full text]
  • The Basic Interactions Between Photons and Charged Particles With
    Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No
    [Show full text]
  • Particles and Deep Inelastic Scattering
    Heidi Schellman Northwestern Particles and Deep Inelastic Scattering Heidi Schellman Northwestern University HUGS - JLab - June 2010 June 2010 HUGS 1 Heidi Schellman Northwestern k’ k q P P’ A generic scatter of a lepton off of some target. kµ and k0µ are the 4-momenta of the lepton and P µ and P 0µ indicate the target and the final state of the target, which may consist of many particles. qµ = kµ − k0µ is the 4-momentum transfer to the target. June 2010 HUGS 2 Heidi Schellman Northwestern Lorentz invariants k’ k q P P’ 2 2 02 2 2 2 02 2 2 2 The 5 invariant masses k = m` , k = m`0, P = M , P ≡ W , q ≡ −Q are invariants. In addition you can define 3 Mandelstam variables: s = (k + P )2, t = (k − k0)2 and u = (P − k0)2. 2 2 2 2 s + t + u = m` + M + m`0 + W . There are also handy variables ν = (p · q)=M , x = Q2=2Mµ and y = (p · q)=(p · k). June 2010 HUGS 3 Heidi Schellman Northwestern In the lab frame k’ k θ q M P’ The beam k is going in the z direction. Confine the scatter to the x − z plane. µ k = (Ek; 0; 0; k) P µ = (M; 0; 0; 0) 0µ 0 0 0 k = (Ek; k sin θ; 0; k cos θ) qµ = kµ − k0µ June 2010 HUGS 4 Heidi Schellman Northwestern In the lab frame k’ k θ q M P’ 2 2 2 s = ECM = 2EkM + M − m ! 2EkM 2 0 0 2 02 0 t = −Q = −2EkEk + 2kk cos θ + mk + mk ! −2kk (1 − cos θ) 0 ν = (p · q)=M = Ek − Ek energy transfer to target 0 y = (p · q)=(p · k) = (Ek − Ek)=Ek the inelasticity P 02 = W 2 = 2Mν + M 2 − Q2 invariant mass of P 0µ June 2010 HUGS 5 Heidi Schellman Northwestern In the CM frame k’ k q P P’ The beam k is going in the z direction.
    [Show full text]
  • The Effects of Elastic Scattering in Neutral Atom Transport D
    The effects of elastic scattering in neutral atom transport D. N. Ruzic Citation: Phys. Fluids B 5, 3140 (1993); doi: 10.1063/1.860651 View online: http://dx.doi.org/10.1063/1.860651 View Table of Contents: http://pop.aip.org/resource/1/PFBPEI/v5/i9 Published by the American Institute of Physics. Related Articles Dissociation mechanisms of excited CH3X (X = Cl, Br, and I) formed via high-energy electron transfer using alkali metal targets J. Chem. Phys. 137, 184308 (2012) Efficient method for quantum calculations of molecule-molecule scattering properties in a magnetic field J. Chem. Phys. 137, 024103 (2012) Scattering resonances in slow NH3–He collisions J. Chem. Phys. 136, 074301 (2012) Accurate time dependent wave packet calculations for the N + OH reaction J. Chem. Phys. 135, 104307 (2011) The k-j-j′ vector correlation in inelastic and reactive scattering J. Chem. Phys. 135, 084305 (2011) Additional information on Phys. Fluids B Journal Homepage: http://pop.aip.org/ Journal Information: http://pop.aip.org/about/about_the_journal Top downloads: http://pop.aip.org/features/most_downloaded Information for Authors: http://pop.aip.org/authors Downloaded 23 Dec 2012 to 192.17.144.173. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions The effects of elastic scattering in neutral atom transport D. N. Ruzic University of Illinois, 103South Goodwin Avenue, Urbana Illinois 61801 (Received 14 December 1992; accepted21 May 1993) Neutral atom elastic collisions are one of the dominant interactions in the edge of a high recycling diverted plasma. Starting from the quantum interatomic potentials, the scattering functions are derived for H on H ‘, H on Hz, and He on Hz in the energy range of 0.
    [Show full text]
  • Elastic Scattering, Fusion, and Breakup of Light Exotic Nuclei
    Eur. Phys. J. A (2016) 52: 123 THE EUROPEAN DOI 10.1140/epja/i2016-16123-1 PHYSICAL JOURNAL A Review Elastic scattering, fusion, and breakup of light exotic nuclei J.J. Kolata1,a, V. Guimar˜aes2, and E.F. Aguilera3 1 Physics Department, University of Notre Dame, Notre Dame, IN, 46556-5670, USA 2 Instituto de F`ısica,Universidade de S˜aoPaulo, Rua do Mat˜ao,1371, 05508-090, S˜aoPaulo, SP, Brazil 3 Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C´odigoPostal 11801, M´exico, Distrito Federal, Mexico Received: 18 February 2016 Published online: 10 May 2016 c The Author(s) 2016. This article is published with open access at Springerlink.com Communicated by N. Alamanos Abstract. The present status of fusion reactions involving light (A<20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.
    [Show full text]
  • Status of Electron Transport Cross Sections
    A11102 mob2fl NBS PUBLICATIONS AlllOb MOflOAb NBSIR 82-2572 Status of Electron Transport Cross Sections U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 September 1 982 Prepared for: Office of Naval Research Arlington, Virginia 22217 Space Science Data Center NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Office of Health and Environmental Research Department of Energy jyj Washington, DC 20545 c.2 '»AT10*AL. BURKAU OF »TAMTARJ»a LIBRARY SEP 2 0 1982 NBSIR 82-2572 STATUS OF ELECTRON TRANSPORT CROSS SECTIONS S. M. Seltzer and M. J. Berger U S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 September 1 982 Prepared for: Office of Naval Research Arlington, Virginia 22217 Space Science Data Center NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Office of Health and Environmental Research Department of Energy Washington, DC 20545 (A Q * U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director u r ju ' ^ l. .• .. w > - H *+ Status of Electron Transport Cross Sections Stephen M. Seltzer and Martin J. Berger National Bureau of Standards Washington, D.C. 20234 This report describes recent developments and improvements pertaining to cross sections for electron-photon transport calculations. The topics discussed include: (1) electron stopping power (mean excitation energies, density-effect correction); (2) bremsstrahlung production by electrons (radiative stopping power, spectrum of emitted photons); (3) elastic scattering of electrons by atoms; (4) electron-impact ionization of atoms. Key words: bremsstrahlung; cross sections; elastic scattering; electron- impact ionization; electrons; photons; stopping power; transport. Summary of a paper presented at the Annual Meeting of the American Nuclear Society, June 7-11, 1982, Los Angeles, California.
    [Show full text]
  • Part Fourteen Kinematics of Elastic Neutron Scattering
    22.05 Reactor Physics - Part Fourteen Kinematics of Elastic Neutron Scattering 1. Multi-Group Theory: The next method that we will study for reactor analysis and design is multi-group theory. This approach entails dividing the range of possible neutron energies into small regions, ΔEi and then defining a group cross-section that is averaged over each energy group i. Neutrons enter each group as the result of either fission (recall the distribution function for fission neutrons) or scattering. Accordingly, we need a thorough understanding of the scattering process before proceeding. 2. Types of Scattering: Fission neutrons are born at high energies (>1 MeV). However, the fission reaction is best sustained by neutrons that are at thermal energies with “thermal” defined as 0.025 eV. It is only at these low energies that the cross-section of U-235 is appreciable. So, a major challenge in reactor design is to moderate or slow down the fission neutrons. This can be achieved via either elastic or inelastic scattering: a) Elastic Scatter: Kinetic energy is conserved. This mechanism works well for neutrons with energies 10 MeV or below. Light nuclei, ones with low mass number, are best because the lighter the nucleus, the larger the fraction of energy lost per collision. b) Inelastic Scatter: The neutron forms an excited state with the target nucleus. This requires energy and the process is only effective for neutron energies above 0.1 MeV. Collisions with iron nuclei are the preferred approach. Neutron scattering is important in two aspects of nuclear engineering. One is the aforementioned neutron moderation.
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]
  • Simulation of Transmission and Scanning Transmission Electron Microscopic Images Considering Elastic and Thermal Diffuse Scattering
    Scanning Microscopy Vol. 11, 1997 (Pages 277-286) 0891-7035/97$5.00+.25 Scanning Microscopy International, Chicago (AMFSimulation O’Hare), of TEM IL 60666 and STEM USA images SIMULATION OF TRANSMISSION AND SCANNING TRANSMISSION ELECTRON MICROSCOPIC IMAGES CONSIDERING ELASTIC AND THERMAL DIFFUSE SCATTERING C. Dinges and H. Rose* Institute of Applied Physics, Darmstadt University of Technology, Darmstadt, Germany Abstract Introduction A reliable image simulation procedure for transmis- In the past, several attempts have been made to sion (TEM) and scanning transmission (STEM) electron include thermal diffuse scattering and inelastic scattering microscopic images must take into account plural elastic into the theory of image formation in electron microscopy. scattering, inelastic scattering and thermal diffuse scattering. The approaches of Rose (1984), Wang (1995) and Dinges et The intensity of the simulated images depends strongly on al. (1995) are based on the multislice formalism (Cowley and the elastic scattering amplitude and the models chosen to Moodie, 1957) which allows the calculation of inelastically describe inelastic and thermal diffuse scattering. Our filtered images for transmission (TEM) and scanning improved image simulation procedure utilizes the approxima- transmission (STEM) electron microscopy. Allen and tion proposed by Weickenmeier and Kohl for the elastic Roussow (1993) proposed an ansatz using the Bloch wave scattering amplitude instead of the Doyle-Turner approx- formalism. imation. Thermal diffuse scattering is treated in terms of the Thermal diffuse scattering has been included into Einstein model. In this paper, simulated TEM diffraction an image simulation procedure for the first time by Xu et al. patterns and high-angle annular dark-field (HAADF) STEM (1990).
    [Show full text]
  • Elastic Scattering and Reaction Mechanisms of the Halo Nucleus 11Be Around the Coulomb Barrier
    week ending PRL 105, 022701 (2010) PHYSICAL REVIEW LETTERS 9 JULY 2010 Elastic Scattering and Reaction Mechanisms of the Halo Nucleus 11Be around the Coulomb Barrier A. Di Pietro,1 G. Randisi,1,2,* V. Scuderi,1,2 L. Acosta,3 F. Amorini,1,2 M. J. G. Borge,4 P. Figuera,1 M. Fisichella,1,2 L. M. Fraile,5,† J. Gomez-Camacho,6 H. Jeppesen,5,‡ M. Lattuada,1,2 I. Martel,3 M. Milin,7 A. Musumarra,1,8 M. Papa,1 M. G. Pellegriti,1,2 F. Perez-Bernal,3 R. Raabe,9 F. Rizzo,1,2 D. Santonocito,1 G. Scalia,1,2 O. Tengblad,4 D. Torresi,1,2 A. Maira Vidal,4 D. Voulot,5 F. Wenander,5 and M. Zadro10 1INFN–Laboratori Nazionali del Sud and Sezione di Catania, Catania, Italy 2Dipartimento di Fisica ed Astronomia, Universita´ di Catania, Catania, Italy 3Departamento de Fisica Aplicada, Universidad de Huelva, Huelva, Spain 4Instituto de Estructura de la Materia CSIC, Madrid, Spain 5ISOLDE, CERN, CH-1211 Geneva 23, Switzerland 6Departamento de Fisica Atomica Molecular Nuclear, Universidad de Sevilla and Centro Nacional de Aceleradores, Sevilla, Spain 7Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia 8Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneria, Universita´ di Catania, Catania, Italy 9Instituut voor Kern-en Stralingsfysica, Katholieke Universiteit, Leuven, Belgium 10Division of Experimental Physics, Ru‘er Bosˇkovic´ Institute, Zagreb, Croatia (Received 7 March 2010; published 6 July 2010) Collisions induced by 9;10;11Be on a 64Zn target at the same c.m. energy were studied.
    [Show full text]
  • Nuclear Reactions (Theory)
    Outline Overview of Nuclear Reactions Elastic Cross Sections Reactions Theory I Ian Thompson Nuclear Theory and Modeling Group Lawrence Livermore National Laboratory [email protected] LLNL-PRES-491271 Ian Thompson Reactions Theory I Elastic Cross Sections Phase Shifts from Potentials Integral Expressions Outline Overview of Nuclear Reactions Elastic Cross Sections Overview of Nuclear Reactions Compound and Direct Reactions Types of direct reactions Ian Thompson Reactions Theory I Outline Overview of Nuclear Reactions Elastic Cross Sections Overview of Nuclear Reactions Compound and Direct Reactions Types of direct reactions Elastic Cross Sections Phase Shifts from Potentials Integral Expressions Ian Thompson Reactions Theory I Outline Overview of Nuclear Reactions Types of direct reactions Elastic Cross Sections Classification by Outcome 1. Elastic scattering: projectile and target stay in their g.s. 2. Inelastic scattering: projectile or target left in excited state 3. Transfer reaction: 1 or more nucleons moved to the other nucleus 4. Fragmentation/Breakup/Knockout: 3 or more nuclei/nucleons in the final state 5. Charge Exchange: A is constant but Z (charge) varies, e.g. by pion exchange 6. Multistep Processes: intermediate steps can be any of the above (`virtual' rather than `real') Ian Thompson Reactions Theory I Outline Overview of Nuclear Reactions Types of direct reactions Elastic Cross Sections 7. Deep inelastic collisions: Highly excited states produced 8. Fusion: Nuclei stick together 9. Fusion-evaporation: fusion followed by particle-evaporation and/or gamma emission 10. Fusion-fission: fusion followed by fission The first 6 processes are Direct Reactions (DI) The last 3 processes give a Compound Nucleus (CN). Ian Thompson Reactions Theory I Outline Overview of Nuclear Reactions Types of direct reactions Elastic Cross Sections Compound and Direct Reactions So when two nuclei collide there are 2 types of reactions: 1.
    [Show full text]
  • Electron Microscopy I
    Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I • Introduction • Properties of electrons • Electron-matter interactions and their applications Frank Krumeich [email protected] www.microscopy.ethz.ch How do crystals look like? Shape? SEM images of zeolithes (left) and metal organic frameworks (MOF, right) Examples: electron microscopy for catalyst characterization 1 How does the Structure of catalysts look like? Size of the particles? HRTEM image of an Ag BF-STEM image of Pt particles particle on ZnO on CeO2 Examples: electron microscopy for catalyst characterization Pd and Pt supported on alumina: Size of the particles? Alloy or separated? STEM + EDXS: Point Analyses Al C O Pt Pd Cu Pt Pt Al C HAADF-STEM image O Pt Cu Pd Pt Pt Examples: electron microscopy for catalyst characterization 2 Electron Microscopy Methods (Selection) STEM Electron diffraction HRTEM X-ray spectroscopy SEM Discovery of the Electron 1897 J. J. Thomson: Experiments with cathode rays hypotheses: (i) Cathode rays are charged particles ("corpuscles"). (ii) Corpuscles are constituents of the Joseph John Thomson (1856-1940) atom. Nobel prize 1906 Electron 3 Properties of Electrons Dualism wave-particle De Broglie (1924): = h/p = h/mv : wavelength; h: Planck constant; p: momentum 2 Accelerated electrons: E = eV = m0v /2 V: acceleration voltage e / m0 / v: charge / rest mass / velocity of the electron 1/2 p = m0v = (2m0eV) 1/2 1/2 = h / (2m0eV) ( 1.22 / V nm) Relativistic effects: 2 1/2
    [Show full text]