8 Probing the Proton: Electron - Proton Scattering

Total Page:16

File Type:pdf, Size:1020Kb

8 Probing the Proton: Electron - Proton Scattering 8 Probing the Proton: Electron - Proton Scattering Scattering of electrons and protons is an electromagnetic interaction. Electron beams have been used to probe the structure of the proton (and neutron) since the 1960s, with the most recent results coming from the high energy HERA electron-proton collider at DESY in Hamburg. These experiments provide direct evidence for the composite nature of protons and neutrons, and measure the distributions of the quarks and gluons inside the nucleon. 8.1 Electron - Proton Scattering The results of e−p e−p scattering depends strongly on the wavelength λ = hc/E. → At very low electron energies λ rp, where rp is the radius of the proton, the • scattering is equivalent to that from a point-like spin-less object. At low electron energies λ rp the scattering is equivalent to that from a extended • charged object. ∼ At high electron energies λ<rp: the wavelength is sufficiently short to resolve • sub-structure. Scattering is from constituent quarks. At very high electron energies λ rp: the proton appears to be a sea of quarks • and gluons. 8.2 Form Factors Extended object - like the proton - have a matter density ρ(r), normalised to unit volume: d3rρ (r ) = 1. The Fourier Transform of ρ(r) is the form factor, F (q): F (q )= d3r exp iq r ρ(r ) F (0) = 1 (8.1) { · } ⇒ Cross section from extended objects are modified by the form factor: dσ dσ F (q ) 2 (8.2) dΩ extended ≈ dΩ point like| | − For e−p e−p scattering two form factors are required: F to describe the distribution → 1 of the electric charge, F2 to describe the recoil of the proton. 8.3 Elastic Electron-Proton Scattering Elastic electron-proton scattering is illustrated in figure 8.3. As the proton is a com- posite object the vertex factor is modified by Kµ (compared to γµ): 2 e µ (e−p e−p)= (¯u γ u )(¯u K u ) (8.3) M → (p p )2 3 1 4 µ 2 1 − 3 51 e−(p1) e−(p3) ieγµ q ieKµ − p(p2) p(p4) Figure 8.1: Elastic electron proton scattering. As the proton is a composite object the vertex factor is Kµ. µ µ 2 iκp 2 µν K = γ F1(q )+ F2(q )σ qν (8.4) 2mp F1 is the electrostatic form factor, while F2 is associated with the recoil of the proton (as described above). F1 and F2 parameterise the structure of the proton, and are functions of the momentum transferred by the photon (q2). 8.4 Elastic Scattering The elastic scattering in the relativistic limit pe = Ee by the Mott formula: dσ α2 θ q2 θ = cos2 sin2 (8.5) dΩ 4p2 sin4 θ 2 − 2m2 2 point e 2 p For θ and pe are in the Lab frame. In the non-relativistic limit p m this reduces to Rutherford scattering: e e dσ α2 = (8.6) dΩ 4m2v4 sin4 θ NR e e 2 8.4.1 Q2 and ν We define a two new quantities: Q2 and ν, which are useful in describing scattering. 2 2 2 p2 q Q q =(p1 p3) > 0 ν · (8.7) ≡− − ≡ Mp Note that ν>0 so Q2 > 0 and the mass squared of the virtual photon is negative, q2 < 0! 52 8.4.2 Higher Energy Scattering At higher energy, we have to account for the recoil of the proton. The differential cross section for electron-proton scattering becomes: 2 2 2 2 dσ α E3 2 κ q 2 2 θ q 2 2 θ = F F cos (F1 + κF2) sin (8.8) dΩ 4E2 sin4 θ E 1 − 4m2 2 2 − 2m2 2 lab 1 2 1 p p 1 For a point-like spin- 2 particle, F1 = 1, κ = 0, and the above equation reduces to the Mott scattering result, equation (8.5). It is common to use linear combinations of the form factors: κq2 GE = F1 + 2 F2 GM = F1 + κF2 (8.9) 4mp which are referred to as the electric and magnetic form factors, respectively. The differential cross section can be rewritten as: dσ α2 E G2 + τG2 θ θ = 3 E M cos2 +2τG2 sin2 (8.10) dΩ 4E2 sin4 θ E 1+τ 2 M 2 lab 1 2 1 2 2 where we have used the abbreviation τ = Q /4mp. The experimental data on the form factors as a function of q2 are correspond to an exponential charge distribution: ρ(r)=ρ exp( r/r )1/r2 =0.71 GeV2 r2 =0.81 fm2 (8.11) 0 − 0 0 The proton is an extended object with an rms radius of 0.81 fm. The whole of the above discussion can be repeated for electron-neutron scattering, with similar form factors for the neutron. 8.5 Deep Inelastic Scattering During inelastic scattering the proton can break up into its constituent quarks which then form a hadronic jet. At high q2 this is known as deep inelastic scattering (DIS). e−(p1) e−(p3) ieγµ q X p(p2) 53 Figure 8.2: Differential cross section for E1 =10 GeV and θ =6◦, as a function of the hadronic jet mass mX (labeled W in plot). The peaks represent elastic scattering, and then the excitation of baryonic resonances at higher mass. Above 2 GeV there is a continuum of non-resonant scattering. This data was taken by Friedman, Kendall and Taylor at SLAC in the 1960 and 1970’s and was accepted as the first experimental proof of quarks. Friedman, Kendall and Taylor won the Nobel prize in 1990 for this work. We introduce a third variable, known as Bjorken x: Q2 x (8.12) ≡ 2p q 2 · where again q2 is the four-momentum transferred by the photon. The invariant mass, MX , of the final state hadronic jet is: 2 2 2 2 2 MX = p4 =(q + p2) = mp +2p2q + q (8.13) The system X will be a baryon. The proton is the lightest baryon, therefore MX >mp. Since M = m q2 and ν, are two independent variables in DIS, and it is necessary to X p measure E1, E3 and θ in the Lab frame to determine the full kinematics. Futhermore Q2 =2p q + M 2 M 2 Q2 < 2p q (8.14) 2 · p − X ⇒ 2 · Implying the allowed range of x is 0 to 1. 0 <x<1 represents inelastic scattering, x = 1 represents elastic scattering. 8.6 The Parton Model The parton model was proposed by Feynman in 1969, to describe deep inelastic scat- tering in terms of point-like constituents inside the nucleon known as partons with an effective mass m<mp. Nowadays partons are identified as being quarks or gluons. 54 Figure 8.3: The structure function F2 as measured at HERA using collisions between 30 GeV electrons and 830 GeV protons. 55 e−(p1) e−(p3) q m m The parton model restores the elastic scattering relationship between q2 and ν, with m (parton mass) replacing mp: q2 ν + = 0 (8.15) 2m and the cross section for elastic electron-parton scattering is: 2 2 d σ α 1 2 2 θ 2 2 2 θ = F2(x, Q )cos + F1(x, Q ) sin (8.16) dE dΩ 4E2 sin4 θ ν 2 M 2 3 1 2 The structure functions are sums over the charged partons in the proton: 2 2xF1(x)=F2(x)= xeqq(x) (8.17) q where eq is the charge of the parton (+2/3 or 1/3 for quarks). Essentially the structure functions are just describing the parton content− of the proton! 8.7 Parton Distribution Functions We introduce the parton distribution functions, fi(x), defined as the probability that to find a parton in the proton the carries energy between x and x + dx. The structure functions can then be written: 1 F (x)= e2f (x) (8.18) 1 2 q i i 2 F2(x)= xeqfi(x) (8.19) i Where the sum is over all the the different flavour of partons in the proton, and eq = 1/3, +2/3 is the charge of the parton. The partons in the protons are: − The valance quarks, uud. • The sea quarks, which come in quark anti-quark pairs: u¯u, dd¯, s¯s, c¯c, bb.¯ • Gluons, g. • 56 The parton distribution functions must describe a proton with total fractional momen- tum x = 1: 1 dx x[u(x) + ¯u(x) + d(x)+d(¯ x) + s(x) + ¯s(x)+...] = 1 (8.20) 0 1 ¯ 1 dx[d(x)+d(x)] = 1 0 dx[u(x) + ¯u(x)] = 2 (8.21) 0 1 1 dx[s(x) + ¯s(x)] = 0 0 dx[c(x) + ¯c(x)] = 0 (8.22) 0 8.8 Structure Functions and Quarks in the Nucleon Scattering experiments can be used to measure the structure functions q(x), these are shown in figure 8.6. The structure function F2(x) (equation 8.19) for a proton, consisting of just uud valance quarks is: 4 1 F p(x)= xe2q(x)= xu(x)+ xd(x) (8.23) 2 q 9 9 q=u,d If we integrate the area the structure function F2(x) we measure the total fraction carried by the valence and sea quarks: 1 4 1 1 4 1 F p(x)dx = f + f F n(x)dx = f + f (8.24) 2 9 u 9 d 2 9 d 9 u 0 0 Where fu (fd) is the fraction of momentum carried by the up (down) quarks. Using isospin symmetry (see chapter 9) the neutron can be described by d u: ↔ 1 4 1 F n(x)dx = f + f (8.25) 2 9 d 9 u 0 Experimental measurement give: 1 1 p n F2 (x)dx =0.18 F2 (x)dx =0.12 (8.26) 0 0 Implying fu =0.36 fd =0.18 (8.27) The quarks constitute only 54% of the proton rest mass! The remainder is carried by gluons which must also be considered as partons.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • A Discussion on Characteristics of the Quantum Vacuum
    A Discussion on Characteristics of the Quantum Vacuum Harold \Sonny" White∗ NASA/Johnson Space Center, 2101 NASA Pkwy M/C EP411, Houston, TX (Dated: September 17, 2015) This paper will begin by considering the quantum vacuum at the cosmological scale to show that the gravitational coupling constant may be viewed as an emergent phenomenon, or rather a long wavelength consequence of the quantum vacuum. This cosmological viewpoint will be reconsidered on a microscopic scale in the presence of concentrations of \ordinary" matter to determine the impact on the energy state of the quantum vacuum. The derived relationship will be used to predict a radius of the hydrogen atom which will be compared to the Bohr radius for validation. The ramifications of this equation will be explored in the context of the predicted electron mass, the electrostatic force, and the energy density of the electric field around the hydrogen nucleus. It will finally be shown that this perturbed energy state of the quan- tum vacuum can be successfully modeled as a virtual electron-positron plasma, or the Dirac vacuum. PACS numbers: 95.30.Sf, 04.60.Bc, 95.30.Qd, 95.30.Cq, 95.36.+x I. BACKGROUND ON STANDARD MODEL OF COSMOLOGY Prior to developing the central theme of the paper, it will be useful to present the reader with an executive summary of the characteristics and mathematical relationships central to what is now commonly referred to as the standard model of Big Bang cosmology, the Friedmann-Lema^ıtre-Robertson-Walker metric. The Friedmann equations are analytic solutions of the Einstein field equations using the FLRW metric, and Equation(s) (1) show some commonly used forms that include the cosmological constant[1], Λ.
    [Show full text]
  • Part B. Radiation Sources Radiation Safety
    Part B. Radiation sources Radiation Safety 1. Interaction of electrons-e with the matter −31 me = 9.11×10 kg ; E = m ec2 = 0.511 MeV; qe = -e 2. Interaction of photons-γ with the matter mγ = 0 kg ; E γ = 0 eV; q γ = 0 3. Interaction of neutrons-n with the matter −27 mn = 1.68 × 10 kg ; En = 939.57 MeV; qn = 0 4. Interaction of protons-p with the matter −27 mp = 1.67 × 10 kg ; Ep = 938.27 MeV; qp = +e Note: for any nucleus A: mass number – nucleons number A = Z + N Z: atomic number – proton (charge) number N: neutron number 1 / 35 1. Interaction of electrons with the matter Radiation Safety The physical processes: 1. Ionization losses inelastic collisions with orbital electrons 2. Bremsstrahlung losses inelastic collisions with atomic nuclei 3. Rutherford scattering elastic collisions with atomic nuclei Positrons at nearly rest energy: annihilation emission of two 511 keV photons 2 / 35 1. Interaction of electrons with1.E+02 the matter Radiation Safety ) 1.E+03 -1 Graphite – Z = 6 .g 2 1.E+01 ) Lead – Z = 82 -1 .g 2 1.E+02 1.E+00 1.E+01 1.E-01 1.E+00 collision 1.E-02 radiative collision 1.E-01 stopping pow er (MeV.cm total radiative 1.E-03 stopping pow er (MeV.cm total 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E-02 energy (MeV) 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Electrons – stopping power 1.E+02 energy (MeV) S 1 dE ) === -1 Copper – Z = 29 ρρρ ρρρ dl .g 2 1.E+01 S 1 dE 1 dE === +++ ρρρ ρρρ dl coll ρρρ dl rad 1 dE 1.E+00 : mass stopping power (MeV.cm 2 g.
    [Show full text]
  • 12 Light Scattering AQ1
    12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue
    [Show full text]
  • Lesson 1: the Single Electron Atom: Hydrogen
    Lesson 1: The Single Electron Atom: Hydrogen Irene K. Metz, Joseph W. Bennett, and Sara E. Mason (Dated: July 24, 2018) Learning Objectives: 1. Utilize quantum numbers and atomic radii information to create input files and run a single-electron calculation. 2. Learn how to read the log and report files to obtain atomic orbital information. 3. Plot the all-electron wavefunction to determine where the electron is likely to be posi- tioned relative to the nucleus. Before doing this exercise, be sure to read through the Ins and Outs of Operation document. So, what do we need to build an atom? Protons, neutrons, and electrons of course! But the mass of a proton is 1800 times greater than that of an electron. Therefore, based on de Broglie’s wave equation, the wavelength of an electron is larger when compared to that of a proton. In other words, the wave-like properties of an electron are important whereas we think of protons and neutrons as particle-like. The separation of the electron from the nucleus is called the Born-Oppenheimer approximation. So now we need the wave-like description of the Hydrogen electron. Hydrogen is the simplest atom on the periodic table and the most abundant element in the universe, and therefore the perfect starting point for atomic orbitals and energies. The compu- tational tool we are going to use is called OPIUM (silly name, right?). Before we get started, we should know what’s needed to create an input file, which OPIUM calls a parameter files. Each parameter file consist of a sequence of ”keyblocks”, containing sets of related parameters.
    [Show full text]
  • Solutions 7: Interacting Quantum Field Theory: Λφ4
    QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below.
    [Show full text]
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • A Young Physicist's Guide to the Higgs Boson
    A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with..
    [Show full text]
  • 1 Solving Schrödinger Equation for Three-Electron Quantum Systems
    Solving Schrödinger Equation for Three-Electron Quantum Systems by the Use of The Hyperspherical Function Method Lia Leon Margolin 1 , Shalva Tsiklauri 2 1 Marymount Manhattan College, New York, NY 2 New York City College of Technology, CUNY, Brooklyn, NY, Abstract A new model-independent approach for the description of three electron quantum dots in two dimensional space is developed. The Schrödinger equation for three electrons interacting by the logarithmic potential is solved by the use of the Hyperspherical Function Method (HFM). Wave functions are expanded in a complete set of three body hyperspherical functions. The center of mass of the system and relative motion of electrons are separated. Good convergence for the ground state energy in the number of included harmonics is obtained. 1. Introduction One of the outstanding achievements of nanotechnology is construction of artificial atoms- a few-electron quantum dots in semiconductor materials. Quantum dots [1], artificial electron systems realizable in modern semiconductor structures, are ideal physical objects for studying effects of electron-electron correlations. Quantum dots may contain a few two-dimensional (2D) electrons moving in the plane z=0 in a lateral confinement potential V(x, y). Detailed theoretical study of physical properties of quantum-dot atoms, including the Fermi-liquid-Wigner molecule crossover in the ground state with growing strength of intra-dot Coulomb interaction attracted increasing interest [2-4]. Three and four electron dots have been studied by different variational methods [4-6] and some important results for the energy of states have been reported. In [7] quantum-dot Beryllium (N=4) as four Coulomb-interacting two dimensional electrons in a parabolic confinement was investigated.
    [Show full text]
  • Proton Therapy ACKNOWLEDGEMENTS
    AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit organization dedicated solely to brain tumor research. For over 40 years, the Chicago-based ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Anita Mahajan, Director of International Development, MD Anderson Proton Therapy Center, director, Pediatric Radiation Oncology, co-section head of Pediatric and CNS Radiation Oncology, The University of Texas MD Anderson Cancer Center; Kevin S. Oh, MD, Department of Radiation Oncology, Massachusetts General Hospital; and Sridhar Nimmagadda, PhD, assistant professor of Radiology, Medicine and Oncology, Johns Hopkins University, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2015 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy INTRODUCTION Brain tumors are highly variable in their treatment and prognosis. Many are benign and treated conservatively, while others are malignant and require aggressive combinations of surgery, radiation and chemotherapy.
    [Show full text]
  • The Basic Interactions Between Photons and Charged Particles With
    Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No
    [Show full text]