Charm and Strange Quark Contributions to the Proton Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
The Particle World
The Particle World ² What is our Universe made of? This talk: ² Where does it come from? ² particles as we understand them now ² Why does it behave the way it does? (the Standard Model) Particle physics tries to answer these ² prepare you for the exercise questions. Later: future of particle physics. JMF Southampton Masterclass 22–23 Mar 2004 1/26 Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: ² emission of light ² electricity and magnetism ² electronics ² chemistry ² mechanical properties . technology. JMF Southampton Masterclass 22–23 Mar 2004 2/26 Nucleus at the centre of the atom: tiny Subsequently, particle physicists have yet contains almost all the mass of the discovered four more types of quark, two atom. Yet, it’s composite, made up of more pairs of heavier copies of the up protons and neutrons (or nucleons). and down: Open up a nucleon . it contains ² c or charm quark, charge +2=3 quarks. ² s or strange quark, charge ¡1=3 Normal matter can be understood with ² t or top quark, charge +2=3 just two types of quark. ² b or bottom quark, charge ¡1=3 ² + u or up quark, charge 2=3 Existed only in the early stages of the ² ¡ d or down quark, charge 1=3 universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22–23 Mar 2004 3/26 But this is not all. The electron has a friend the electron-neutrino, ºe. Needed to ensure energy and momentum are conserved in ¯-decay: ¡ n ! p + e + º¯e Neutrino: no electric charge, (almost) no mass, hardly interacts at all. -
Qcd in Heavy Quark Production and Decay
QCD IN HEAVY QUARK PRODUCTION AND DECAY Jim Wiss* University of Illinois Urbana, IL 61801 ABSTRACT I discuss how QCD is used to understand the physics of heavy quark production and decay dynamics. My discussion of production dynam- ics primarily concentrates on charm photoproduction data which is compared to perturbative QCD calculations which incorporate frag- mentation effects. We begin our discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay is then reviewed. Mea- surements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge The- ories. We next discuss polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daugh- ter baryon will recoil from the charmed parent with nearly 100% left- handed polarization, which is in excellent agreement with present data. We conclude by discussing nonleptonic charm decay which are tradi- tionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as mod- ifying the interference between Interfering resonance channels which contribute to specific multibody decays. "Supported by DOE Contract DE-FG0201ER40677. © 1996 by Jim Wiss. -251- 1 Introduction the direction of fixed-target experiments. Perhaps they serve as a sort of swan song since the future of fixed-target charm experiments in the United States is A vast amount of important data on heavy quark production and decay exists for very short. -
Higgs and Particle Production in Nucleus-Nucleus Collisions
Higgs and Particle Production in Nucleus-Nucleus Collisions Zhe Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2016 c 2015 Zhe Liu All Rights Reserved Abstract Higgs and Particle Production in Nucleus-Nucleus Collisions Zhe Liu We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsäcker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsäcker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. -
Baryon Number Fluctuation and the Quark-Gluon Plasma
Baryon Number Fluctuation and the Quark-Gluon Plasma Z. W. Lin and C. M. Ko Because of the fractional baryon number Using the generating function at of quarks, baryon and antibaryon number equilibrium, fluctuations in the quark-gluon plasma is less than those in the hadronic matter, making them plausible signatures for the quark-gluon plasma expected to be formed in relativistic heavy ion with g(l) = ∑ Pn = 1 due to normalization of collisions. To illustrate this possibility, we have the multiplicity probability distribution, it is introduced a kinetic model that takes into straightforward to obtain all moments of the account both production and annihilation of equilibrium multiplicity distribution. In terms of quark-antiquark or baryon-antibaryon pairs [1]. the fundamental unit of baryon number bo in the In the case of only baryon-antibaryon matter, the mean baryon number per event is production from and annihilation to two mesons, given by i.e., m1m2 ↔ BB , we have the following master equation for the multiplicity distribution of BB pairs: while the squared baryon number fluctuation per baryon at equilibrium is given by In obtaining the last expressions in Eqs. (5) and In the above, Pn(ϑ) denotes the probability of ϑ 〈σ 〉 (6), we have kept only the leading term in E finding n pairs of BB at time ; G ≡ G v 〈σ 〉 corresponding to the grand canonical limit, and L ≡ L v are the momentum-averaged cross sections for baryon production and E 1, as baryons and antibaryons are abundantly produced in heavy ion collisions at annihilation, respectively; Nk represents the total number of particle species k; and V is the proper RHIC. -
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41. -
Arxiv:1502.07763V2 [Hep-Ph] 1 Apr 2015
Constraints on Dark Photon from Neutrino-Electron Scattering Experiments S. Bilmi¸s,1 I. Turan,1 T.M. Aliev,1 M. Deniz,2, 3 L. Singh,2, 4 and H.T. Wong2 1Department of Physics, Middle East Technical University, Ankara 06531, Turkey. 2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. 3Department of Physics, Dokuz Eyl¨ulUniversity, Izmir,_ Turkey. 4Department of Physics, Banaras Hindu University, Varanasi, 221005, India. (Dated: April 2, 2015) Abstract A possible manifestation of an additional light gauge boson A0, named as Dark Photon, associated with a group U(1)B−L is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant gB−L and the dark photon mass MA0 is obtained. It is shown that contributions of interference term between the dark photon and the Standard Model are important. The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space. PACS numbers: 13.15.+g,12.60.+i,14.70.Pw arXiv:1502.07763v2 [hep-ph] 1 Apr 2015 1 CONTENTS I. Introduction 2 II. Hidden Sector as a beyond the Standard Model Scenario 3 III. Neutrino-Electron Scattering 6 A. Standard Model Expressions 6 B. Very Light Vector Boson Contributions 7 IV. Experimental Constraints 9 A. Neutrino-Electron Scattering Experiments 9 B. Roles of Interference 13 C. Results 14 V. Conclusions 17 Acknowledgments 19 References 20 I. INTRODUCTION The recent discovery of the Standard Model (SM) long-sought Higgs at the Large Hadron Collider is the last missing piece of the SM which is strengthened its success even further. -
Fully Strange Tetraquark Sss¯S¯ Spectrum and Possible Experimental Evidence
PHYSICAL REVIEW D 103, 016016 (2021) Fully strange tetraquark sss¯s¯ spectrum and possible experimental evidence † Feng-Xiao Liu ,1,2 Ming-Sheng Liu,1,2 Xian-Hui Zhong,1,2,* and Qiang Zhao3,4,2, 1Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 4University of Chinese Academy of Sciences, Beijing 100049, China (Received 21 August 2020; accepted 5 January 2021; published 26 January 2021) In this work, we construct 36 tetraquark configurations for the 1S-, 1P-, and 2S-wave states, and make a prediction of the mass spectrum for the tetraquark sss¯s¯ system in the framework of a nonrelativistic potential quark model without the diquark-antidiquark approximation. The model parameters are well determined by our previous study of the strangeonium spectrum. We find that the resonances f0ð2200Þ and 2340 2218 2378 f2ð Þ may favor the assignments of ground states Tðsss¯s¯Þ0þþ ð Þ and Tðsss¯s¯Þ2þþ ð Þ, respectively, and the newly observed Xð2500Þ at BESIII may be a candidate of the lowest mass 1P-wave 0−þ state − 2481 0þþ 2440 Tðsss¯s¯Þ0 þ ð Þ. Signals for the other ground state Tðsss¯s¯Þ0þþ ð Þ may also have been observed in PC −− the ϕϕ invariant mass spectrum in J=ψ → γϕϕ at BESIII. The masses of the J ¼ 1 Tsss¯s¯ states are predicted to be in the range of ∼2.44–2.99 GeV, which indicates that the ϕð2170Þ resonance may not be a good candidate of the Tsss¯s¯ state. -
Arxiv:0810.4453V1 [Hep-Ph] 24 Oct 2008
The Physics of Glueballs Vincent Mathieu Groupe de Physique Nucl´eaire Th´eorique, Universit´e de Mons-Hainaut, Acad´emie universitaire Wallonie-Bruxelles, Place du Parc 20, BE-7000 Mons, Belgium. [email protected] Nikolai Kochelev Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia. [email protected] Vicente Vento Departament de F´ısica Te`orica and Institut de F´ısica Corpuscular, Universitat de Val`encia-CSIC, E-46100 Burjassot (Valencia), Spain. [email protected] Glueballs are particles whose valence degrees of freedom are gluons and therefore in their descrip- tion the gauge field plays a dominant role. We review recent results in the physics of glueballs with the aim set on phenomenology and discuss the possibility of finding them in conventional hadronic experiments and in the Quark Gluon Plasma. In order to describe their properties we resort to a va- riety of theoretical treatments which include, lattice QCD, constituent models, AdS/QCD methods, and QCD sum rules. The review is supposed to be an informed guide to the literature. Therefore, we do not discuss in detail technical developments but refer the reader to the appropriate references. I. INTRODUCTION Quantum Chromodynamics (QCD) is the theory of the hadronic interactions. It is an elegant theory whose full non perturbative solution has escaped our knowledge since its formulation more than 30 years ago.[1] The theory is asymptotically free[2, 3] and confining.[4] A particularly good test of our understanding of the nonperturbative aspects of QCD is to study particles where the gauge field plays a more important dynamical role than in the standard hadrons. -
Proton Therapy ACKNOWLEDGEMENTS
AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit organization dedicated solely to brain tumor research. For over 40 years, the Chicago-based ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Anita Mahajan, Director of International Development, MD Anderson Proton Therapy Center, director, Pediatric Radiation Oncology, co-section head of Pediatric and CNS Radiation Oncology, The University of Texas MD Anderson Cancer Center; Kevin S. Oh, MD, Department of Radiation Oncology, Massachusetts General Hospital; and Sridhar Nimmagadda, PhD, assistant professor of Radiology, Medicine and Oncology, Johns Hopkins University, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2015 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy INTRODUCTION Brain tumors are highly variable in their treatment and prognosis. Many are benign and treated conservatively, while others are malignant and require aggressive combinations of surgery, radiation and chemotherapy. -
11. the Cabibbo-Kobayashi-Maskawa Mixing Matrix
11. CKM mixing matrix 103 11. THE CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX Revised 1997 by F.J. Gilman (Carnegie-Mellon University), where ci =cosθi and si =sinθi for i =1,2,3. In the limit K. Kleinknecht and B. Renk (Johannes-Gutenberg Universit¨at θ2 = θ3 = 0, this reduces to the usual Cabibbo mixing with θ1 Mainz). identified (up to a sign) with the Cabibbo angle [2]. Several different forms of the Kobayashi-Maskawa parametrization are found in the In the Standard Model with SU(2) × U(1) as the gauge group of literature. Since all these parametrizations are referred to as “the” electroweak interactions, both the quarks and leptons are assigned to Kobayashi-Maskawa form, some care about which one is being used is be left-handed doublets and right-handed singlets. The quark mass needed when the quadrant in which δ lies is under discussion. eigenstates are not the same as the weak eigenstates, and the matrix relating these bases was defined for six quarks and given an explicit A popular approximation that emphasizes the hierarchy in the size parametrization by Kobayashi and Maskawa [1] in 1973. It generalizes of the angles, s12 s23 s13 , is due to Wolfenstein [4], where one ≡ the four-quark case, where the matrix is parametrized by a single sets λ s12 , the sine of the Cabibbo angle, and then writes the other angle, the Cabibbo angle [2]. elements in terms of powers of λ: × By convention, the mixing is often expressed in terms of a 3 3 1 − λ2/2 λAλ3(ρ−iη) − unitary matrix V operating on the charge e/3 quarks (d, s,andb): V = −λ 1 − λ2/2 Aλ2 . -
Key Words: 1. Proton: Found Inside the Nucleus of an Atom, Have a Positive Charge 2. Electron: Found in Rings Orbiting the Nucle
Nucleus development Particle Charge Mass This experiment allowed Rutherford to replace the plum pudding Electron -1 0 model with the nuclear model – the Proton +1 1 atom was mainly empty space with a small positively charged nucleus Neutron 0 1 Element All the same type of atom Alpha particle scattering Geiger and Key words: Marsden 1. Proton: Found inside the nucleus of an atom, have a positive charge Compound fired positively-charged alpha More than one type 2. Electron: Found in rings orbiting the nucleus, have a negative charge particles at gold foil. This showed of atom chemically that the mas of an atom was 3. Neutrons: Found in the nucleus of an atom, have no charge bonded together concentrated in the centre, it was 4. Nucleus: The centre of an atom, made up of protons and neutrons positively charged too 5. Mass number: The mass of the atom, made up of protons and neutrons Mixture Plum pudding 6. Atomic number: The number of protons in an atom More than one type After the electron 7. Element: All the same type of atom chemically bonded together of element or was discovered, 8. Compound: More than one type of atom chemically bonded together compound not chemically bound Thomson created the 9. Mixture: More than one type of element or compound not chemically together plum pudding model – bound together the atom was a ball of 10. Electron Shell: A ring surrounding the nucleus containing the positive charge with negative electrons electrons scattered in it Position in the Periodic Rules for electron shells: Table: 1.