© 2015 Nicholas a Johnson All Rights Reserved

Total Page:16

File Type:pdf, Size:1020Kb

© 2015 Nicholas a Johnson All Rights Reserved © 2015 NICHOLAS A JOHNSON ALL RIGHTS RESERVED PHOSPHAZENES: FROM POLYMER TO SUPERBASE A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Nicholas A. Johnson August, 2015 PHOSPHAZENES: FROM POLYMER TO SUPERBASE Nicholas A Johnson Dissertation Approved: Accepted: Advisor Department Chair Dr. Claire A. Tessier Dr. Kim C. Calvo Committee Member Interim Dean of the College Dr. Wiley J. Youngs Dr. Chand K. Midha Committee Member Dean of the Graduate School Dr. Peter L. Rinaldi Dr. Rex D. Ramsier Committee Member Date Dr. Chrys Wesdemiotis Committee Member Dr. Coleen Pugh ii ABSTRACT Polyphosphazenes represent the largest class of inorganic backbone polymers and a wide array of applications exists and continues to accumulate. Although many useful phosphazene polymer systems exist, commercial use has been limited due to irreproducibilities and high cost of the parent polymer, polydichlorophosphazene, from which most other polyphosphazenes are derived. Although the ring-opening polymerization of [PCl2N]3 has been extensively studied since the mid-1960s, the mechanism is still under much debate and the search for novel initiators to the process is ongoing. The majority of phosphazenes are derived from the chlorophosphazenes; however, the properties of the P-N backbone of phosphazenes can be greatly tuned with the addition of different side groups attached to the phosphorus atom. A large variety of applications for substituted phosphazene compounds have been developed ranging from biological materials that are water-degradable to phosphazene superbases that have been used as initiators for several organic polymerizations. The main focus of this dissertation is fundamental phosphazene chemistry ranging from investigations of the initiating steps of the ring-opening polymerization of [PCl2N]3 to interactions of phosphazene superbases with classic Lewis acids. This dissertation is divided into six chapters: introduction, interactions of phosphazene superbases with group 1 and group 12 Lewis acids, interactions of phosphazene superbases with group 13 Lewis acids, reaction of phosphazene superbases with [PCl2N]3, phosphazenes for biological applications, and conclusion. Chapter I provides iii an overall review of polyphosphazene synthesis including initiators and mechanistic discussions as well as use of phosphazene superbases as frustrated Lewis pairs and initiators in anionic ring-opening polymerizations. Chapter II contains explorations of phosphazene superbases and their interactions with group 1 and group 12 Lewis acids. Chapter III is an investigation of phosphazene superbases with Group 13 Lewis acids and a brief investigation into these complexes frustrated Lewis pair (FLP) capabilities. Chapter IV explores the interactions of phosphazene superbases with cyclic chlorophosphazene trimer ([PCl2N]3) and the investigation of a tadpole-like structure that is formed, similar to the complex that is implicated as the initiating species to ring- opening polymerization. Chapter V investigates the utility of ethylene glycol substituted [PCl2N]3 as a phosphazene-based drug delivery system including synthesis and purification of stereoisomers. Chapter VI contains the conclusions of this dissertation. iv DEDICATION This dissertation is dedicated to my grandma, Darlene Johnson. In life the two things she held in the highest regard were faith and family. Not only was she a shining example of how to live my life but also showed me the priorities of life and living that I still maintain to this day. She taught me to love life and be thankful for all that God has given me. Thank you grandma for being one of the most amazing women I have ever known. v ACKNOWLEDGEMENTS First and foremost I would like to express my deepest gratitude to my research advisor Dr. Claire A. Tessier. She have always been supportive and loving throughout my entire time at The University of Akron and a constant source of inspiration and admiration. She taught me how to be a better scientist, researcher, teacher, educator, and person. She will forever be my chemistry mom. To my co-advisor Dr. Wiley J. Youngs. Through bottles of scotch and long talks about chemistry he has always been more than willing to hear all of my ridiculous ideas with only minimal amounts of ridicule. I would not have made it as far as I have without him. I would like to thank all of my other committee members, Dr. Peter Rinaldi, Dr. Chrys Wesdemiotis and Dr. Coleen Pugh. I would also like to thank Dr. Mathew J. Panzner. Each and every day I aspirer to be more like the chemist you have become. I would like to thank of the Tessier-Youngs’ research group members including Zin-Min Tun, Dave Bowers, Joanna, Beres, Tammy Donohue, Nikki Robishaw, Pat Wagers, Mike DeBord, Marie Southerland, Kerri Shelton, Mike Stromyer and many others. A special thanks to Ben Thome and Jaosn Stiel. I would never have made it through graduate school without the two of you and I cannot begin to expresses what you both have meant to me over the past 4 years. To all of the friends I made who have supported me through my time at the University of Akron, especially Dan Jackson, Colin Wright, and Nikki Swanson. vi Finally I would like to thank my family. My amazing parents, Jeff and Terri Johnson. You have always been supportive of me through all of my ups and downs. My oldest brother Luke and his wife Krista, thank you for keeping me going through the past five years as well as letting me play and spend time with my two amazing nieces, Rory and Ellie Bellie. Thank you Noah for being there to hear me complain and vent about grad school. I look forward to the amazing chemist that you are going to become. Thank you Aaron for being there for whatever I needed from you. Whether it was someone to go to the bar with or just hang out and talk about life. You remain one of the smartest people I have ever met, never forget that. vii TABLE OF CONTENTS Page LIST OF TABLES ......................................................................................................... xiiii LIST OF FIGURES ..................................................................................................... xivv LIST OF SCHEMES .................................................................................................... xviii LIST OF EQUATIONS ................................................................................................. xviii CHAPTER I. INTRODUCTION .......................................................................................................... 1 1.1 Polyphosphsazenes, applications and importance .................................................... 1 1.2 Polydichlorophosphazene ......................................................................................... 3 1.2.1 Synthesis of [PCl2N]n ................................................................................... 3 1.2.2 Initiators of the ring-opening polymerization of [PCl2N]3............................... 6 1.2.3 Mechanism of the ring-opening polymerization of [PCl2N]3 .......................... 7 1.3 Acid-base chemistry of phosphazenes ....................................................................11 1.3.1 Brønsted-Lowry acid base chemistry of phosphazenes ............................. 11 1.3.2 Lewis acid-base chemistry of phosphazenes ............................................ 12 1.4 Phosphazene superbases .......................................................................................13 1.4.1 Phosphazene superbases as frustraed Lewis pairs ................................... 14 1.5 Phosphazenes for biological applications ................................................................15 1.6 References ..............................................................................................................17 II. GROUP 1 AND 12 LEWIS ACID ADDUCTS OF PHOSPHAZENE SUPERBASES 2.1 Introduction ..............................................................................................................23 viii 2.2 Experimental ...........................................................................................................24 2.2.1 General Procedures .................................................................................. 24 2.2.2 Materials ................................................................................................... 25 2.2.3 NMR Spectroscopy ................................................................................... 25 2.2.4 X-ray Crystallography ............................................................................... 26 2.2.4 Preparations of [LiX(P2Et)]2 (X=Cl or Br) .............................................. 27 2.2.6 Preparations of [LiX(P2tBu)]2 (X = Cl or Br) .......................................... 29 2.2.7 Preparations of [ZnCl2(P2Et)]2 .............................................................. 30 2.2.8 Preparations of [ZnCl2(P2tBu)] ............................................................... 31 2.3 Results and Discussion ...........................................................................................32 2.3.1 Crystal Strutures ....................................................................................... 33 2.3.2 NMR Specroscopy .................................................................................... 44 2.4 Conclusions .............................................................................................................52
Recommended publications
  • Acids Lewis Acids and Bases Lewis Acids Lewis Acids: H+ Cu2+ Al3+ Lewis Bases
    E5 Lewis Acids and Bases (Session 1) Acids November 5 - 11 Session one Bronsted: Acids are proton donors. • Pre-lab (p.151) due • Problem • 1st hour discussion of E4 • Compounds containing cations other than • Lab (Parts 1and 2A) H+ are acids! Session two DEMO • Lab: Parts 2B, 3 and 4 Problem: Some acids do not contain protons Lewis Acids and Bases Example: Al3+ (aq) = ≈ pH 3! Defines acid/base without using the word proton: + H H H • Cl-H + • O Cl- • • •• O H H Acid Base Base Acid . A BASE DONATES unbonded ELECTRON PAIR/S. An ACID ACCEPTS ELECTRON PAIR/S . Deodorants and acid loving plant foods contain aluminum salts Lewis Acids Lewis Bases . Electron rich species; electron pair donors. Electron deficient species ; potential electron pair acceptors. Lewis acids: H+ Cu2+ Al3+ “I’m deficient!” Ammonia hydroxide ion water__ (ammine) (hydroxo) (aquo) Acid 1 Lewis Acid-Base Reactions Lewis Acid-Base Reactions Example Metal ion + BONDED H H H + • to water H + • O O • • •• molecules H H Metal ion Acid + Base Complex ion surrounded by water . The acid reacts with the base by bonding to one molecules or more available electron pairs on the base. The acid-base bond is coordinate covalent. The product is a complex or complex ion Lewis Acid-Base Reaction Products Lewis Acid-Base Reaction Products Net Reaction Examples Net Reaction Examples 2+ 2+ + + Pb + 4 H2O [Pb(H2O)4] H + H2O [H(H2O)] Lewis acid Lewis base Tetra aquo lead ion Lewis acid Lewis base Hydronium ion 2+ 2+ 2+ 2+ Ni + 6 H2O [Ni(H2O)6] Cu + 4 H2O [Cu(H2O)4] Lewis acid Lewis base Hexa aquo nickel ion Lewis acid Lewis base Tetra aquo copper(II)ion DEMO DEMO Metal Aquo Complex Ions Part 1.
    [Show full text]
  • Lesson 21: Acids & Bases
    Lesson 21: Acids & Bases - Far From Basic Lesson Objectives: • Students will identify acids and bases by the Lewis, Bronsted-Lowry, and Arrhenius models. • Students will calculate the pH of given solutions. Getting Curious You’ve probably heard of pH before. Many personal hygiene products make claims about pH that are sometimes based on true science, but frequently are not. pH is the measurement of [H+] ion concentration in any solution. Generally, it can tell us about the acidity or alkaline (basicness) of a solution. Click on the CK-12 PLIX Interactive below for an introduction to acids, bases, and pH, and then answer the questions below. Directions: Log into CK-12 as follows: Username - your Whitmore School Username Password - whitmore2018 Questions: Copy and paste questions 1-3 in the Submit Box at the bottom of this page, and answer the questions before going any further in the lesson: 1. After dragging the small white circles (in this simulation, the indicator papers) onto each substance, what do you observe about the pH of each substance? 2. If you were to taste each substance (highly inadvisable in the chemistry laboratory!), how would you imagine they would taste? 3. Of the three substances, which would you characterize as acid? Which as basic? Which as neutral? Use the observed pH levels to support your hypotheses. Chemistry Time Properties of Acids and Bases Acids and bases are versatile and useful materials in many chemical reactions. Some properties that are common to aqueous solutions of acids and bases are listed in the table below. Acids Bases conduct electricity in solution conduct electricity in solution turn blue litmus paper red turn red litmus paper blue have a sour taste have a slippery feeling react with acids to create a neutral react with bases to create a neutral solution solution react with active metals to produce hydrogen gas Note: Litmus paper is a type of treated paper that changes color based on the acidity of the solution it comes in contact with.
    [Show full text]
  • Acids and Bases
    self study Most of this is probably background from a prior chemistry course; some near the end is GG325 review Aqueous Inorganic Geochemistry of Natural Waters Three important topics: 1. Acids, bases and the aqueous CO 2 system 2. Behavior of ions in aqueous solution 3. Quantifying aqueous solubility and total dissolved solids (TDS) Pease read Manahan chapter 3 and review chapter 28 (6 th Ed) for next week GG425 Wk2, S2016 Acids and Bases GG425 Wk2, S2016 1 1. Two Types of Acids and Bases: a. Brönstead acids and bases contain H + and OH - HCl ↔ H + + + Cl- (acid) NaOH ↔ Na + + OH - (base). + - water is acid and base simultaneously, H 2O ↔ H + OH . pure water and acid neutral aqueous solutions have equal amounts of H + and OH -. b. Lewis acids and bases Brönstead acids can be thought of as electron deficient ions and bases as electron excessive ions , which provides a different perspective on acidity/basisity that we can extend to other (non protic and non hydroxyl) compounds. We call this the Lewis acid/base concept. GG425 Wk2, S2016 Brönstead acidity: Kw is the equilibrium constant for the dissociation of water. + - H2O ↔ H + OH + - -14 Kw = [H ][OH ] = 10 at 25 EC Kw has a slight temperature dependence: Temp ( EC) Kw 0 10 -14.94 less dissociated 25 10 -14 60 10 -13.02 more dissociated GG425 Wk2, S2016 2 Brönstead acidity: + - H2O ↔ H + OH + - Kw = [H ][OH ] An acid neutral solution always has [H +] = [OH -]. Setting [H +] = x, yields x 2= 10 -14 x = 10 -7 = moles of H + in this solution.
    [Show full text]
  • General Chemistry/Properties and Theories of Acids and Bases 1 General Chemistry/Properties and Theories of Acids and Bases
    General Chemistry/Properties and Theories of Acids and Bases 1 General Chemistry/Properties and Theories of Acids and Bases Acid-Base Reaction Theories Acids and bases are everywhere. Some foods contain acid, like the citric acid in lemons and the lactic acid in dairy. Cleaning products like bleach and ammonia are bases. Chemicals that are acidic or basic are an important part of chemistry. Helpful Hint! You may need to refresh your memory on naming acids. Several different theories explain what composes an acid and a base. The first scientific definition of an acid was proposed by the French chemist Antoine Lavoisier in the eighteenth century. He proposed that acids contained oxygen, although he did not know the dual composition of acids such as hydrochloric acid (HCl). Over the years, much more accurate definitions of acids and bases have been created. Arrhenius Theory The Swedish chemist Svante Arrhenius published his theory of acids and bases in 1887. It can be simply explained by these two points: Arrhenius Acids and Bases 1. An acid is a substance which dissociates in water to produce one or more hydrogen ions (H+). 2. A base is a substance which dissociates in water to produce one or more hydroxide ions (OH-). Based on this definition, you can see that Arrhenius acids must be soluble in water. Arrhenius acid-base reactions can be summarized with three generic equations: Svante Arrhenius General Chemistry/Properties and Theories of Acids and Bases 2 An acid will dissociate in water producing hydrogen ions. A base (usually containing a metal) will dissociate in water to product hydroxide ions.
    [Show full text]
  • Acids and Bases
    Acids and Bases 362 2020 Lecture 15 Lewis approach to acid/base interactions Gilbert Newton Lewis 1875 – 1946 Lewis Concept Lewis, 1930s: Base is a donor of an electron pair. Acid is an acceptor of an electron pair. For a species to function as a Lewis acid, it needs to have an accessible empty orbital. For a species to function as a Lewis base it needs to have an accessible electron pair. + + 6+ Examples of Lewis acids: BF3, AlCl3, SbF5, Na , H , S , etc. - Examples of Lewis bases: F , H2O, Me3N, C2H4, Xe, etc. Lewis Continued A more general view also classifies compounds that can generate a species with an empty orbital as Lewis acids. Then we can include B2H6, Al2Cl6, HCl etc. Since H+ and any cation from a solvent autodissociation is a Lewis acid, and anything that can add H+ or a solvent- derived cation is a Lewis base, the Lewis acid concept effectively includes the ones discussed previously. Lewis Continued Acid-base reactions under the Lewis model are the reactions of forming adducts between Lewis acids and bases. BF3 + Me3N F3B-NMe3 HF + F- FHF- - 2- SiF4 + 2F SiF6 - - CO2 + OH HCO3 TiCl4 + 2Et2O TiCl4(OEt2)2 In fact, any chemical compound can be mentally disassembled into Lewis acids and bases: 6+ - S + 6F SF6 4+ - - + - C + 3H + NH2 CH3 + NH2 Lewis Acids & Bases Other good examples involve metal ions. ••• •O—H 2+ •• 2+ Co • O—H Co • H ACID BASE H 2+ [Co(H2O)6] Empty d2sp3 hybrids on Cobalt account for the Lewis Acid/Base interactions Lewis Acids & Bases The combination of metal ions (Lewis acids) with Lewis bases such as H2O and NH3 ------> COMPLEX IONS All metal ions form complex ions with water —and are of n+ the type [M(H2O)x] where x = 4 and 6.
    [Show full text]
  • Acids and Bases—Chapter 4 Shriver Et Al
    Acids and Bases—Chapter 4 Shriver et al. MIT 3091 Video Lecture: Acids and Bases on You Tube http://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc- introduction-to-solid-state-chemistry-fall-2010/aqueous-solutions/26- acids-and-bases/ Acid-Base concepts Gilbert Newton Lewis 1875 – 1946 Lewis Concept Lewis, 1930s: Base is a donor of an electron pair. Acid is an acceptor of an electron pair. For a species to function as a Lewis acid, it needs to have an accessible empty orbital. For a species to function as a Lewis base it needs to have an accessible electron pair. + + 6+ Examples of Lewis acids: BF3, AlCl3, SbF5, Na , H , S , etc. - Examples of Lewis bases: F , H2O, Me3N, C2H4, Xe, etc. Lewis Concept—Connection to MO Theory Lewis, 1930s: Base is a donor of an electron pair. Acid is an acceptor of an electron pair. For a species to function as a Lewis acid, it needs to have an accessible empty orbital. For a species to function as a Lewis base it needs to have an accessible electron pair. Examples of Lewis acids: BF3, AlCl3, + + 6+ SbF5, Na , H , S , etc. - Examples of Lewis bases: F , H2O, Me3N, C2H4, Xe, etc. Lewis Continued A more general view also classifies compounds that can generate a species with an empty orbital as Lewis acids. Then we can include B2H6, Al2Cl6, HCl etc. Since H+ and any cation from a solvent autodissociation is a Lewis acid, and anything that can add H+ or a solvent- derived cation is a Lewis base, the Lewis acid concept effectively includes the ones discussed previously.
    [Show full text]
  • Chapter 14: Acids,Bases and Salts ❖Many Household Substances, Including Cleaning Solutions and Food/Beverages Sections 14.1 – 14.5 That We Consume, Are Acids Or Bases
    Why study acids & bases? Chapter 14: Acids,Bases and Salts ❖Many household substances, including cleaning solutions and food/beverages Sections 14.1 – 14.5 that we consume, are acids or bases. CHM152 GCC ❖ In the environment, the pH of rain, water and soil can also have significant effects. ❖Acid – base reactions occurring in our body are essential for life. They are also OpenSTAX: Chemistry involved in many industrial processes. 1 2 Acid vs. Base Characteristics Acid-Base Models Acids Bases CHM 150/151 taught Arrhenius theory ▪ Taste sour ❑ Taste bitter, chalky Acids produce hydrogen ions in water ▪ Corrode most metals ❑ Feel soapy, slippery ▪ HA (aq) → H+ (aq) + A- (aq) ▪ Turn litmus paper red ❑ Turn litmus paper blue Bases produce hydroxide ions in water ▪ MOH (aq) M+ (aq) + OH- (aq) ▪ Have low pH’s ❑ Have high pH’s → ▪ E.g. vinegar, lemon juice, ❑ E.g. milk of magnesia, CHM 152 uses Brønsted-Lowry theory gastric juice, soft drinks bleach, ammonia, drano Bronsted Acid: Substance that can donate H+ Acid loses H+ Bronsted Base: Substance that can accept H+ Base gains H+ 3 4 Bronsted-Lowry Reactions involve the Bronsted Acids and Bases transfer of 1 H+ A conjugate acid is formed when a Brønsted A conjugate base is formed when a Brønsted base accepts a proton. acid loses a proton. Gains a proton Loses a proton Gains a proton Loses a proton + – + – NH3(aq) + H2O(l) ⇌ NH4 (aq) + OH (aq) HCl(aq) + H2O(l) ⇌ H3O (aq) + Cl (aq) base acid conjugate conjugate acid base conjugate conjugate acid base acid base conjugate pair: differ by 1 H+ ion Note: Water is amphoteric – it can act as an acid or a base depending on what its reacting with.
    [Show full text]
  • Acid-Base Chemistry Gas-Phase Acid-Base Reactions the Most
    5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 6 Apr 11: Acid-Base Chemistry Gas-Phase Acid-Base Reactions The most straightforward acid-base reaction occurs by attack of H+ on an atom or + molecule (B) in the gas phase. Consider the attack of H on H2 to produce the + simplest polyatomic molecule, H3 (which has been detected by mass spectrometry in electrical discharges of H2 gas). H+ attacks the HOMO of the base B for any protonation in the gas phase. For the example above, the bonding situation is described as follows: 1 + The difference in the bond dissociation energies of H2 and H3 gives the energy for + H association to H2, + + + –1 H3 → 2H + H ∆H1 = BDE(H3 ) = 203 kcal mol –1 H2 → 2H ∆H2 = BDE(H2) = 103 kcal mol Thus the energy for protonation is + + 2H + H → H3 H2 → 2H + + –1 H2 + H → H3 ∆Hassoc = ∆H2 – ∆H1 = –100 kcal mol and therefore the protonation of H2 is comparable to its bond strength. The proton affinity (PA) is the energy released upon attack of H+ on a species B in the gas phase, + + B + H → BH PA = –∆Hassoc by convention, a positive value is exothermic Can divide the protonation reaction in to two hypothetical reactions + + B + H → B + H ∆H1 = IE(B) – IE(H) + + + B + H → BH ∆H2 = –BDE(BH ) + + + B + H → BH ∆Hassoc = IE(B) – IE(H) – BDE(BH ) PA = IE(H) – IE(B) + BDE(BH+) PA = 13.598 eV – IE(B) + BDE(BH+) Protonation of B is therefore favored for small IE(B) … i.e., for small ionization energies of electrons in HOMO (or in other terms, electrons in higher energy HOMO are more easily attacked by the proton) and large bond dissociation energies.
    [Show full text]
  • Lewis Acids and Bases
    Lewis Acids and Bases Tro Chapter 16 – Acids and Bases Section 16.11 – Lewis Acids and Bases Lewis Acid–Base Theory • Lewis acid–base theory focuses on transferring an electron pair. • Lewis acid—lone pair acceptor • Lewis base—lone pair donor • Does not require H+ Lewis Acids • They are electron deficient, either from being attached to electronegative atom(s) or not having an octet. • They must have an empty orbital willing to accept the electron pair. • H+ has empty 1s orbital. • B in BF3 has empty 2p orbital and an incomplete octet. • Many small, highly charged metal cations have empty orbitals that they can use to accept electrons. • Atoms that are attached to highly electronegative atoms and have multiple bonds can be Lewis acids. Lewis Bases • The Lewis base has electrons it is willing to give away to or share with another atom. • The Lewis base must have a lone pair of electrons on it that it can donate. • Anions are better Lewis bases than neutral atoms or molecules. • N: < N:− • Generally, the more electronegative an atom, the less willing it is to be a Lewis base. • O: < S: Lewis Acid–Base Reactions • The base donates a pair of electrons to the acid. • It generally results in the formation of a covalent bond. H3N: + BF3 H3N─BF3 • The product that forms is called an adduct. • Arrhenius and Brønsted–Lowry acid–base reactions are also Lewis reactions. Lewis Acid / Base Reactions Examples of Lewis Acid–Base Reactions Examples of Lewis Acid–Base Reactions junk Metal Cations as Weak Acids 3+ 2+ + Al(H2O)6 (aq) + H2O(l) Al(H2O)5(OH) (aq) + H3O (aq) Tro, Chemistry: A Molecular Approach 10.
    [Show full text]
  • Conjugate Acid Base Pairs • Conjugate Base: Formed from an Acid When It Donates a Proton to a Base
    Acids and Bases Dr. Sapna Gupta Arrows in Organic Chemistry synthesis (yield) equilibrium resonance retrosynthesis (backward) transfer of two electrons transfer of one electron Dr. Sapna Gupta/Acids and Bases 2 Acids and Bases • A Brønsted acid donates a hydrogen cation (H+) • A Brønsted base accepts the H+ • “proton” is a synonym for H+ - loss of an electron from H leaving the bare nucleus— a proton • Full headed arrows indicate transfer of electrons. Example Dr. Sapna Gupta/Acids and Bases 3 Conjugate Acid Base Pairs • Conjugate base: formed from an acid when it donates a proton to a base. A strong acid gives a weak conjugate base and vice versa. • Conjugate acid: formed from a base when it accepts a proton from an acid. A strong base gives a weak conjugate acid and vice versa. conjugate acid-base pair conjugate acid-base pair - + HCl( aq) + H2 O( l) Cl ( aq) + H3 O ( aq) Hydrogen Water Chloride Hydronium chloride ion ion (acid) (base) (conjugate (conjugate base of HCl) acid of H 2O) conjugate acid-base pair conjugate acid-base pair - + CH3 COOH + NH3 CH3 COO + NH4 Acetic acid Ammonia Acetate Ammonium ion ion (acid) (base) (conjugate base (conjugate acid Dr. Sapna Gupta/Acidsacetic acid)and Bases of ammonia) 4 Examples of Acids and Bases • There are inorganic (mineral) and organic acids and bases. Dr. Sapna Gupta/Acids and Bases 5 Solved Problems 1) What is conjugate acid of NH3? 2) What are the conjugate bases in the reaction below? a) NH2 + 2 2 b) NH2 CO3 + HSO4 HCO3 + SO4 - c) NH2 d) NH4 a) HCO3 and HSO4 + 2 e) NH4 b) HSO4 and CO3 2 c) CO3 and OH 2 d) SO4 and HSO4 2 2 e) CO3 and SO4 3) For the reaction below which two 4) A strong acid leads to a substances which are both acids a) weak conjugate acid + + CH3NH3 + H2O CH3NH2 + H3O b) strong conjugate base c) weak conjugate base + a) H2O and H3O d) strong base + b) CH3NH3 and H2O e) pure water + c) CH3NH3 and CH3NH2 + + d) CH3NH3 and H3O e) CH3NH2 and H2O Dr.
    [Show full text]
  • Acid Base Concepts
    Page 1 Acid Base Concepts The Swedish chemist, Svante Arrhenius, framed the first successful concept of acids and bases. He defined acids and bases in terms of their effect on water. According to Arrhenius, acids are substances that increase the concentration of H+ ions in aqueous solution, and bases increase the concentration of OH- ions in aqueous solution. But many reactions that have characteristics of acid-base reactions in aqueous solution occur in other solvents or no solvent at all. The Bronsted-Lowry and Lewis concepts of acids and bases apply to nonaqueous as well as aqueous solutions and also enlarge on the Arrhenius concept. Arrhenius concept acids: Hydrogen ion (H+) donors H2O + - HCl(g) H (aq) + Cl (aq) Bases: Hydroxide ion (OH-) donors. H2O + - NaOH(s) Na (aq) + OH (aq) Hydronium Ion In reality, H+ ions do not float around in aqueous solution. Instead, they always attach themselves to a water + molecule forming the hydronium ion, H3O . So a more accurate representation of the dissociation of HCl above would be: + - HCl + H2O H3O + Cl For simplicity's sake, many texts will leave the water out of these dissociation equations assuming that the + + student knows that H (aq) really means H3O (aq). + - HCl H (aq) + Cl (aq) In the Arrhenius concept, when an acid and a base are mixed, the result is water (formed from the H+ and the OH-) and a "salt" (composed of the leftover cation of the base and the leftover anion of the acid). For example HCl + NaOH H2O + NaCl acid base water "salt" This type of neutralization reaction occurs with any Arrhenius acid and base.
    [Show full text]
  • GRADES 6-12 DISTANCE LEARNING School Name Aledo High School
    GRADES 6-12 DISTANCE LEARNING School Name Aledo High School Grade Level Chemistry - Mrs. Henyon Week of 4/20/20, 4/27/20, 5/4/20 *All assigned work due by Sunday at midnight on 5/10/2020 (SUBJECT AREA) Estimated Time to Complete: 6 hours Resources Needed: Computer (if applicable), Scientific calculator, Journal, pen/pencil, Color pencils Lesson Delivery (What do we want you to learn?): 1. Define acids and bases and distinguish between Arrhenius and Bronsted-Lowrey definitions. 2. Predict products in acid-base reactions that form water. 3. Define pH. 4. Calculate the pH of a solution using the hydrogen ion concentration. Engage and Practice (What do we want you to do?): Digital Students: 1. Watch Video #1 Acids and Bases titled “How to Name Acids”. Due 4/26/20 2. Complete the Classifying Map and Critical Writing in journal. Upload picture of assignments to Google Classroom Due 4/26/20 *these are found in your NOTES. 3. Watch Video #2 Acids and Bases titled “Acid and Base Definitions”. Due 4/26/20 4. Complete HW #1 in your journal. Upload a picture of answers to Google Classroom. Due 5/3/20 5. Watch Video #3 titled “Self-Ionization of Water and Calculating pH”. Due 5/3/20 6. Complete the pH Worksheet, questions #1-8. Upload a picture of your answers to Google Classroom. Due 5/10/20 7. Complete the Acids and Bases Lab using the pHet simulator. Upload a picture of your work or a saved document to Google Classroom. Due 5/10/20 8.
    [Show full text]