© 2015

NICHOLAS A JOHNSON

ALL RIGHTS RESERVED PHOSPHAZENES: FROM POLYMER TO

A Dissertation

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Nicholas A. Johnson

August, 2015

PHOSPHAZENES: FROM POLYMER TO SUPERBASE

Nicholas A Johnson

Dissertation

Approved: Accepted:

Advisor Department Chair Dr. Claire A. Tessier Dr. Kim C. Calvo

Committee Member Interim Dean of the College Dr. Wiley J. Youngs Dr. Chand K. Midha

Committee Member Dean of the Graduate School Dr. Peter L. Rinaldi Dr. Rex D. Ramsier

Committee Member Date Dr. Chrys Wesdemiotis

Committee Member Dr. Coleen Pugh

ii

ABSTRACT

Polyphosphazenes represent the largest class of inorganic backbone polymers and a wide array of applications exists and continues to accumulate. Although many useful phosphazene polymer systems exist, commercial use has been limited due to irreproducibilities and high cost of the parent polymer, polydichlorophosphazene, from which most other polyphosphazenes are derived. Although the ring-opening polymerization of [PCl2N]3 has been extensively studied since the mid-1960s, the mechanism is still under much debate and the search for novel initiators to the process is ongoing.

The majority of phosphazenes are derived from the chlorophosphazenes; however, the properties of the P-N backbone of phosphazenes can be greatly tuned with the addition of different side groups attached to the phosphorus . A large variety of applications for substituted phosphazene compounds have been developed ranging from biological materials that are water-degradable to phosphazene that have been used as initiators for several organic polymerizations.

The main focus of this dissertation is fundamental phosphazene ranging from investigations of the initiating steps of the ring-opening polymerization of

[PCl2N]3 to interactions of phosphazene superbases with classic Lewis . This dissertation is divided into six chapters: introduction, interactions of phosphazene superbases with group 1 and group 12 Lewis acids, interactions of phosphazene superbases with group 13 Lewis acids, reaction of phosphazene superbases with

[PCl2N]3, phosphazenes for biological applications, and conclusion. Chapter I provides iii an overall review of polyphosphazene synthesis including initiators and mechanistic discussions as well as use of phosphazene superbases as frustrated Lewis pairs and initiators in anionic ring-opening polymerizations. Chapter II contains explorations of phosphazene superbases and their interactions with group 1 and group 12 Lewis acids.

Chapter III is an investigation of phosphazene superbases with Group 13 Lewis acids and a brief investigation into these complexes frustrated Lewis pair (FLP) capabilities.

Chapter IV explores the interactions of phosphazene superbases with cyclic chlorophosphazene trimer ([PCl2N]3) and the investigation of a tadpole-like structure that is formed, similar to the complex that is implicated as the initiating species to ring- opening polymerization. Chapter V investigates the utility of glycol substituted

[PCl2N]3 as a phosphazene-based drug delivery system including synthesis and purification of stereoisomers. Chapter VI contains the conclusions of this dissertation.

iv DEDICATION

This dissertation is dedicated to my grandma, Darlene Johnson. In life the two things she held in the highest regard were faith and family. Not only was she a shining example of how to live my life but also showed me the priorities of life and living that I still maintain to this day. She taught me to love life and be thankful for all that God has given me. Thank you grandma for being one of the most amazing women I have ever known.

v ACKNOWLEDGEMENTS

First and foremost I would like to express my deepest gratitude to my research advisor Dr. Claire A. Tessier. She have always been supportive and loving throughout my entire time at The University of Akron and a constant source of inspiration and admiration. She taught me how to be a better scientist, researcher, teacher, educator, and person. She will forever be my chemistry mom.

To my co-advisor Dr. Wiley J. Youngs. Through bottles of scotch and long talks about chemistry he has always been more than willing to hear all of my ridiculous ideas with only minimal amounts of ridicule. I would not have made it as far as I have without him.

I would like to thank all of my other committee members, Dr. Peter Rinaldi, Dr.

Chrys Wesdemiotis and Dr. Coleen Pugh. I would also like to thank Dr. Mathew J.

Panzner. Each and every day I aspirer to be more like the chemist you have become.

I would like to thank of the Tessier-Youngs’ research group members including

Zin-Min Tun, Dave Bowers, Joanna, Beres, Tammy Donohue, Nikki Robishaw, Pat

Wagers, Mike DeBord, Marie Southerland, Kerri Shelton, Mike Stromyer and many others. A special thanks to Ben Thome and Jaosn Stiel. I would never have made it through graduate school without the two of you and I cannot begin to expresses what you both have meant to me over the past 4 years. To all of the friends I made who have supported me through my time at the University of Akron, especially Dan Jackson, Colin

Wright, and Nikki Swanson.

vi Finally I would like to thank my family. My amazing parents, Jeff and Terri

Johnson. You have always been supportive of me through all of my ups and downs. My oldest brother Luke and his wife Krista, thank you for keeping me going through the past five years as well as letting me play and spend time with my two amazing nieces, Rory and Ellie Bellie. Thank you Noah for being there to hear me complain and vent about grad school. I look forward to the amazing chemist that you are going to become.

Thank you Aaron for being there for whatever I needed from you. Whether it was someone to go to the bar with or just hang out and talk about life. You remain one of the smartest people I have ever met, never forget that.

vii

TABLE OF CONTENTS Page

LIST OF TABLES ...... xiiii

LIST OF FIGURES ...... xivv

LIST OF SCHEMES ...... xviii

LIST OF EQUATIONS ...... xviii

CHAPTER

I. INTRODUCTION ...... 1

1.1 Polyphosphsazenes, applications and importance ...... 1

1.2 Polydichlorophosphazene ...... 3

1.2.1 Synthesis of [PCl2N]n ...... 3

1.2.2 Initiators of the ring-opening polymerization of [PCl2N]3...... 6

1.2.3 Mechanism of the ring-opening polymerization of [PCl2N]3 ...... 7

1.3 - chemistry of phosphazenes ...... 11

1.3.1 Brønsted-Lowry acid base chemistry of phosphazenes ...... 11

1.3.2 Lewis acid-base chemistry of phosphazenes ...... 12

1.4 Phosphazene superbases ...... 13

1.4.1 Phosphazene superbases as frustraed Lewis pairs ...... 14

1.5 Phosphazenes for biological applications ...... 15

1.6 References ...... 17

II. GROUP 1 AND 12 LEWIS ACID ADDUCTS OF PHOSPHAZENE SUPERBASES

2.1 Introduction ...... 23

viii 2.2 Experimental ...... 24

2.2.1 General Procedures ...... 24

2.2.2 Materials ...... 25

2.2.3 NMR Spectroscopy ...... 25

2.2.4 X-ray Crystallography ...... 26

2.2.4 Preparations of [LiX(P2Et)]2 (X=Cl or Br) ...... 27

2.2.6 Preparations of [LiX(P2tBu)]2 (X = Cl or Br) ...... 29

2.2.7 Preparations of [ZnCl2(P2Et)]2 ...... 30

2.2.8 Preparations of [ZnCl2(P2tBu)] ...... 31

2.3 Results and Discussion ...... 32

2.3.1 Crystal Strutures ...... 33

2.3.2 NMR Specroscopy ...... 44

2.4 Conclusions ...... 52

2.5 References ...... 52

III. GROUP 13 LEWIS ACID ADDUCTS OF PHOSPHAZENE SUPERBASES

3.1 Introduction ...... 54

3.2 Experimental ...... 55

3.2.1 General Experimental Methods ...... 55

3.2.2 Materials ...... 55

3.2.3 NMR Spectroscopy ...... 56

3.2.4 X-ray Crystallography...... 56

3.2.5 Preperations of [MCl3(P2Et)] (M = Al, Ga or In) ...... 57

3.2.6 Preparations of [MCl3(P2tBu)] (M = Al, Ga or In) ...... 59

3.2.7 Attempted activation of H2(g) utilizing MX3•P2tBu complexes ...... 61

ix 3.3 Results and Discussion ...... 61

3.3.1 X-ray Crystal Structures ...... 62

3.3.2 NMR Spectroscopy ...... 67

3.4 Conclusions ...... 70

3.5 References ...... 71

IV. INTERACTIONS OF PHOSPHAZENE SUPERBASES WITH PHOSPHONITRILIC CHLORIDE ...... 73

4.1 Introduction ...... 73

4.2 Experimental ...... 74

4.2.1 General Procedures ...... 74

4.2.2 Materials ...... 75

4.2.3 NMR Spectroscopy ...... 75

4.2.4 X-Ray Crystallography ...... 76

4.2.5 ESI-MS ...... 77

4.2.6 Preparations of [(P3Cl5N3)(P2N2(NMe2)5] ...... 77

4.2.7 Preparations of [(P3Cl5N3)(P2N2(NMe2)5]•HCl ...... 78

4.2.7 Isolation of byproduct of P2Et and [PCl2N]3 reaction ...... 79

4.3 Results and Discussion ...... 79

4.4 Conclusions ...... 90

4.5 References ...... 90

V. PHOSPHAZENES IN BIOLOGICAL APPLICATIONS ...... 92

5.1 Introduction ...... 92

5.2 Experimental ...... 95

5.2.1 General Experimental Methods ...... 95

5.2.2 Materials ...... 96

x 5.2.3 NMR Spectroscopy ...... 96

5.2.4 Tetraethyleneglycol monomethyl (TeEGME-H) substitution of [PCl2N]3 ...... 96

5.2.5 Chromatographic isolation of 2,4,6-tri-TeEGME triphosphazene ...... 97

5.2.6 Synthesis of 2,4,6-triphenoxy-2,4,6-tri-TeEGME triphosphazene ...... 97

5.3 Results and Discussion ...... 99

5.3.1. Synthesis and spectral characterization of cis-2,4,6 TeEGME-trimer ...... 99

5.3.2. Synthesis and spectral characterization of phenoxy-substituted tris- TeEGME-trimer ...... 104

5.4. Conclusions ...... 106

5.4 References ...... 106

VI. CONCLUSIONS ...... 108

APPENDICES ......

APPENDIX A SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [LiCl(P2Et)]2 ...... 109

APPENDIX B SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [LiBr(P2Et)]2 ...... 119

APPENDIX C SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [ZnCl2(P2Et)]2 ...... 135

APPENDIX D SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [LiCl(P2tBu)]2 ...... 147

APPENDIX E SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [LiBr(P2tBu)]2 ...... 165

APPENDIX F SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [ZnCl2(P2tBu)] ...... 175

APPENDIX G SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [(P2Et)HBr] ...... 187

APPENDIX H SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [(P2tBu)HBr] ...... 196

APPENDIX I SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [GaCl3(P2Et)] ...... 202 xi APPENDIX J SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [InCl3(P2Et)] ...... 213

APPENDIX K SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [AlCl3(P2tBu)] ...... 224

APPENDIX J SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [GaCl3(P2tBu)] ...... 236

APPENDIX K SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [(P3Cl5N3)(P2N2(NMe2)5] ...... 246

APPENDIX L SUPPLEMENTARY MATERIAL FOR THE X-RAY CRYSTAL STRUCTURE OF [(P3Cl5N3)(P2N2(NMe2)5]∙HCl ...... 254

xii LIST OF TABLES

Table Page

o 2.1. Bond distances (Å) and angles ( ) of [LiCl(P2Et)]2, [LiBr(P2Et)]2 and [ZnCl2(P2Et)]2...... 41

o 2.2. Bond distances (Å) and angles ( ) of [LiCl(P2tBu)]2, [LiBr(P2tBu)]2 and [ZnCl2(P2tBu)]...... 42

o 3.1. Selected bond distances (Å) and angles ( ) in AlCl3•P2tBu, GaCl3•P2Et, GaCl3•P2tBu and InCl3•P2Et...... 58

4.1. Selected bond distances (Å) and angles (o) 4.3 and 4.3•HCl...... 72

xiii LIST OF FIGURES

Figure Page

1.1. General formula of polyphosphazenes ...... 1

1.2. Substitution of [PCl2N]3 to give phosphazene polymers with specific properties and applications...... 2

1.3. Proposed initiating species to the ROP of [PCl2N]3...... 13

1.4. Selected commercially available phosphazene superbases and their respective pKa...... 14

2.1. P2 Phosphazene superbases P2Et and P2tBu...... 24

2.2. Thermal ellipsoid plot of the crystal structure of [LiCl(P2Et)]2 drawn at the 50% probability level. Hydrogen omitted for clarity. Short contact of Li(1)- C(10) and Li(1A)-C(10A) observed but not shown ...... 36

2.3 Thermal ellipsoid plot of the crystal structure of [LiBr(P2Et)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity. Short contact of Li(1)- C(10) observed but not shown ...... 37

2.4. Thermal ellipsoid plot for the crytal strutre of [LiCl(P2tBu)]2 drawn at 50% propbability. Hydrogen stoms omitted for clarity ...... 37

2.5. Thermal ellipsoid plot of the crystal structure of [LiBr(P2tBu)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity...... 38

2.6. Thermal ellipsoid plot of the crystal structure of [ZnCl2(P2Et)]2 drawn at 50% probability level. Hydrogen atoms omitted for clarity...... 38

2.7. Thermal ellipsoid plot of the crystal structure of [ZnCl2(P2tBu)] drawn at 50% probability level. Hydrogen atoms omitted for clarity...... 39

2.8. Thermal ellipsoid plot of the crystal structure of [(P2tBu)HBr] drawn at 50% probability level...... 39

2.9. Thermal ellipsoid plot of the crystal structure of [(P2Et)HBr] drawn at 50% probability level...... 40

xiv 31 2.10. P NMR spectra of [ZnCl2(P2Et)]2, [LiBr(P2Et)]2, [LiCl(P2Et)]2 and P2Et in THF-d8. An asterisk (*) marks resonances of protonated impurities...... 43

31 2.11. VT P NMR spectra of [LiCl(P2Et)] in -d8 taken between -60 and 20 oC. The doublets at 23.2 ppm and 11.5 ppm are due to a protonic + impurity, H[P2Et] and the resonances are denoted with an asterisk (*)...... 45

31 2.12. VT P NMR spectra of [LiBr(P2Et)] in tetrahydrofuran-d8 taken between -60 and 20 oC. The doublets at 22.2 ppm and 10.7 ppm are due to a protonic + impurity, H[P2Et] and the resonances are denoted with an asterisk (*)...... 45

7 2.13. VT Li NMR spectra of [LiCl(P2Et)] in tetrahydrofuran-d8 between -60 and 20 oC. The line width at half height of each resonance is also given ...... 47

7 2.14. VT Li NMR spectra of [LiBr(P2Et)] in tetrahydrofuran-d8 between -60 and 20 oC. The line width at half height of each resonance is also given ...... 48

31 2.15. The P NMR spectra of [ZnCl2(P2tBu)]2, [LiBr(P2tBu)]2, [LiCl(P2tBu)]2 and P2tBu in tetrahydrofuran -d8. An asterix (*) marks resonances of protonated impurities H[P2tBu]+. Hash mark (#) represents artifact of the instrument...... 49

31 2.16. VT P NMR spectra of [LiBr(P2tBu)]2 in tetrahydrofuran-d8 taken between - 60 and 20 oC. The doublets at 17.2 ppm and 13.2 ppm are due to a protonic impurity, H[P2tBu]+, the resonances are denoted with an asterisk (*)...... 50

7 2.17 VT Li NMR spectra of [LiBr(P2tBu)] in tetrahydrofuran-d8 between -60 and 20 oC. The line width at half hieght of each resonace is also given...... 50

3.1. Thermal ellipsoid plot for crystal structures of (a) [GaCl3(P2Et)] and (b) [InCl3(P2Et)] drawn at the 50% probability level. Hydrogen atoms omitted for clarity...... 64

3.2. Thermal ellipsoid plot for crystal structures of (a) [AlCl3(P2tBu)] and (b) [GaCl3(P2tBu)] drawn at the 50% probability level. Hydrogen atoms omitted for clarity...... 65

31 3.3. P NMR spectra [InCl3(P2Et)], [GaCl3(P2Et)] , [AlCl3(P2Et)]and P2Et in THF- d8...... 67

31 3.4. P NMR spectra [InCl3(P2tBu)], [GaCl3(P2tBu)] , [AlCl3(P2tBu)]and P2tBu in THF-d8...... 68

3.5. Possible equilibria of intramolecular conversion of Group 13 metal in [MCl3(P2Et)] between four-coordinate and five-coordinate...... 68

31 3.6. P NMR spectra [InCl3(P2tBu)], [GaCl3(P2tBu)] , [AlCl3(P2tBu)] and P2tBu in THF-d8. Anomaly seen at 0.0 ppm is an artifact of the instrument, indicated by an asterisk (*)...... 69

xv - 4.1. Formation of [P3Cl5N3O] via treatment of [PCl2N]3 with P1tBu phosphazene superbase. Equation adapted from Heston, A. J., Lewis and Brønsted Acid Adducts of Hexachlorotriphosphazene and Carboxylate Derivatives of Disilanes. PhD Dissertation...... 81

31 4.2. P NMR spectrum for compound 4.1. Resonances denoted with a hash (#) are assigned to H[P Et]+. Resonances assigned with an asterisk (*) are assigned 2 - to [P3Cl5N3O] , proposed in equation 4.2...... 83

4.3. Thermal ellipsoid plot for crystal structures of (a) structure 4.3 and (b) structure 4.3•HCl drawn at the 50% probability level...... 84

4.4. The ESI-MS in the positive mode for selected isotope pattern for 4.3 reaction mixture. (a) experimental isotope distribution (b) theoretical distribution. Proposed structure for given isotopic pattern picture to left...... 86

4.5. The ESI-MS in the positive mode for selected isotope pattern for 4.3 reaction mixture. (a) experimental isotope distribution (b) theoretical distribution. Proposed structure for given isotopic pattern picture to left...... 86

4.6. The ESI-MS in the positive mode for selected isotope pattern for 4.3 reaction mixture. (a) experimental isotope distribution (b) theoretical distribution. Proposed structure for given isotopic pattern picture to left...... 87

4.7. The ESI MS full spectrum in the positive mode for structure 4.3 ...... 88

5.1. Deprotonation of TeEGME-H to give TeEGME-Na...... 98

5.2. Integrated 31P NMR spectrum with resonances indicated for three major product ...... 101

5.3. Typical TLC plates of fractions from column chromatography of TEGME-H PCl2N]3 reaction products. Rf for mono- and di-substituted isomers = 0.77, Rf for trans-2,4,6 and 2,2,4 = 0.58, and Rf for cis-2,4,6 = 0.33. The cis-2,4,6 isomer is present in fractions 8-14, though only fractions 10-15 were combined...... 102

5.4. 31P NMR spectra of column chromatography fractions, indicating the order in which each isomer elutes from the column...... 103

5.5. 31P NMR spectrum of phenoxy-substitution reaction of cis-2,4,6 isomer...... 104

xvi LIST OF SCHEMES

Scheme Page

1.1. Synthesis of chlorophosphazene rings and chlorophosphazene polymer...... 4

1.2. Syntheses of OPCl2N=PCl3 and its condensation polymerization to produce [PCl2N]n...... 5

1.3. Syntheses of Cl3P=NSiMe3 and its condensation polymerization to produce [PCl2N]n...... 6

1.4. Utilization of initiators in the ROP of [PCl2N]3...... 7

1.5. Initiation and propagation steps of the favored mechanism of ROP of [PCl2N]3 to give [PCl2N]n...... 8

1.6. Emsley’s initiating step for the ROP of [PCl2N]3 to give [PCl2N]n...... 9

1.7. Fluorinated tadpole synthesis via an anionic process...... 10

2.1. The reaction of phosphazene superbases with group 1 and 12 Lewis acids ...... 33

4.1. Proposed mechanism of P2Et and [PCl2N]3 reaction...... 80

- 4.2 Formation of [P3Cl5N3O] via treatment of [PCl2N]3 with P1tBu phosphazene superbase...... 82

5.1. Synthesis of chlorophosphazene rings and chlorophosphazene polymer ...... 92

5.2. Possible isomers for trisubstitution of [PCl2N]3 by OR groups ...... 93

5.3. Substitution reaction of TeEGME-Na onto [PCl2N]3 and major products ...... 99

5.1 The results from the reactions of [PCl2N]3, [PCl2N]4, and [PCl2N]m (m = 5–8), with HPCl6 ...... 156

xvii LIST OF EQUATIONS

Equation Page

1.1…...... 12

2.1 ...... 46

2.2 ...... 46

3.1…...... 61

4.1…...... 79

5.1…...... 104

xviii CHAPTER I

INTRODUCTION

1.1 Polyphosphazenes, applications, and importance

Polyphosphazenes comprise the most expansive group of inorganic backbone polymers.1 The majority of polyphosphazenes are represented by the general formula seen in Figure 1.1. As can be seen, polyphosphazenes contain a backbone of alternating phosphorus and nitrogen atoms, with two Z groups being attached to the phosphorus atom. With the groups being attached only to the phosphorus atom of the backbone, the phosphazene polymer has a high level of flexibility similar to that of polysiloxanes.2 The general formula seen in Figure 1.1 is a misleading representation.

Although it is depicted that phosphazenes contain alternating single and double bonds throughout the backbone, recent calculations show significant ionic character. The P-N bonding consists of an ionic σ bond and π bond mainly caused by negative hyperconjugation.3 The Z groups attached to the backbone can be a myriad of different units such as organic, inorganic, and/or organometallic. This versatility gives polyphosphazenes a wide variety of physical and chemical properties.

Figure 1.1. General formula of polyphosphazenes 1 Many applications have already been developed for polyphosphazenes.4 These applications include: elastomers that function at high and low temperatures, 5 fire- retardants,6 a variety of different membranes,7 and water-stable and water degradable biomedical materials.8 The ease of substitution of the backbone of the polymer is what gives phosphazenes their unparalleled versatility and tunability. Although applications have been developed for the fully substituted polymer, almost all polyphosphazenes originate from the parent poly(dichlorophosphazene) ([PCl2N]n). Due to the high reactivity of the P-Cl bond, macromolecular substitution is possible which gives polyphosphazenes an advantage over most organic polymers, which usually require derivatization of the monomer. The high reactivity of the P-Cl bond is a major contributor to the ease and high yields of these substitution reactions, other factors include the lack of steric bulk around the phosphorus atoms as well as the flexibility of the polymer backbone. The majority of polyphosphazenes are synthesized by nucleophilic substitution of the chloride atoms with mainly alkoxide, , or combinations of both groups (Figure 1.2).

Figure 1.2. Substitution of [PCl2N]3 to give phosphazene polymers with specific properties and applications.

2 1.2 Polydichlorophosphazenes

As mentioned previously, most phosphazene polymers originate from [PCl2N]n via replacement of the halogens attached to the polymer backbone. Although many applications have been developed, the utilized of polyphosphazenes are seldom seen for industrial applications. This is due mainly to the inherent issues with the storage of

[PCl2N]n as well as inefficiency, expense, and irreproducibility regarding its synthesis.

Although the majority of the work described herein does not directly relate to the synthesis of poly(dichlorophosphazene), an understanding of the synthesis, mechanism, and other factors surrounding the polyphosphazene field is necessary.

1.2.1 Syntheses of [PCl2N]n

Polyphosphazenes have been a mainstay in inorganic and macromolecular research since the mid-1960s at which point Allcock and others published a series of papers depicting the substitution shown in Figure 1.2 and the synthesis of polyphosphazenes via ring-opening polymerization.9 Through the following years, many different routes and techniques have been developed for the synthesis of [PCl2N]n; however, the primary polymerization processes are ring-opening polymerization (ROP) and polycondensation. Of these two methods, the ROP remains the most utilized route for the preparation of the highest molecular weight (Mw) polymer. The uncatalyzed ROP

o involves heating previously purified [PCl2N]3 and [PCl2N]4 in the molten state to ~250 C

10 to induce polymerization (Scheme 1.1). [PCl2N]3 and [PCl2N]4 can be synthesized from relatively inexpensive starting materials of PCl5 and NH4Cl and subsequently purified via sublimation and column chromatography.11,12

3 Scheme 1.1. Synthesis of chlorophosphazene rings and chlorophosphazene polymer.

Despite the benefits, there are many inherent disadvantages of the ROP synthesis. The high temperature required for the conversion to polymer, the inefficiency of the ROP process, the formation of insoluble “cross-linked” material and the irreproducibility of the polymerization limits the production on an industrial scale. High

Mw [PCl2N]n is produced in yields ranging from 20-50% with a relatively high

13 polydispersity index (PDI), usually greater than 2. In the melt polymerization, [PCl2N]3 is the monomer as well as the for the polymerization. As [PCl2N]3 is converted to

[PCl2N]n, the increased concentration favors the formation of the insoluble “cross-linked”

4 material, which limits the overall conversion to [PCl2N]n.

Many condensation polymerizations exist for the synthesis of [PCl2N]n including those developed by Allen,14 De Jager,15 and Allcock and Manners16 (Scheme 1.2 and

Scheme 1.3). De Jaeger, Allen and other groups performed extensive research

17 involving the monomer OCl2PN=PCl3. In order for the elimination of (POCl3) to occur, the polymerization must be performed at temperatures of 240-

290 oC, temperatures greater than the required temperature for the traditional ROP. The resulting polymer is also of lower Mw when compared with the polymer resulting from the

ROP of [PCl2N]3 and has a high PDI.

4 Scheme 1.2. Syntheses of OPCl2N=PCl3 and its condensation polymerization to produce [PCl2N]n.

The most recently established route involves the condensation of an N- silylphosphoranamine monomer, Cl3P=NSiMe3, developed by Allcock and Manners. The temperature of the polymerization was greatly reduced and it proceeded at room temperature (Scheme 1.3) using PCl5 as the initiator. Although the MW of the resulting polymer is still lower than the traditional ROP, the synthesis yields polymers with a PDI

18 approaching 1. The MW of the polymer can be greatly controlled through changes in the monomer to initiator ratio.19 This polymerization technique also gives accesses to many other polymeric architectures such as block copolymers and comb polymers.20

Although there are many benefits, this synthetic pathway remains the most expensive route because of the expense of the starting materials.

Many other polymerization techniques have been developed including the use of

21 22 phosphorus azides as well as directly synthesizing [PCl2N]n from PCl5 and NH4Cl.

Although all of these different polymerization techniques and routes have all contributed to the development of the polyphosphazene field, the ROP remains the most viable

5 route for the production of high Mw polymer and thus most advantageous for industrial applications.

Scheme 1.3. Syntheses of Cl3P=NSiMe3 and its condensation polymerization to produce [PCl2N]n.

1.2.2 Initiators for the ring-opening polymerization

In order to circumvent some of these problems with the ROP, processes involving various initiators or catalysts have been developed (Scheme 1.4). Throughout the literature, the distinction between the use of initiators versus catalysts is not well defined. The BCl3 (or BCl3∙Base) initiated process gives a living, exclusively linear polymer at a lower temperature (180-250 oC) than what is required for the uncatalyzed

ROP.23 This process, however, uses the toxic solvent trichlorobenzene and produces shorter polymer than the traditional ROP. The Lewis acid AlCl3 was also used; however, this route produced only oligomeric phosphazenes.24

More recently, an initiator was developed by Manners and Reed that lowered the

ROP to room temperature.25 Through the use a trialkylsilyl cation that had a carborane anion, [PCl2N]3 was silyated at the nitrogen of the ring and a crystal structure of this 6 26 complex was obtained. With the subsequent addition of [PCl2N]3, complete conversion to [PCl2N]n was observed. This conversion occurred at room temperature and the

25 resulting polymer was high Mw with a low PDI. Although being able to drastically lower the temperature of the polymerization while maintaining high Mw is an important contribution to the field, the use of carboranes as a counter anion makes this route extremely expensive and synthetically challenging. An entire glove-box needs to be

+ - dedicated to the synthesis and storage of the [Et3Si (CHB11X11) ] initiator. Because of this, the feasibility of large-scale synthesis for industrial purposes is unlikely.

Scheme 1.4. Utilization of initiators in the ROP of [PCl2N]3.

1.2.3 Mechanism of the ring-opening polymerization of [PCl2N]n

Although the ROP of [PCl2N]3 has been extensively studied since the mid 1960’s, the mechanism is still under much debate, especially the initial steps. The most widely accepted mechanism was first proposed by Allcock (Scheme 1.5).1 At the high temperatures required for the ROP, chloride is dissociated from [PCl2N]3 producing the electrophilic phosphazenium cation 1.1. The of electrons from a neighboring

[PCl2N]3 attacks the cationic phosphorus atom of 1.1, which leads to ring-opening and produces the tadpole-like structure 1.2. 7 This mechanism is supported by many early observations of the ROP. The polymerization requires the presence of several halogens attached to the ring. If all halogens are replaced with or alkoxide groups, the polymerization will not occur.4

Secondly, the ionic conductivity of molten [PCl2N]3 is low at room temperature.

However, as the temperature is elevated to the point at which polymerization begins to occur (~250 oC), the conductivity increases dramatically. 27 This indicates that the mechanism of action is ionic. Finally, the temperature required for the polymerization for

o o [PF2N]3 is much higher (350 C) than the temperature required for [PCl2N]3 (250 C),

o 28,29 which in turn is higher than that required for [PBr2N]3 (210 C). These observations support the concept of halide abstraction as it would require an increase in energy to cleave the P-Br, the P-Cl, and the P-F bonds, respectively.

Scheme 1.5. Initiation and propagation steps of the favored mechanism for the ROP of

[PCl2N]3 to give [PCl2N]n.

8 Although this mechanism explains many aspects of the polymerization, it fails to explain everything. As discussed earlier, the polymerization, as well as the resulting polymers are water sensitive. However, several reports suggest that the polymerization requires trace amounts of water to proceed. It was shown that the reaction time is decreased with trace amounts of water, but if the reaction vessels are scrupulously dried the reaction will not take place at all. Because of these observations, Emsley and others have proposed a different activation step for the ROP (Scheme 1.6). 30 In this mechanism, water hydrolyzes the P-Cl bond, producing HCl, which then would act as an initiator at the elevated temperatures of the ROP, by protonating a nitrogen of the phosphazene ring, compound 1.3. This would weaken the P-N bond of the ring, assisting in its opening. The lone pair on the nitrogen atom would then attack the phosphorus atom of a neighboring [PCl2N]3. Propagation of the synthesis would then proceed similarly to Allcock’s mechanism. Water could also produce a source of Cl- as well as OH-, which could possibly initiate the polymerization as well.

Scheme 1.6. Emsley’s initiating step for the ROP of [PCl2N]3 to give [PCl2N]n.

9 Although it is believed that [PCl2N]3 undergoes ROP via some type of cationic mechanism, much is unknown about the mechanism. Therefore it is plausible to consider an anionic mechanism, especially considering that isoelectronic siloxanes are polymerized by both cationic and anionic processes.1 Only one type of polymerization of a phosphazene is known to proceed via an anionic mechanism (Scheme 1.7), and this

31 - process only produced oligomers. Here, a five-coordinate anionic species SiMe3F2 can easily lose an anionic , in this case F-, because of sterics and produces the tadpole structure 1.4, seen in Scheme 1.7.

Scheme 1.7. Fluorinated tadpole synthesis via an anionic process.

10 1.3 Acid-base chemistry of phosphazenes

1.3.1 Brønsted-Lowry acid base chemistry of chlorophosphazenes

A poorly understood aspect of phosphazene chemistry is the role that Brønsted acids play. The effects of various Brønsted acids on the ROP of [PCl2N]3 to give

32 33 [PCl2N]n has been studied. The acids can behave as initiators/catalysts, retardants, or show variable effects.34 Unspecified Brønsted acids are impurities in freshly prepared

35,36 mixture of rings [PCl2N]m (m = 3-12) and linear oligomers, may be involved in the

30 uncatalyzed ROP of [PCl2N]3. These Brønsted acids impurities appear to lead the

37 degradation of [PCl2N]n on prolonged storage. [PCl2N]3 itself has been used as a catalyst or an initiator in the ROP of siloxanes and several other organic reactions.38 It has been suggested that [PCl2N]3 is a source of acid when exposed to water.

The role that acids would most likely play in phosphazene chemistry would be to protonate the nitrogen. As discussed earlier (Scheme 1.6), this is the proposed role for the trace amounts of water deemed necessary for the ROP. The nitrogen of [PCl2N]3 is an extremely weak Brønsted base, with its reported to have a pKa of less than -6 in nitrobenzene.39 The of the ring indicates the possible role of water; however, there are many inconsistencies with this proposition as well. Secondly, protonated [PCl2N]3 has been isolated and when used as a initiator for the ROP no conversion to polymer was seen at temperatures up to 160 oC.

As previously discussed, it has been proposed that HCl acts as an initiator to the

ROP. However, based upon work done in the Tessier lab40, HCl on its own will not protonate [PCl2N]3, and no complexation is observed by variable temperature NMR studies. Although at the high temperatures required for the ROP, it is possible that HCl

11 will protonate [PCl2N]3. What has been thus far overlooked by most is the possible role that play in the ROP of [PCl2N]3.

Brønsted superacids are stronger than 100% H2SO4. Many Brønsted superacids can be formed via the reaction of a Lewis acid with a Brønsted acid and a somewhat simplistic representation of this reaction is shown in Eq. 1.1. The Lewis acid PCl5 is present in most all chlorophosphazene chemistry. In the presence of the Brønsted acid

HCl, the HPCl6 is quite possibly formed. Based upon the scale developed by

41 Reed, HPCl6 is classified as a superacid and therefore could be strong enough to protonate the weakly basic nitrogen of [PCl2N]3.

1.3.2 Lewis acid-base chemistry of phosphazenes

As previously mentioned, Lewis acids play a large role in phosphazene chemistry acting as initiators for the ROP of [PCl2N]3. Lewis acids have been proposed to form intermediates, such as 1.5 and 1.6, seen in Figure 1.3. In 1.5, the Lewis acid forms an adduct with a nitrogen atom, weakening the P-N bond within the ring and therefore

+ assisting in its opening. Only strong Lewis acids such as AlCl3, AlBr3, GaCl3 and H of

42 superacids react with the weakly basic nitrogen of [PCl2N]3 to give 1.5. Compound 1.6 is the result of halide abstraction from the ring, producing a cation that is similar to that of

1.1. This cation is proposed as the initiating species in the uncatalyzed ROP mechanism (Scheme 1.5). The cationic species in 1.6 is stabilized by the presence of the weakly coordinating anion (LA/Cl-). No well-characterized examples of 1.6 have been isolated.

12 Figure 1.3. Proposed initiating species to the ROP of [PCl2N]3.

1.4 Phosphazene superbases

The basicity of the nitrogen of the phosphazene structure varies greatly and is dependent upon the availability of the nitrogen’s lone pair electrons.43 Strong electron- withdrawing substituents reduce the basicity of the nitrogen and electron-donating substituents increase it. As previously discussed, the basicity of the nitrogen of halogenated phosphazenes, such as [PCl2N]3 and [PCl2N]4 are among the lowest recorded, whereas phosphazenes containing amino substituents are the strongest bases.39,43

Phosphazene superbases are extremely strong, uncharged Brønsted bases that contain at least one phosphorus atom bonded to three and one imine substituent

(Figure 1.4).44 Many of these molecules have been synthesized and are commercially available. These compounds are named based on the number of P=N units in the backbone of the molecules (P1-P5) followed by the alkyl group attached to the imine nitrogen (R = Et or tBu).45 There is an increase in basicity with increasing number of phosphorus atoms. This is attributed to the increase of delocalization of charge of the

conjugated phosphazinium cation and the pKa values for the conjugate acid of P4 and P5 13 bases are on the same order of magnitude for organometallic compounds. 45 While this class of molecules displays high basicity, they also show high solubility in many nonpolar and moderately polar , such as hexane and THF, as well as many polar solvents including and dimethylsulfoxide.46

Figure 1.4. Selected commercially available phosphazene superbases and their respective pKa of their conjugate acids.

Phosphazene bases have been gaining much interest and have been used in several synthetic capacities. They have been used as catalysts and initiators in anionic ring-opening polymerizations (AROP) of a multitude of systems including polymerizations of epoxides,47 lactames,48 esters,49as well as the ROP of siloxanes,50 which are isoelectronic with phosphazenes. What has been attributed to their capacities as catalysts is not usually the free superbase. Instead, the deprotonation of a large variety of weak acids by the superbase produces highly reactive or “naked” anionic species, which initiate the polymerizations.

1.4.1 Phosphazene superbases as frustrated Lewis pairs

Phosphazene superbases have been used in many synthetic pathways; however, one of the most recent advances is their use as frustrated Lewis pairs 14 (FLPs).51 FLPs are formed by Lewis acid and Lewis base pairs that involves steric congestion around the donor and/or acceptor site, which inhibits strong adduct formation. 52 This inhibition opens alternative reaction pathways for these systems.

FLPs have been used in several capacities such as metal free activation of small

53 54 molecules such as H2 and CO2.

More recently, FLPs have been investigated as metal free initiators and catalysts for various polymerizations.51 Of the many FLPs that were investigated, those that utilized phosphazene superbases as the Lewis base showed some of the best activity.

The phosphazene bases that were investigated where P2-tBu and P4-tBu (Figure 1.4), both paired with the bulky Lewis acid Al(C6F5)3. The Al(C6F5)3/P4tBu pair showed the highest activity of all the FLPs tested, giving a high turnover frequency (TOF), consuming over 800 equivalents of the monomer methyl methacrylate in ~30 s while

55 also producing polymer of significant Mw and low PDI.

1.5 Phosphazenes for biological applications

Many applications for phosphazene have been mentioned; however, one of the most quickly expanding fields is the use of phosphazene in biological applications.

Polymers have been at the forefront of drug delivery and biological materials; however, many challenges arise when producing materials that contain the combination of specific degradation pathways, safe biological interactions and drug release characteristics.56

Utilization of phosphazenes offers the opportunity to overcome many of these challenges because of their unique combination of properties. The inorganic backbone of the phosphazene polymer is capable of degradation upon exposure to water.4,57 This degradation can also be tuned based on the choice of side groups. Phosphazene-based delivery systems have been developed that slowly degrade and sustain drug release for 15 over a month58 and another drug carrier completely deliver a drug within 24 hours.59 As discussed previously, macromolecular substitution of the phosphazene backbone allows for a large variety of units to be introduced, thus tuning the properties of the molecule overall. This factor lends itself to high-throughput synthesis, which can accelerate the discovery process.

Many biological applications have been developed for polyphosphazenes including vaccine delivery and immunomodulation systems,60 and scaffolds for tissue engineering.61 While all of these applications are of great importance, an exhaustive review is not feasible and this discussion will focus on aspects of phosphazenes and their use for drug delivery.

One of the main focuses when developing drug delivery systems is to improve the targeting of the drug to maximize its effectiveness while also reducing cytotoxicity.

Targeted drug delivery systems have been under intensive study over recent years.62

By developing a delivery system that has enhanced tumor selectivity, small molecule drugs can be administered with high efficacy as well as low toxicity to healthy cells.

One approach is to develop a system that encapsulates the drug and then releases it when exposed to biological conditions, such as pH, temperature and hydrolytic degradation. It has been shown that there are differences in pH between normal tissue (pH 7.4) and tissues surrounding inflammation, tumors and infections (pH

~6.5).63 Through the addition of specific side groups such as aminobutyric acid, the resulting phosphazene polymer displayed pH dependent release. 64 It also is well documented and studied that with the addition of amino side groups to polyphosphazenes, they become hydrolytically unstable. With the addition of larger side groups, the degradation of the polymer can be tuned, thus allowing for prolonged release of the drug.65 16

Even though polyphosphazenes contain a multitude of attractive characteristics that make them incredibly viable and interesting molecules for drug delivery, the inherent issues are well documented, many of which have been discussed herein. Through the utilization of the smaller cyclic phosphazene oligomers, many of these problems can be

66 circumvented. [PCl2N]3 and [PCl2N]4 can be synthesized in relatively high yields as well as being able to be purified via sublimation and column chromatography.12a The replacement of chlorides of [PCl2N]3 and [PCl2N]4 proceed similarly to the substitution of the polymer; however, the substitution patterns are difficult to predict. 67 Like polyphosphazenes, the cyclic chlorophosphazenes can be substituted with a multitude of side groups, giving them similar structural diversity.

1.6. References

(1) Mark, J. E.; Allcock, H. R.; West, R. Inorganic Polymers; 2nd ed., Prentice Hall: Englewoods Cliffs, NJ, 2005.

(2) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic: New York, 1972; Chapter 15.

(3) Sun, H., J. Am. Chem. Soc., 1997, 119, 3611-3618.

(4) Allcock, H. R. Chemistry and Applications of Polyphosphazenes, Wiley-Interscience: New York, 2003.

(5) (a) Ameduri, B.; Boutevin, B. J. Chem., 2005, 126, 221-229. (b) Honarkar, H.; Rahimi, A. Monatshefte fűr Chemie, 2007, 138, 923-933.

(6) (a) Huang, W. K., Yeh, J. T.; Chen, K. N., J. Appl. Polym. Sci. 2001, 79, 662-673. (b) Wang X.; Li, Q.; Di, Y.; Xing, G. Fibers and Poly., 2012, 13, 718-723.

(7) (a) Nagai, K.; Freeman, B. D.; Cannon, A. M.; Allcock, H. R. J. Membr. Sci. 2000, 172, 167-176. (b) Allcock, H. R.; Rutt, J. S.; Fitzpatrick, R. J.; Chem. Mater., 1991, 3, 442-449.

(8) Andianov, A. K. ed. Polyphosphazenes for Biomedical Applications, Wiley:Hoboken, NJ; 2009.

17 (9) (a) Allcock, H. R.; Kugel, R. L. J. Am. Chem. Soc., 1965, 87, 4216-4217. (b) Allcock, H. R.; Kugel, R. L.; Valan, K. J. Inorg, Chem., 1966, 5, 1709-1715. (c) Allcock H. R.; Kugel, R. L. Inorg. Chem., 1966, 5, 1716-1718.

(10) Allcock, H. R. Chemistry and Applications of Polyphosphazenes, Wiley- Interscience: New York, 2003. Chapter 5, pp 146-148.

(11) (a) Jolly, W. L. The Synthesis and Characterization of Inorganic Compounds. Prentice-Hall: New York, 1970; Chapter 30. (b) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic: New York, 1972; Chapter 4. (c) Allcock, H. R. Chem. Rev. 1972, 72, 315-356. (d) Emsley, J.; Udy, P. B. J. Chem. Soc. A. 1970, 3025-3029. (e) Emsley, J.; Udy, P. B. J. Chem. Soc. A. 1971, 768-772.

(12) (a) Bowers, D. J., Wright, B. D., Scionti, V., Schultz, A., Panzner, M. J., Twum, E. B., Li, L., Katzenmeyer, B. C., Thome, B. S., Rinaldi, P. L., Wesdemotis, C., Youngs, W. J., Tessier, C. A.; Inorganic Chemisry, 2014, 53, 8874-8886. (b) Mitropol'skaya, G. I.; Kireev, V. V. Russ. J. Inorg. Chem. 1983, 28, 1914-1918.

(13) (a) Allcock, H. R; Kugel, R. L. J. Am. Chem. Soc., 1965, 87, 4216-4217. (b) Allcock, H. R.; Kugel, R. L.; Valan, K. J. Inorg. Chem., 1966, 5, 1709 – 1715. (c) Allcock, H. R.; Gardner, J. E.; Smeltz, K. M. Macromolecules 1975, 8, 36-42.

(14) Allen, C. W.; Hneihen, A. S. Phosphorus, Sulfur, Relat. Elem. 1999, 144- 146, 213-216.

(15) Helioui, M.; De Jaeger, R.; Puskaric, E.; Heubel, J. Makromol. Chem. 1982, 183, 1137-1143.

(16) Honeyman, C. H.; Morrissey, C. H.; Manners, I.; Allcock, H. R. J. Am. Chem. Soc., 1995, 117, 7035-7036.

(17) (a) De Jaeger, R.; Potin, P. In Poly(Dichlorophosphazene From P-Trichloro-N- Dichlorophosphoryl Monophosphazene Cl3P=N-POCl2, Gleria, M.; De Jaeger, R., eds.; Nova Science: New York, 2004, Chapter 2. (b) D’Halluin, G.; De Jaeger, R.; Chambrette, J. P.; Potin, Ph., Macrmolecuels, 1992, 25, 1254-1258. (c) De Jaeger, R.; Potin, Ph., Phosphorus, Sulfur, Silcon, Relat. Elem., 1993, 76, 483-486.

(18) Allcock, H. R. In Ambient Temperature Cationic Condensation Synthesis of Polyphosphazenes, Gleria, M.; De Jaeger, R., eds.; Nova Science: New York, 2004, Chapter 3.

(19) (a) Blackstone, V.; Lough, A. J.; Murray, M.; Manners, I., J. Am. Chem. Soc., 2009, 131, 3658-3667. (b)

18 (20) (a) Suzrez, S. S.; Soto, D. P.; Carriedo, G. A.; Soto, A. P.; Staubitz, A. Organomet., 2012, 31, 2571-2581. (b) Manners, I. Angew. Chem. Int. Ed., 2007, 46, 1565-1568.

(21) (a) Tesi, G.; Douglas, C. M.; Haber, C. P. US Patent 1963, 3,087,937. (b) Tesi, G.; Haber, C. M.; Douglas, C. M. Proc. Chem. Soc. (London), 1960, 219-220. (c) Franz, U.; Nuyken, O.; Matyjaszewski, K. Macromolecules, 1993, 26, 3723-3725.

(22) Carriedo, G. A.; Garcia Alonso, F. J.; Gomez Elipe, P.; Ignacio Fidalgo, J.; Garcia Alvarez, J. L.; Presa-Soto, A. Chem. Eur. J., 2003, 9, 3833-3836.

(23) (a) Sennett, M. S.; Hagnauer, G. L.; Singler, R. E.; Davies, G. Macromolecules, 1986, 19, 959-964. (b) Kayser Potts, M.; Hagnauer, G. L.; Sennett, M. S.; Davies, G. Macromolecules, 1989, 22 4235-4239. (c) Sohn, Y. S.; Cho, Y. H.; Baek, H.; Jung, O. S. Macromolecules, 1995, 28, 7566-7568. (d) Sennett, M. S.; Haugner, G. L.; Singler, R. E., Polym. Mater. Sci. and Eng. 1983, 49, 297-300.

(24) Coxon, G.E.; Sowerby, D. B.; J. Chem. Soc. A 1969, 3012-3014.

(25) Zhang, Y.; Huynh, K.; Manners, I. Reed, C. A.; Chem Commun., 2008, 494-496.

(26) Zhang, Y.; Tham, F. S.; Reed, C. A. Inorg. Chem. 2006, 45, 10446-10448.

(27) (a) Allcock, H. R.; Gardner, J. E.; Smeltz, K. M. Macromolecules, 1975, 8, 36-42. (b) Sennett, M. S.; Hagnauer, G. L.; Singler, R. E. Polym. Mater. Sci. Eng., 1983, 341, 231-239.

(28) (a) Seel, F.; Langer, J.; Angew. Chem., 1956, 68, 461. (b) Seel, F.; Langer, J.; Z. Anorg. Allgem. Chem., 1958, 295, 316.

(29) Allcock, H. R.; Kugel R. L.; Stroh, E. G. Inorg. Chem., 1972, 11, 1120-1123.

(30) (a) Emsley, J.; Udy, P. B. Polymer, 1972, 13, 593-594. (b) Sulkowski, W. W. Phosphazenes: A Worldwide Insight, Gleria, M. De Jaeger, R. eds.; Nova Science: New York, 2004, Chapter 4.

(31) Matyjaszewski, K. Polym. Mater. Sci. Eng. 1991, 64, 104-105.

(32) (a) Ganapathiappan, S.; Dhathathreyan,K. S.; . Krishnamurthy, S. S. Macromolecules 1987, 20, 1501-1505. (b) Mujumdar, A. N.; Young, S,. G.; Merker,R. L.; Magill, J. H. Macromolecules 1990, 23,14-21. (c) Liu, H.; Stannett, V. T. Macromolecules 1990, 23, 140-144. (d) Luten , J.; van Steenis, J. H.; van Someren, R.; Kemmink , J.; Schuurmans-Nieuwenbroek, N.M.E.; Koning, G.A.; Crommelin, D.J.A.; van Nostrum, C.F.; Hennink, W.E. J. Controlled Release 2003, 89, 483–497. (e) Renard, K. A.; Gerber, A. H.; US Patent # 4,257,917 (1981). (f) Sinclair, D. P.; US Patent # 4,242,316 (1980).

19

(33) (a) Allcock, F. R.; Gardner, J. E.; Smeltz, K. M. Macromolecules 1975, 8, 36-42. (b) Dieck, R. L.; Garrett, T. B.; Magnusson, A. B.; US Patent # 4,116,891 (1978).

(34) Renard, K. A.; Gerber, A. H.; US Patent # 4,005,171.

(35) Sayed, M. B. Internet J. Chem. 2002, 5, Paper No. 6.

(36) Liu, H. Q.; Stannett, V. T. Macromolecules 1990, 23, 140-144.

(37) Andrianov, A. K.; Chen, J.; LeGolvan, M. P. Macromolecules 2004, 37, 414-420.

(38) (a) Chojnowski, J.; Fortuniak, W.; Habimana, Taylor R. G. J. Organomet. Chem. 1997, 534, 105-115. (b) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, I.; J. Org. Chem., 2008, 73, 2894-2897.

(39) (a) Feakins, D.; Last, W. A.; Neemuchwala, N.; Shaw, R. A. J. Chem.Soc. 1965, 2804-2811. (b) Allcock, H. R. Phosphorus-Nitrogen Compounds, Academic: New York, 1972; Chapters 4, 10-12.

(40) Tun, Z. M.; Heston, A. J.; Johnson, N. A; Panzner, M. J.; Sciont,i V.; Medvetz, D. A.; Wright, B. D.; Li L.; Savant, D.; Wesdemiotis, C.; Rinaldi, P. L.; Youngs, W. J.; Tessier C. A.; (In preparation).

(41) (a) Stoyanov, E. S.; Kim, K. C., Reed, C. A. J. Am. Chem. Soc. 2006, 128, 8500- 8508. (b) Juhasz, M.; Hoffmann, S.; Stoyanov, E.; Kim, K.; Reed, C. A. Angew. Chem. Int. Ed. 2004, 43, 5352-5355.

(42) Olah, G. A. Sommer, J. Superacids, Wiley: New York, 1985. Chapters 1-2.

(43) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic: New York, 1972; Chapter 12.

(44) Boileau, S.; Illy, N., Prog. Poly. Sci., 2011, 36, 1132-1151.

(45) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G.; Peters, E.; Peters, K.; Georg von Schering, H.; Walz, L.; Liebigs Ann. 1996, 1055-1081.

(46) (a) Schwesinger, R.; Schlemper, H. Angew. Chem. Int. Ed. Engl., 1987, 26, 1167- 1169. (b) Kaljurand, I.; Kutt, A.; Soovli, L.; Rodima, T.; Maemets, V.; leito, I.; Koppel, T. A. J. Org. Chem., 2005, 70, 1019-1028.

(47) Helou, M.; Miserque, O.; Brusson, J. M.; Carpentier, J. F.; Guillaume, S. M., Chem. Eur. J., 2010, 16, 13805–13813. (b) Brignou, P.; Gil, M. P.; Casagrande, O.; Carpentier, J. F.; Guillaume, S. M., Macromolecules, 2010, 43, 8007–8017. (c) Zhang L.; Nederberg F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G., Macromolecules, 2007,

20

40, 4154-4158. (d) Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade C. G., J. Am. Chem. Soc., 2007, 129, 12610–12611.

(48) Memeger Jr, W.; Campbell, G.C.; Davidson, F., Macromolecules, 1996, 29, 6475– 6480.

(49) (a) Pietzonka, T.; Seebach, D., Angew. Chem. Int. Ed. Engl., 1993, 32, 716–717. (b) Borner, H. G.; Heitz, W., Macromol. Chem. Phys., 1998, 199, 1815–1820. (c) Schacher, F.; Mullner, M.; Schmalz, H.; Muller, A. H. E., Macromol. Chem. Phys., 2009, 210, 256– 262.

(50) (a) Grzelka, A.; Chojnowski, J.; Fortuniak, W.; Taylor, R. G.; Hupfield, P. C.; J. Inorg. Organomet. Poly., 2004, 14, 85-99. (b) Dyke, M. E.; Clarson, S. J.; J. Inorg. Organomet. Poly., 1998, 8, 111-117. (c) Hupfield, P. C.; Taylor, R. G., J. Inorg. Organomet. Poly., 1999, 9, 17-34. (d) Pibre, G.; Chaumont, P.; Fleury, E.; Cassagnau, P. Polymer, 2008, 49, 234-240. (e) Molenberg, A.; Moller, M., Macromo. Rapid Commun., 1995, 16, 449-453.

(51) Chen, E. Y. Top Curr. Chem. 2013, 239.

(52) (a) Stephan, D. W. Top Curr. Chem. 2013, 332, 1-44. (b) Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407.

(53) (a) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 2, 5072. (b) Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem., Int. Ed. 2012, 51, 10164. (c) Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.

(54) (a) Ashley, A. E.; Thompson, A. L.; O’Hare, D. Angew. Chem. Int. Ed., 2009, 48, 9839. (b) Sgro, M. J.; Domer, J.; Stephan, D. W., Chem. Commun., 2012, 48 7253– 7255.

(55) Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. Dalton Trans., 2012, 41, 9119-9134.

(56) Langer, R.; Tirrell, D. A. Nature, 2004, 428, 487-492.

(57) Andrianov, A. K.; Martin, A.; Biomacromolecules, 2006, 7, 1581-1586.

(58) Kang, G. D.; Cheon, S. H.; Song, S. C. Int. J. Pharm., 2006, 319, 29-36.

(59) Zhang, J. X.; Li, X. J.; Qiu, L. Y.; Qiu, L. Y.; Li, X. H.; Yan, M. Q.; Jin, Y.; Zhu, K. J. J. Control. Release, 2006, 116, 322-329.

(60) (a) Andrianov, A. K.; Polyphosphazenes as vaccine adjuvants. In Singh, M. ed. Vaccine Adjuvants and Delivery Systems, Wiley, Hoboken, NJ, 2007, pp. 355-378. (b)

21 Andrianov, A. K.; Marin, A.; Chen, J. Biomacromolecules, 2005, 6, 1375-1379. (c) Payne, L. G.; Jenkins, S. A.; Woods, A. L.; Grund, E. M.; Geribo, W. E.; Loebelenz, J. R.; Andrianov, A. K.; Roberts, B. E. Pharm. Biotechnol., 1995, 16, 92-98.

(61) (a) Laurencin, C. T.; Norman, M. E.; Elgendy, H. M.; El-Amin, S. F.; Allcock, H. R.; Pucher, S. R.; Ambrosio, A. M. J. Biomed. Mater. Res., 1993, 27, 963-973. (b) Deng, M.; Nair, L. S.; Nukavarapu, S. P.; Kumbar, S. G.; jiang, T.; Krogman, N. R.; Singh, A.; Allcock, H. R.; Laurencin, C. T. Biomaterials, 2008, 29, 337-349. (c) Nair, L. S.; Laurencin, C. T. Adv. Drug. Deliv. Rev. 2003, 55, 467-482. (d) Brown, J. L.; Nair, L. S.; Laurencin, C. T. J. Biomed. Mater. Res., 2008, 86, 396-406.

(62) (a) Allen, T. M.; Cullis, P. R. Science, 2004, 303, 1818-1822. (b) Park, J. H.; Lee, S. K.; Kim, J. H.; Park, K. G.; Kim, K. M.; Kwon, I. C. Prog. Polym. Sci. 2008, 33, 113-137. (c) Haag, R.; Kratz, F. Angew. Chem. Int. Ed. Engl., 2006, 45, 1198-1215.

(63) Schmalijohann, D. Adv. Drug. Deliv. Rev., 2006, 58, 1655-1670.

(64) Couffin-Hoarau, A. C.; Leroux, J. C. Biomacromolecules, 2004, 5, 2082-2087.

(65) (a) Allcock, H. R.; Kwon, S. Macromolecules, 1988, 21, 1980-1985. (b) Allcock, H. R.; Pucher, S. R.; Macromolecules, 1994, 27, 1071-1075. (c) Allcock, H. R.; Pucher, S. R.; Scopelianos, A. G., Macromolecules, 1994, 27, 1-4.

(66) Bowers, D. J. Chlorophosphazenes: Synthesis, Structure and Conformation, PhD Dissertation, University of Akron, Akron, OH, 2013.

(67) Allen, C. W. Chem. Rev., 1991, 91, 119-135.

22 CHAPTER II

GROUPS 1 AND 12 LEWIS ACID ADDUCTS OF PHOSPHAZENE

SUPERBASES

2.1 Introduction

Phosphazene bases are extremely strong, uncharged Brønsted bases that contain at least one phosphorus atom bound to four nitrogen atoms: three amine functionalities, and one imine .1 These molecules are named based upon the number of phosphorus atoms, ranging 1-5 and denoted P1-P5 phosphazene bases, and by the alkyl group bound to the imine nitrogen, most commonly being either an ethyl or a tert-butyl group.2 The basicity of these molecules increases as the number of phosphorus atoms increases, presumably because of the distribution of positive charge through conjugation.3

As described in section 1.4 of the introduction, the main applications of phosphazene superbases utilize their strong Brønsted basicity. In initiation of anionic processes, such as ring-opening polymerizations, highly reactive anions are generated by deprotonation of weak acids.4 Phosphazene bases traditionally have been viewed as Brønsted bases and their basicity is comparable to organolithium compounds.5 Little attention has been given to their ability to act as Lewis bases. Phosphazene bases have been used to complex lithium cations when organolithium compounds are used as initiators. In one instance, a chelating Lewis superbase was used to prepare a cationic alkyl aluminum 23 complex.6 Phosphazene superbases have also been used in frustrated Lewis pairs (FLPs).7

Herein an investigation of the Lewis basicity of the phosphazene superbases P2Et and P2tBu (Figure 2.1) with common Groups 1 and 12 halide- containing Lewis acids is described. P2 bases were chosen because they have good basicity but are not as sterically hindered at the basic site as P3-P5 superbases. These adducts were characterized utilizing variable-temperature

NMR, multinuclear NMR and X-ray crystallographic studies.

Figure 2.1. P2 Phosphazene superbases P2Et and P2tBu.

2.2 Experimental

This section describes the general experimental methods, materials used, characterization techniques and syntheses.

2.2.1 General Procedures

All manipulations and reactions were performed under argon and nitrogen using standard anaerobic techniques.8,9 The high vacuum line had an ultimate capability of 2x10-4 torr. The atmosphere of the glove box was routinely checked by a light bulb test and the level of oxygen was kept between 1 and 5 ppm. All

24 glassware used was dried overnight in the oven (~120 oC) and when removed, the hot glassware was immediately placed in the port of the glove box and subjected to vacuum. The glassware used for these experiments was made with

Fisher-Porter Solv-seal glass joints. High vacuum valves on the flasks were purchased from Kimble-Kontes.

2.2.2 Materials

Tetrahydrofuran (THF) and were purified using a solvent system manufactured by PureSolv™. Deuterated THF and CHCl3 were purchased from

Cambridge Isotopes, distilled from freshly activated 4 Å sieves three times and stored in the glove box, over freshly activated 4 Å sieves, in foil-wrapped storage tubes. The P2Et and P2tBu phosphazene bases were purchased from Sigma

Aldrich, stored in the glove box and used as received. LiX (X = Cl or Br) and

ZnCl2 were subjected to vaccuum of the high vacuum line for at least 48 hours with heating and stored in the glove box until used. ZnCl2 was stirred over

10 Me3SiCl prior to being subjected to vaccuum.

2.2.3 NMR Spectroscopy

NMR samples were prepared in a glove-box and all NMR tubes were flame-sealed under vacuum. Routine 31P and 1H NMR data were obtained using a Varian Direct Drive 500 MHz instrument. Variable temperature (VT) NMR data were collected using the Varian INOVA 400 MHz NMR spectrometer with a 5 mm switchable probe. NMR spectra were referenced to the residual proton

25 resonance in the deuterated solvent. An external reference of H3PO4 in deuterated THF (0 ppm) was used for 31P NMR spectra. An external reference of

1 M LiCl in deuterated THF was used for 7Li NMR spectra.

2.2.4 X-ray Crystallography

In a glove box, crystals were put into Paratone oil on a glass slide. The slide was transported from the glove-box to the instrument in a desiccator filled with argon. The crystals were immediately mounted to minimize exposure to the atmosphere.

Crystal structure data sets were collected at 100 K on a Bruker APEX II

Duo CCD system equipped with a Cu ImuS micro-focus source (λ = 1.54178 Å) and graphite-monochromated Mo KR radiation (λ = 0.71073 Å). The unit cell was determined by using reflections from three different orientations. The data was integrated using SAINT. 11 , 12 An empirical absorption correction and other corrections were applied to the data using multi-scan SADABS.12 Structure solution, refinement, and modeling were accomplished by using the Bruker

SHELXTL package.11, 13 The structure was determined by full-matrix least- squares refinement of F2 and the selection of the appropriate atoms from the generated difference map. Hydrogen atom positions were calculated and Uiso(H) values were fixed according to a riding model.

The crystal structures of [LiCl(P2Et)]2 and [LiCl(P2tBu)]2 were collected and solved by Brian D. Wright. The crystal structures of, [LiBr(P2tBu)]2, [ZnCl2(P2Et)]2 and [ZnCl2(P2tBu)] were collected and solved by Patrick O. Wagers. The crystal

26 structure of [LiBr(P2Et)]2 was collected by Patrick O. Wagers and solved by

Mathew J. Panzner.

2.2.5 Preparations of [LiX(P2Et)]2 (X=Cl or Br)

In the glove box, 200 μL (0.60 mmol) of P2Et phosphazene base was added to a Schlenk flask that contained 0.61 mmol of LiX (LiCl = 0.026 g, LiBr =

0.053 g) in THF (~15 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature. A colorless solution formed. The volatile compounds were slowly removed under reduced pressure

(0.1 Torr, 25 oC) overnight and colorless crystals suitable for X-ray crystallography were isolated in the glove box. [LiCl(P2Et)]2 was obtained in 89% yield and [LiCl(P2Et)]2 was obtained in 92% yield. A small amount of crystals of different morphology were manually isolated from the reaction flask used to syntheisize [LiBr(P2Et)]2 and were determined to be [P2Et(HBr)].

31 2 1 [LiCl(P2Et)]2: P NMR (THF-d8): 16.0 ppm (b) 18.7 ppm (d, JP,P = 66.7 Hz). H

3 3 NMR (THF-d8): 1.15 ppm (t, JH,H = 6.9 Hz), 2.69 ppm (d, JP,H = 10.1 Hz), 2.89

3 13 2 ppm (dq, JP,H = 7.6 Hz). C NMR (THF-d8): 36.3 ppm (d, JP,C = 4.6 Hz), 37.1

2 ppm (d, JP,C = 3.4 Hz).

31 2 1 [LiBr(P2Et)]2: P NMR (THF-d8): 13.0 ppm (b), 18.1 ppm (d, JP,P = 51.9 Hz). H

3 3 NMR (THF-d8): 1.04 ppm (t, JH,H = 6.7 Hz), 2.64 ppm (d, JP,H = 10.3 Hz ), 2.96

3 13 2 (dq, JP,H = 6.9 Hz ). C NMR (THF-d8): 36.5 ppm (d, JP,C = 5.1 Hz), 37.3 ppm

2 (d, JP,C = 2.9 Hz), 38.0 ppm (b).

27 Crystal data for [LiCl(P2Et)]2: C24H70Cl2Li2N14P4, Mr = 763.60, monoclinic, a = 7.176(3) Å, b = 20.182(9) Å, c = 14.172(6) Å, β = 93.553(6)°, V = 2048.4(16)

3 -1 Å , T = 100(2) K, space group = P2(1)/n, Z = 2, µ(Mo Kα) = 0.351 mm , 15747 reflections measured, 4145 independent reflections, (Rint = 0.0956). The final R1 values were 0.0512 (I > 2σ(I)). The final wR(F2) values were 0.1055 (I > 2σ(I)).

The final R1 values were 0.1017 (all data). The final wR(F2) values were 0.1284

2 (all data). The goodness of fit on F was 1.005.

Crystal data for [LiBr(P2Et)]2: C24H70Br2Li2N14P4, Mr = 852.52, triclinic, a =

8.2172(3) Å, b = 10.7743(3) Å, c = 26.0956(9) Å, α = 97.021(2)o, β = 95.951(2)°,

3 γ = 109.5960(10)o V = 2134.21(12) Å , T = 100(2) K, space group = P1, Z = 2,

-1 µ(Cu Kα) = 2.084 mm , 42932 reflections measured, 8576 independent reflections, (Rint = 0.0316). The final R1 values were 0.0311 (I > 2σ(I)). The final

2 wR(F ) values were 0.0458 (I > 2σ(I)). The final R1 values were 0.0464 (all data).

The final wR(F2) values were 0.0470 (all data). The goodness of fit on F2 was

1.919.

Crystal data for [P2Et(HBr)]: C12H36BrN7P2, Mr = 420.34, triclinic, a =

8.083(6) Å, b = 11.382(8) Å, c = 12.770(9) Å, α = 103.432(8)o, β = 94.526(9)°, γ =

3 110.465(8)o V = 1053.9(13) Å , T = 100(2) K, space group = P1, Z = 2, µ(Cu Kα)

-1 = 2.110 mm , 8312 reflections measured, 4225 independent reflections, (Rint =

2 0.0317). The final R1 values were 0.0401 (I > 2σ(I)). The final wR(F ) values were 0.0954 (I > 2σ(I)). The final R1 values were 0.0564 (all data). The final wR(F2) values were 0.01020 (all data). The goodness of fit on F2 was 1.022.

28 2.2.6 Preparations of [LiX(P2tBu)]2 (X = Cl or Br)

In the glove box, 300 μL (0.60 mmol) of P2tBu phosphazene base solution

(2M in THF) was added to a Schlenk flask that contained 0.60 mmol of LiX (LiCl

= 0.026 g, LiBr = 0.053 g) in THF (~15 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature. A colorless solution formed. The volatile compounds were slowly removed under reduced pressure (0.1 Torr, 25 oC) overnight and colorless crystals suitable for X- ray crystallography were isolated in the glove box. [LiCl(P2tBu)]2 was obtained in

88% yield and [LiBr(P2tBu)]2 84% yield. A small amount of crystals of a different morphology were manually isolated from the reaction flask of [LiBr(P2tBu)]2 and were determined to be [P2tBu(HBr)].

1 31 13 [LiCl(P2tBu)]2: The H, P and C NMR data were identical to that of free P2tBu.

1 31 13 [LiBr(P2tBu)]2: The H, P and C NMR data were identical to that of free P2tBu.

Crystal data for [LiCl(P2tBu)]2: C28H78Cl2Li2N14P4, Mr = 819.70, triclinic, a =

8.9389(4) Å, b = 13.1547(6) Å, c = 20.4250(9) Å, α = 102.085(2)o, β =

3 95.537(2)°, γ = 97.942(2)o, V = 2307.09(18) Å , T = 100(2) K, space group = P-

-1 1, Z = 2, µ(Mo Kα) = 0.316 mm , 44221 reflections measured, 9341 independent reflections, (Rint = 0.0467). The final R1 values were 0.0365 (I > 2σ(I)). The final wR(F2) values were 0.0773 (I > 2σ(I)). The final R1 values were 0.0569 (all data). The final wR(F2) values were 0.0.0858 (all data). The goodness of fit on

2 F was 1.042.

Crystal data for [LiBr(P2tBu)]2: C28H78Br2Li2N14P4, Mr = 908.62, monoclinic, a = 13.448(7) Å, b = 10.935(6) Å, c = 16.192(9) Å, β = 91.317(7)°, V = 2380(2)

29 3 -1 Å , T = 100(2) K, space group = P21/c, Z = 2, µ(Mo Kα) = 1.873 mm , 17880 reflections measured, 4831 independent reflections, (Rint = 0.0784). The final R1 values were 0.0530 (I > 2σ(I)). The final wR(F2) values were 0.1143 (I > 2σ(I)).

2 The final R1 values were 0.0962 (all data). The final wR(F ) values were 0.1309

2 (all data). The goodness of fit on F was 0.980.

Crystal data for [P2tBu(HBr)]: C14H40BrN7P2, Mr = 448.39, triclinic, a =

o 8.4512(10) Å, b = 10.9639(11) Å, c = 12.9679(13) Å, α = 106.871(6) , β =

3 92.383(7)°, γ = 94.124(6)o V = 1144.4(2) Å , T = 100(2) K, space group = P1, Z =

-1 2, µ(Mo Kα) = 1.947 mm , 17795 reflections measured, 4544 independent reflections, (Rint = 0.0978). The final R1 values were 0.0594 (I > 2σ(I)). The final

2 wR(F ) values were 0.1113 (I > 2σ(I)). The final R1 values were 0.1231 (all data).

The final wR(F2) values were 0.1316 (all data). The goodness of fit on F2 was

1.009.

2.2.7 Preparation of [ZnCl2(P2Et)]2

In the glove box, 100 μL (0.30 mmol) of P2Et phosphazene base was added to a Schlenk flask that contained 0.31 mmol of ZnCl2 (0.041 g) in THF

(~15 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature. A colorless solution was formed. The volatile compounds were slowly removed under reduced pressure (0.1 Torr, 25 oC) overnight and colorless crystals suitable for X-ray crystallography were

31 isolated in the glove box. [ZnCl2(P2Et)]2 was obtained in 83% yield. P NMR

2 2 1 (THF-d8): 14.9 ppm (d, JP,P = 74.1 Hz), 18.5 ppm (d, JP,P = 74.1 Hz). H NMR

30 3 3 (THF-d8): 1.03 ppm (t, JH,H = 7.2 Hz), 2.58 ppm (d, JP,H = 2.8 Hz ), 2.90 (dq,

3 13 2 JP,H = 7.2 Hz ). C NMR (THF-d8): 36.3 ppm (d, JP,C = 5.1 Hz), 37.1 ppm (d,

2 JP,C = 4.7 Hz), 39.5 ppm (m).

Crystal data for [ZnCl2(P2Et)]2: C24H70Cl4N14P4Zn2, Mr = 951.40, monoclinic, a = 10.7.04(3) Å, b =13.5723(5) Å, c = 15.3764(5) Å, β = 102.243(2)°

3 V = 2188.43(12) Å , T = 100(2) K, space group = P21/n, Z = 2, µ(Mo Kα) = 2.084

-1 mm , 24779 reflections measured, 4436 independent reflections, (Rint = 0.0556).

2 The final R1 values were 0.0322 (I > 2σ(I)). The final wR(F ) values were 0.0656

2 (I > 2σ(I)). The final R1 values were 0.0483 (all data). The final wR(F ) values were 0.0739 (all data). The goodness of fit on F2 was 1.035.

2.2.8 Preparation of [ZnCl2(P2tBu)]

In the glove box, 300 μL (0.60 mmol) of P2tBu phosphazene base solution

(2 M in THF) was added to a Schlenk flask that contained 0.62 mmol of ZnCl2

(0.083 g) in THF (~15 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature. A colorless solution formed. The volatile compounds were slowly removed under reduced pressure

(0.1 Torr, 25 oC) overnight and colorless crystals suitable for X-ray crystallography were isolated in the glove box. [ZnCl2(P2tBu)] was obtained in

31 2 2 80% yield. P NMR (THF-d8): 11.5 ppm (d, JP,P = 60.5 Hz), 12.8 ppm (d, JP,P

1 3 = 60.5 Hz). H NMR (THF-d8): 1.94 ppm (s), 3.11 ppm (s), 4.57 (d, JP,H = 9.7

13 2 2 Hz). C NMR (THF-d8): 32.6 ppm (d, JP,C = 9.4 Hz), 35.0 ppm (d, JP,C = 11.8

2 Hz), 38.9 ppm (d, JP,C = 2.4 Hz).

31 Crystal data for [ZnCl2(P2tBu)]: C14H39Cl2N7P2Zn, Mr = 503.73, orthorombic, a = 15.22556(3) Å, b = 15.7485(3) Å, c = 20.1467(5) Å, V =

3 -1 4842.30(18) Å , T = 100(2) K, space group = Pbca, Z = 8, µ(Mo Kα) =1.381 mm ,

31465 reflections measured, 4906 independent reflections, (Rint = 0.0602). The

2 final R1 values were 0.0533 (I > 2σ(I)). The final wR(F ) values were 0.1234 (I >

2 2σ(I)). The final R1 values were 0.0802 (all data). The final wR(F ) values were

2 0.1429 (all data). The goodness of fit on F was 1.153.

2.3 Results and Discussion

The reaction of LiX (X = Cl or Br) and ZnCl2 with phosphazene superbases (P2Et or P2tBu), with exclusion of water and air, gave 1:1 complexes as colorless crystals (Scheme 2.1.). THF was used for the reactions due to the limited solubility of the lithium reagents. The reactions were carried out using several different stoichiometries. Only the 1:1 complexes could be isolated. As shown by the crystal structures (see below) the solid forms of the lithium and complexes were dimeric with the exception of [ZnCl2(P2tBu)] which only could be isolated in its monomeric form. No reaction between LiF and either phosphazene superbase was observed, presumably due to the significantly higher lattice energy of LiF.14

The complexes in Scheme 2.1 were water sensitive in solution and in the solid state. Due to the high basicity of phosphazene superbases, even under the strictest anaerobic techniques protonic impurities were observed in both the 31P

1 and H NMR spectra. Crystals of protonated P2Et and P2tBu were isolated from

32 the reaction vessels (Figures 2.7 and 2.8). Electrospray ionization mass spectral studies of [Lewis acid(P2R)] complexes showed no parent ions and only fragmentation.

Scheme 2.1. The reaction of phosphazene superbases with groups 1 and 12

Lewis acids.

2.3.1 Crystal Structures

The thermal ellipsoid plots for the crystal structure of the [LiCl(P2Et)]2,

[LiBr(P2Et)]2, [ZnCl2(P2Et)]2, [LiCl(P2tBu)]2 [LiBr(P2tBu)]2 and [ZnCl2(P2tBu)] are shown in Figures 2.2-2.7. Selected distances and angles of the six structures are given in Table 2.1 and Table 2.2. In the four [LiX(P2R)]2 structures (X = Cl or

Br and R = Et or tBu) an Li/X four-membered ring is observed at the center of

33 the structure. Similar four-membered rings are also observed for dimeric complexes of LiX having two nitrogen donating such as [LiCl(dmp)]2,

[LiX(2-Me-Py)]2 and [LiBr(TMEDA) (dmp = dimethyl phenanthroline, 2-Me-Py =

15 2-methylpyridine and TMEDA = tetramethylethylenediamine). In [LiCl(P2Et)]2 and [LiBr(P2tBu)]2 this ring is planar. The Li-X bond lengths and bond angles within the core ring in all [LiX(P2R)]2 are similar to those observed in analogous structures.

The lithium atom in all four [LiX(P2R)]2 structures interacts most strongly with the imine nitrogen atom of phosphazene superbase, (N(1) or N(8)) and shows other weaker interactions. The strong lithium to imine nitrogen interactions (Li(1)-N(1) and Li(2)-N(8)) have a bond length range of 1.953(4) Å to

1.974(8) Å, which are all stronger interactions that those observed in the previously published structures mentioned above. [LiCl(P2tBu)]2 and

[LiBr(P2tBu)]2 both show a secondary Li-N short contact with a dimethylamino group of the phosphazene superbase of 2.326(3) Å to 2.489(4) Å, and weaker than Li-N interactions reported for the previously observed structures (average =

2.101 Å).

In [LiCl(P2tBu)]2 and [LiBr(P2Et)]2 the Li/X ring is not planar but is bent into a butterfly arrangement. The ring is composed of two planes (X(1), Li(1), X(2)

o and X(1), Li(2), X(2)) with angles between them of 162.59 for [LiCl(P2tBu)]2 and

o 173.95 for [LiBr(P2Et)]2. This butterfly arrangement has been seen previously in

o [LiBr(TMEDA)]2, which has a similar angle of 165.47 .

34

In earlier compounds, Li was four coordinate, being bound to two atoms and two nitrogen atoms. In [LiCl(P2tBu)]2 and [LiBr(P2tBu)]2 this holds true but not so in [LiCl(P2Et)]2 and [LiBr(P2Et)]2. The lithium atoms in [LiCl(P2Et)]2 have short contacts with the C(2) of the alkyl group of the phosphazene base unit at a distance of 2.758(4) Å. In [LiBr(P2Et)]2 the two lithium atoms vary their interactions within the structure itself. Li(1) has a short contact with C(2) of the alkyl group (2.882(6) Å) which is shorter than the Li(1)-C(2) interaction in

[LiCl(P2Et)]2. In contrast, Li(2) interacts with N(10) of one of the dimethyl amino groups. The interaction with the dimethyl amino group, Li(2)-N(10), at 2.489(4)

Å, is the longest Li-N bond distance in any of the [LiX(P2R)]2 structures. A third short contact is observed in [LiCl(P2Et)]2 and [LiBr(P2Et)]2. In [LiCl(P2Et)]2 Li(1) and Li(1A) have a short contact with C(10) and C(10A) at 3.323 Å. In

[LiBr(P2Et)]2 only Li(1) has a short contact with C(10) at 3.457 Å. Both of these interactions are long, just within the van der Waals distance for Li-C of 3.52 Å.

As seen in [(LiX[P2R])2 structures, [ZnCl2(P2Et)]2 forms a dimeric complex with a four-membered ring in the center. This ring is planar and is also seen with

16 similar compounds such as [ZnCl2(TMEDA)]2 and [ZnCl2(Me3SiNPPh2CH3)]2.

All of the Zn-Cl bond lengths of and bond angles within the ring of [(ZnCl2(P2Et)]2 are similar to those observed in these structures. The Zn-N distance to the imine nitrogen of the phosphazene superbase is shorter, at 1.941(2) Å, compared to an average Zn-N bind distance of 2.002 Å in similar structures. No other short contacts are observed between ZnCl2 and the phosphazene superbase.

35 [ZnCl2(P2tBu)] was only isolated as the monomeric complex. With the increased bulk from the t-Bu alkyl group on the phosphazene superbase, the monomeric complex is preferred over the sterically hindered dimeric complex.

The backbone of the phosphazene superbase is nearly linear (175.6(3)o). This is the largest angle for the backbone found in any of the six structures. The Zn-N distances to the imine and a dimethylamino group of the phosphazene base are

1.979(3) Å and 2.240(4) Å, respectively. The interaction formed with the imine nitrogen is stronger than the average Zn-N distance 2.075 Å observed in similar

Mes Me Mes Me monomeric complexes of [ZnCl2( dad )] ( dad = 1,4-bis(2,4,6-

17 trimethylphenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene) and [ZnCl2(bmpze)]

(bmpze = 1,2-bis(3,5-dimethylpyrazolyl)ethane]. The second short contact that is formed is with the nitrogen of a dimethylamino group and is a weaker interaction.

Figure 2.2. Thermal ellipsoid plot of the crystal structure of [LiCl(P2Et)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity. Short contact of

Li(1)-C(10) and Li(1A)-C(10A) observed but not shown.

36 Figure 2.3. Thermal ellipsoid plot of the crystal structure of [LiBr(P2Et)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity. Short contact of

Li(1)-C(10) observed but not shown.

Figure 2.4. Thermal ellipsoid plot of the crystal structure of [LiCl(P2tBu)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

37

Figure 2.5. Thermal ellipsoid plot of the crystal structure of [LiBr(P2tBu)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

Figure 2.6. Thermal ellipsoid plot of the crystal structure of [ZnCl2(P2Et)]2 drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

38

Figure 2.7. Thermal ellipsoid plot of the crystal structure of [ZnCl2(P2tBu)] drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

Figure 2.8. Thermal ellipsoid plot of the crystal structure of [P2tBu(HBr)] drawn at the 50% probability level.

39 Figure 2.9. Thermal ellipsoid plot of the crystal structure of [P2Et(HBr)] drawn at the 50% probability level.

40 o Table 2.1. Bond distances (Å) and angles ( ) of [LiCl(P2Et)]2, [LiBr(P2Et)]2 and

[ZnCl2(P2Et)]2.

Bond Bond Distance (Å)

[LiCl(P2Et)]2 [LiBr(P2E)t]2 [ZnCl2(P2Et)]2

M(1)-M(1A)/(2) 2.974(6) 3.143(4) 3.321(7)

M(1)-X(1) 2.312(6) 2.479(4) 2.3467(7)

M(1)-X(1A)/(2) 2.322(6) 2.538(4) 2.2280(7)

M(2)-X(1) - 2.475(4) -

M(2)-X(1A)/(2) - 2.477(4) -

M(1)-N(1) 1.964(6) 1.953(4) 1.941(2)

M(2)-N(8) - 1.944(4) -

M(1)-N(3) - - -

M(2)-N(10) - 2.489(4) -

M(1)/(1A)-C(2)/(2A) 2.758(6) 2.882(5) -

P(1)-N(1) 1.577(3) 1.568(5) 1.602(2)

P(1)-N(2) 1.595(3) 1.588(6) 1.574(2)

P(1)-N(3) 1.673(3) 1.640(7) 1.651(2)

P(1)-N(4) 1.682(3) 1.667(5) 1.660(2)

P(2)-N(2) 1.560(3) 1.522(6) 1.555(2)

P(2)-N(5) 1.6393(3) 1.645(6) 1.636(2)

P(2)-N(6) 1.660(3) 1.632(7) 1.653(2)

P(2)-N(7) 1.640(3) 1.706(11) 1.646(2)

X(1)-X(1A) 3.554(6) 3.863(8) 3.384(7)

Angle Bond Angle

M(1)-X(1)-M(2) 79.8(2) 77.62(12) 88.91(2)

X(1)-M(1)-X(2) 100.2(2) 102.1(4) 109.79(3)

M(1)-N(1)-P(1) 134.1(2) 130.77(14) 124.67(13)

P(1)-N(2)-P(2) 133.53(17) 148.09(12) 143.57(16)

41 Table 2.2. Bond distances (Å) and angles (o) of group 1 and 12 Lewis acids with

P2tBu phosphazene bases.

Bond Bond Distance (Å)

[LiCl(P2tBu)]2 [LiBr(P2tBu)]2 [ZnCl2(P2tBu)]

M(1)-M(1A)/(2) 2.920(7) 3.224(7) -

M(1)-X(1) 2.301(3) 2.483(7) 2.2243(14)

M(1)-X(1A)/(2) 2.326(3) 2.501(7) 2.2107(13)

M(2)-X(1) 2.350(3) - -

M(2)-X(1A)/(2) 2.308(3) - -

M(1)-N(1) 1.965(4) 1.974(8) 1.979(3)

M(2)-N(8) 2.017(4) - -

M(1)-N(3) 2.375(4) 2.326(9) 2.240(4)

M(2)-N(10) 2.209(4) - -

M(1)/(1A)-C(2)/(2A) - - -

P(1)-N(1) 1.5617(17) 1.569(4) 1.592(3)

P(1)-N(2) 1.5926(17) 1.589(4) 1.562(3)

P(1)-N(3) 1.6987(16) 1.700(4) 1.734(4)

P(1)-N(4) 1.6655(15) 1.656(4) 1.649(4)

P(2)-N(2) 1.5364(16) 1.537(4) 1.528(4)

P(2)-N(5) 1.6405(17) 1.641(4) 1.638(4)

P(2)-N(6) 1.6577(18) 1.651(4) 1.636(4)

P(2)-N(7) 1.6348(16) 1.649(4) 1.639(3)

X(1)-X(1A) 3.582(4) 3.803(4) -

Angle Bond Angle (o)

M(1)-X(1)-M(2) 77.77(12) 80.6(6) 80.6(3)

X(1)-M(1)-X(2) 101.46(13) 99.4(3) 99.4(3)

M(1)-N(1)-P(1) 101.4(3) 101.57(17) 101.4(3)

P(1)-N(2)-P(2) 163.6(3) 175.6(3) 163.6(3)

42 2.3.2 NMR Spectroscopy

2.3.2.1 P2Et Phosphazene Base and Group 1 and 12 Lewis Acid Complexes

31 Figure 2.10 shows the P NMR spectra of [ZnCl2(P2Et)]2, [LiBr(P2Et)]2,

o [LiCl(P2Et)]2 and P2Et in tetrahydrofuran-d8 solution at 30 C. The spectra give evidence that all three metal complexes exist in solution. As can be seen from the spectra, varying levels of broadening are observed for [LiBr•P2Et] and [LiCl•

P2Et] complexes at 12.7 ppm and 16.2 ppm, respectively, which are tentatively assigned to the imine-containing phosphorus. This broadening suggests that these complexes undergo some level of fluxional process in solution.

Resonances for [ZnCl2(P2Et)]2, however, show no broadening.

* * ZnCl (P Et)] 2 2 2

[LiBr(P Et)] * * 2 2

[LiCl(P Et)] * * 2 2

P Et * * 2

31 Figure 2.10. δ P (ppm) NMR spectra of [ZnCl2(P2Et)]2, [LiBr(P2Et)]2,

[LiCl(P2Et)]2 and P2Et in THF-d8. An asterisk (*) marks resonances of protonated impurities.

43 To study the fluxionality of these complexes, 31P and 7Li variable temperature (VT) NMR spectra of these adducts were obtained. Figure 2.11

31 shows the P VT spectra for [LiCl(P2Et)]2. As the temperature is lowered to -40 oC the resonance at 18.2 ppm begins to sharpen into a doublet and the coupling constant can be measured. At -60 oC, along with further sharpening of the major resonances in the spectra, two new sets of resonances appear at 19.1 ppm and

12.5 ppm which begin to form a set of doublets. The temperature was further decreased to –90 oC and these resonances still remained unresolved. The smallest set of doublets at 23.2 ppm and 11.5 ppm are due to the protonic impurities that are present throughout all the reactions that were performed

+ 31 utilizing phosphazene superbases and are assigned to H[P2Et] . The P VT

NMR spectra for [LiBr(P2Et)]2 show the same trend and as can be seen in Figure

2.12. The major resonances for [LiBr(P2Et)]2 did not completely resolve as did the resonances for [LiCl(P2Et])2; however, new resonances also become evident.

As the temperature is lowered, the resonance at 12.9 ppm begins to broaden before sharpening as the temperature is continually lowered.

We cannot firmly assign the new resonances that were observed in the low temperature NMR spectra of [LiX(P2Et)]2. It is known that in the presence of basic ligands, complexes of the type [LiX(L)n]m have been isolated as monomers, dimers, trimers, tetramers or polymers have been isolated. In general, complexes with higher m are more stable at lower temperatures.18 However, the activation energy ΔG‡ was determined to be 12.41 Kcal mol-1 based upon the

44 coalescence temperature of -20 oC (253 K) utilizing equations 2.1 and 2.2. This activation energy suggest that an intramolecular conversion is occurring, with each formation becoming evident at low temperatures.

o 20 C * *

o 0 C * *

o -20 C * *

o -40 C * *

o -60 C * *

31 Figure 2.11. VT δ P (ppm) NMR spectra of [LiCl(P2Et)] in tetrahydrofuran-d8 taken between -60 and 20 oC. The doublets at 23.2 ppm and 11.5 ppm are due

+ to a protonic impurity, H[P2Et] and the resonances are denoted with an asterisk

(*).

45 (2.1)

(2.2)

o 20 C * *

o * * 0 C

o -20 C * *

o -40 C * *

o * * -60 C

31 Figure 2.12. VT δ P (ppm) NMR spectra of [LiBr(P2Et)] in tetrahydrofuran-d8 taken between -60 and 20 oC. The doublets at 22.2 ppm and 10.7 ppm are due

+ to a protonic impurity, H[P2Et] and the resonances are denoted with an asterisk(*).

To better understand the interactions of [LiCl(P2Et)]2 and [LiBr(P2Et)]2 in solution, variable temperature 7Li NMR spectra were obtained. 7Li has high

46 receptivity and high natural abundance. However, due to the large quadrupole moment it has very broad resonances as well as a rather narrow spectral window.19 Because of this, the formation of new peaks or the shift of the main resonance may be difficult to detect. As can be seen from Figures 2.13 and

2.14, the resonance does not shift and no new resonances are observed.

However, with the decrease in temperature there is a slight broadening of the resonance and W½ increases from 7.38 Hz at 30 oC to 13.98 Hz at -60 oC for the

o o LiCl•P2Et complex and 7.28 Hz at 30 C to 13.98 Hz at -60 C for the LiBr•P2Et complex. This suggests that a species of lower symmetry is formed at lower temperatures.

W½ : 7.38 Hz o 20 C

7.60 Hz o 0 C

9.24 Hz o -20 C

13.25 Hz o -40 C

13.98 Hz o -60 C

7 Figure 2.13. The δ Li (ppm) NMR spectra of [LiCl(P2Et)] in tetrahydrofuran-d8 between -60 and 20 oC. The line width at half height of each resonance is also given.

47 o W½ : 7.28 Hz 20 C

o 7.28 Hz 0 C

o 9.24 Hz -20 C

o 13.25 Hz -40 C

o 13.98 Hz -60 C

7 Figure 2.14. The δ Li (ppm) NMR spectra of [LiBr(P2Et)] in tetrahydrofuran-d8 between -60 and 20 oC. The line width at half height of each resonance is also given

2.3.2.2 P2tBu Phosphazene Base and Groups 1 and 12 Lewis Acid Complexes

31 Figure 2.15 shows the P NMR spectra of [ZnCl2(P2tBu)]2, [LiBr(P2tBu)]2,

o [LiCl(P2tBu)]2 and P2tBu in tetrahydrofuran-d8 solution at 30 C. As opposed to the NMR spectra for [LiX(P2Et)]2, the spectra for [LiX(P2tBu)]2 show no evidence for the presence of complexes in solution. The only resonances that are evident correspond to the free base and the protonated base. This indicates that, although the [LiX(P2tBu)]2 complexes can be isolated in the solid state, they are not stable in solution. Even as the temperature is lowered, no evidence of new

31 resonances can be observed in the P NMR spectra (Figure 2.16) and the W1/2 in the 7Li NMR spectra (Figure 2.17) does not broaden, further supporting the

48 7 instability of LiX•P2tBu complexes in solution. The resonance observed in the Li

NMR spectra is attributed to LiX(THF)4 (X = Cl or Br) because all samples were dissolved in D-THF. The spectra for ZnCl2•P2tBu however shows no occurrence of free base, showing only evidence of ZnCl2•P2tBu and the protonated base structure.

* * [ZnCl (P tBu)] # 2 2 2

[LiBr(P tBu)] * * 2 2

[LiCl(P tBu)] * * 2 2

P tBu 2

31 Figure 2.15. The δ P (ppm) NMR spectra of [ZnCl2(P2tBu)]2, [LiBr(P2tBu)]2,

[LiCl(P2tBu)]2 and P2tBu in tetrahydrofuran -d8. An asterisk (*) marks resonances of

+ protonated impurities H[P2tBu] . Hash mark (#) represents artifact of the instrument.

49 o 20 C * *

o

* * 0 C

o -20 C * *

o -40 C * *

o * * -60 C

31 Figure 2.16. VT δ P (ppm) NMR spectra of [LiBr(P2tBu)]2 in tetrahydrofuran-d8 taken between -60 and 20 oC. The doublets at 17.2 ppm and 13.2 ppm are due

+ to a protonic impurity, H[P2tBu] , the resonances are denoted with an asterisk (*).

o W½ : 6.12 Hz 20 C

o 6.33 Hz 0 C

o 6.26 Hz -20 C

o 6.80 Hz -40 C

o 6.80 Hz -60 C

7 Figure 2.17. The δ Li (ppm) NMR spectra of [LiBr(P2tBu)] in tetrahydrofuran-d8 between -60 and 20 oC. The line width at half height of each resonance is also given.

50 2.4 Conclusion

Reaction of P2 phosphazene superbases with group 1 and group 12 Lewis acids gave complexes of the general formula [MX•P2R] (R = Et or tBu, M = Li or

ZnCl, and X = Cl or Br). The complexes isolatable in the solid state with five of the six existing as dimers. The exception was [ZnCl2(P2tBu)] which was isolated as the monomer. All four complexes containing the Lewis acid LiX (X = Cl or Br) showed some level of instability in THF solution. Both complexes of [LiX(P2Et)]2 showed exchange via 31P NMR at room temperature, with new resonances becoming evident at low temperatures. [LiCl(P2tBu)]2 and [LiBr(P2tBu)]2 were

o unstable in THF-d8 solution even at temperatures as low as -60 C. The

7 resonance observed in the Li NMR spectra is attributed to LiX(THF)4 (X = Cl or

Br) because all samples were dissolved in D-THF.

2.5 References

(1) Ishikawa, T.; Harwood, L. M. Synlett, 2013, 24, 2507-2509.

(2) Schwesinger, R.; Schlemper, H. Angew. Chem. Int Ed. Engl. 1987, 26, 1167-1171.

(3) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletchinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G.; Peters, E.; Peters, K.; von Schnering, G. H.; Walz, L. Liebigs Ann., 1996, 1055-1081.

(4) Botleau, S.; Illy, N.; Progress in Polymer Science, 2011, 36, 1132-.1151.

(5) Köppel, I. A.; Schwesinger, R.; Beruer, T.; Burk, P.; Herodes, K.; Koppel, I.; Leito, I.; Mishima, M. J. Phys. Chem. A., 2001, 105, 9575-9586.

(6) Kögel, J. F.; Kneusels, N. J.; Sundermeyer, J. Chem. Commun., 2014, 50, 4319- 4321.

(7) (a) Stephan, D. W. Top Curr. Chem. 2013, 332, 1-44. (b) Welch, G. C.; Cabrera, L.; Chase, P. a; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407.

51 (8) Shriver, D. F.; Drexdon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.

(9) Plesch, P. H. High Vacuum Techniques for Chemical Syntheses and Measurements, Cambridge University Press: New York, 1989.

(10)Armarego, W. L.; Chai, C. L.; Purification of Laboratory Chemicals, 7th ed.; Pergamon: Elmsford, NY, 2013.

(11) Bruker (1997). SMART (Version 5.625), SAINT (Version 6.22) and SHELXTL (Version 6.10)

(12) Bruker (2007). APEX II. Bruker AXS Inc., Madison, Wisconsin, USA.

(13) G.M. Sheldrick, Acta Cryst. 2008, A64, 112.

(14) Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; In : Principles of Structure and Reactivity, HarperCollins College Publishers, 1993, Chapter 4

(15) (a) Buttery, J. H. N.; Effendy; Mutrofin, S.; Plackett, N. C.; Skelton, B. W.; Whitaker, C. R.; White, A. H. ZAAC, 2006, 10, 1809-1828. (b) Raston, C. L.; Whitaker, C. R.; White, A. H.; J. Chem. Soc., Dalton Trans., 1988, 991-998.

(16) (a) Gimenez, R.; Manrique, A. B.; Uriel, S.; Babera, J.; Serrano, J. L. Chem. Commun., 2004, 18, 2064-2065. (b) Cardenas, C. V.; Hernandez, M. A. M.; Grevy, J. M. Dalton Trans., 2010, 39, 6441-6448.

(17) Greene, A. F.; Chandrasekaran, P.; Yan, Y.; Mague, J. T.; Donahue, J. P. Inorg. Chem., 2013, 53, 308-317.

(18) Reich, H. J. Chem Revs., 2013, 113, 7130-7178.

(19) Elschenbroich, C. Organometallics, Wiley-VCH, Weinheim, 2006; Chapter 5.

52 CHAPTER III

GROUP 13 LEWIS ACID ADDUCTS OF PHOSPHAZENE SUPERBASES

3.1 Introduction

Lewis acids and bases have played integral roles in many areas of chemistry and were first proposed in the early 1920’s. 1 Recently, electron donor/acceptor pairs with increased steric bulk that impedes the formation of classic Lewis acid/base adducts have opened new and interesting reaction pathways. These systems have been termed frustrated Lewis pairs (FLPs) and have become a fast developing field of research over the past decade. Many applications have been developed for FLPs, including metal free

2 3 hydrogenations, capture of CO2, as well as being initiators in several polymerizations.4

As discussed in section 1.4.1, phosphazene superbases have been used in several FLP studies, including adducts with group 13 Lewis acids.4a Herein an investigation of the Lewis basicity of the phosphazene superbase P2Et and P2tBu with various halide-containing group 13 Lewis acids is described. These adducts were characterized utilizing variable-temperature NMR, multinuclear NMR and X- ray crystallographic studies and their FLP capabilities were investigated.

53 3.2 Experimental

This section describes the general experimental methods, materials used, characterization techniques and syntheses.

3.2.1 General Procedures

All manipulations and reactions were performed under argon and nitrogen using standard anaerobic techniques.5,6 The high vacuum line had an ultimate capability of 2x10-4 torr. The atmosphere of the glove box was routinely checked by a light bulb test and the level of oxygen was kept between 1 and 5 ppm. All glassware used was dried overnight in the oven (~120 oC) and when removed, the hot glassware was immediately placed in the port of the glove box and subjected to vacuum. The glassware used for these experiments was made with

Fisher-Porter Solv-seal glass joints. High vacuum valves on the flasks were purchased from Kimble-Kontes.

3.2.2 Materials

Tetrahydrofuran (THF) was purified using a solvent system manufactured by PureSolv™. Deuterated THF and CHCl3 were purchased from Cambridge

Isotopes, distilled from freshly activated 4 Å sieves three times and stored in the glove box, over freshly activated 4 Å sieves, in foil-wrapped storage tubes. All phosphazene superbases were purchased from Sigma Aldrich, stored in the glove box and used as received. MX3 (M = Al, Ga and In) Lewis acids, were

54 purchased from Sigma Aldrich, purified by sublimation on the high vacuum line and stored in the dry box until used.

3.2.3 NMR Spectroscopy

NMR samples were prepared in a glove-box and all NMR tubes were flame sealed under vacuum. Routine 31P and 1H NMR data were obtained using a Varian 500 MHz instrument. Variable temperature (VT) NMR data were collected using the Varian INOVA 400 MHz NMR spectrometer with a 5 mm switchable probe. Proton NMR spectra were referenced to residual proton resonance in the deuterated solvent. An external reference of H3PO4 in deuterated THF (0 ppm) was used for 31P NMR spectra.

3.2.4 X-ray Crystallography

In a glove box, crystals were put into Paratone oil on a glass slide. The slide was transported from the glove-box to the instrument in a desiccator filled with argon. The crystals were immediately mounted to minimize exposure to the atmosphere.

Crystal structure data sets were collected at 100 K on a Bruker APEX II

Duo CCD system equipped with a Cu ImuS micro-focus source (λ = 1.54178 Å) and graphite-monochromated Mo KR radiation (λ = 0.71073 Å). The unit cell was determined by using reflections from three different orientations. The data was integrated using SAINT. 7 , 8 An empirical absorption correction and other corrections were applied to the data using multi-scan SADABS.8 Structure

55 solution, refinement, and modeling were accomplished by using the Bruker

SHELXTL package.8, 9 The structure was determined by full-matrix least-squares refinement of F2 and the selection of the appropriate atoms from the generated difference map. Hydrogen atom positions were calculated and Uiso(H) values were fixed according to a riding model. Crystals structures of [GaCl3(P2Et)] and

[InCl3(P2Et)] were collected and solved by Patrick O. Wagers. Crystal structures of [AlCl3(P2tBu)] and [GaCl3(P2tBu)] were collected by Patrick O. Wagers and solved by Mathew J. Panzner.

3.2.5 Preparations of [MCl3(P2Et)] (M = Al, Ga or In)

In the glove box, 100 μL (0.30 mmol) of P2Et phosphazene base was added to a Schlenk flask containing 0.32 mmol of MX3 (AlCl3 = 0.040 g, GaCl3 =

0.055 g and InCl3 = 0.067 g) in hexanes (~20 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature. A colorless solution formed. The volatile compounds were removed to yield an amorphous white solid for [GaCl3(P2Et)] and [InCl3(P2Et)] and a brown-yellow oil for [AlCl3(P2Et)]. The material was redissolved in THF (~20 mL) and stirred overnight. The volatile compounds were slowly removed under reduced

o pressure (0.1 Torr, 25 C) overnight. Colorless crystals for [GaCl3(P2Et)] and

[InCl3(P2Et)] complexes suitable for X-ray crystallography were able to be isolated in the glove box. [AlCl3(P2Et)] formed as a brown-yellow oil and crystals of the complex were not isolated. [AlCl3(P2Et)], [GaCl3(P2Et)], and [InCl3(P2Et)] were obtained in 84% yield, 91% yield and 90% yield respectively.

56

31 2 2 [AlCl3(P2Et)]: P NMR (CDCl3): 13.4 ppm (d, JP,P = 70.0 Hz), 13.6 ppm (d, JP,P

2 2 1 = 70.0 Hz), 18.4 ppm (d, JP,P = 70.0 Hz) 20.2 ppm (d, JP,P = 70.0 Hz). H

3 (CDCl3): 1.18 ppm (t, JH,H = 6.7 Hz), 2.67 ppm (m), 2.91 ppm (m), 3.17 ppm (dq,

3 13 JH,H = 6.9 Hz). C NMR (CDCl3): 36.6 ppm (b), 35.9 ppm (b).

31 2 [GaCl3(P2Et)]: P NMR (CDCl3): 13.7 ppm (d, JP,P = 74.1 Hz) 18.4 ppm (d,

2 2 1 3 JP,P = 74.1 Hz), 19.6 ppm (d, JP,P = 66.7 Hz). H (CDCl3): 1.18 ppm (t, JH,H =

3 13 8.9 Hz), 1.82 ppm (m), 2.91 ppm (m), 3.17 ppm (dq, JH,H = 7.4 Hz). C NMR

(CDCl3): 34.1 ppm (b), 37.7 ppm (b).

Crystal data for [GaCl3(P2Et)]: C12H35Cl3InN7P2, Mr = 560.58, monoclinic, a

3 = 12.5936(3) Å, b = 11.8433(3) Å, c = 15.8826(3) Å, V = 2367.6(3) Å , T = 100(2)

-1 K, space group = P2(1)2(1)2(1), Z = 4, µ(Cu Kα) = 1.873 mm , 22775 reflections measured, 4752 independent reflections, (Rint = 0.0270). The final R1 values were 0.0710 (I > 2σ(I)). The final wR(F2) values were 0.1634 (I > 2σ(I)). The

2 final R1 values were 0.0729 (all data). The final wR(F ) values were 0.1643 (all data). The goodness of fit on F2 was 1.233.

31 1 [InCl3(P2Et)]: P NMR (CDCl3): 11.2 ppm(d), 15.8 ppm (d), 17.1 ppm (d), H

13 (CDCl3): 1.20 ppm (m), 2.66 ppm (m), 2.90 ppm (m), 3.06 ppm (m). C NMR

(CDCl3): 35.4 ppm (b), 38.9 ppm (b).

Crystal data for [InCl3(P2Et)]: C12H35Cl3GaN7P2, Mr = 515.48, orthorhombic, a = 10.6448(8) Å, b = 11.8433(3) Å, c = 15.8826(3) Å, V

3 =2363.92(9) Å , T = 100(2) K, space group = P2(1)/c, Z = 4, µ(Cu Kα) = 1.873

-1 mm , 24277 reflections measured, 4799 independent reflections, (Rint = 0.0275).

2 The final R1 values were 0.0170 (I > 2σ(I)). The final wR(F ) values were 0.0414

57 2 (I > 2σ(I)). The final R1 values were 0.0200 (all data). The final wR(F ) values were 0.0.0433 (all data). The goodness of fit on F2 was 1.047.

3.2.6 Preparations of [MCl3(P2tBu)] (M = Al, Ga or In)

In the glove box, 200 μL (0.40 mmol) of P2tBu phosphazene base was added to a Schlenk flask containing 0.41 mmol of MX3 (AlCl3 = 0.053 g, GaCl3 =

0.070 g and InCl3 = 0.088 g) in hexane (~20 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature. A colorless solution formed. The volatile compounds were removed to yield an amorphous white solid. The material was redissolved in THF (~20 mL) and set to stir overnight. The volatile compounds were slowly removed under reduced

o pressure (0.1 Torr, 25 C) overnight. Colorless crystals for [AlCl3(P2tBu)] and

[GaCl3(P2tBu)] that were suitable for X-ray crystallography were grown from THF and were isolated in the glove box. [InCl3(P2tBu)] formed as a white amorphous solid and suitable crystals could not to be isolated. [AlCl3(P2tBu)], [GaCl3(P2tBu)], and [InCl3(P2tBu)] were obtained in 91% yield, 88%, yield and 82% yield respectively.

31 2 [AlCl3(P2tBu)]: P NMR (CDCl3): 13.4 ppm (d, JP,P = 76.1 Hz), 13.6 ppm

2 1 (d, JP,P = 69.2 Hz), 18.4 ppm (d, JP,P = 76.2 Hz) 20.2 ppm (d, JP,P = 69.2 Hz), H

3 (CDCl3): 1.32 ppm (s), 1.54 ppm (s), 2.66 ppm (d, JP,H = 10.3 Hz), 2.71 ppm (d,

3 13 2 JP,H = 9.5 Hz). C NMR (CDCl3): 32.9 ppm (b), 36.6 ppm (d, JP,C = 5.7 Hz).

Crystal data for AlCl3•P2tBu: C14H39AlCl3N7P2, Mr = 500.79, triclinic, a =

10.6194(4) Å, b = 14.7707(5) Å, c = 16.5310(6) Å, α = 91.412(2)o, β = 91.682(2)°,

58 3 γ = 105.049(2)o V =2501.58(16) Å , T = 100(2) K, space group = P-1, Z = 4, µ(Mo

-1 Kα) = 0.545 mm , 16699 reflections measured, 16699 independent reflections,

2 (Rint = 0.0000). The final R1 values were 0.0439 (I > 2σ(I)). The final wR(F ) values were 0.1091 (I > 2σ(I)). The final R1 values were 0.0510 (all data). The final wR(F2) values were 0.1124 (all data). The goodness of fit on F2 was 1.118.

31 2 [GaCl3(P2tBu)]: P NMR (CDCl3): 6.2 ppm (d, JP,P = 66.7 Hz), 7.8 ppm

2 2 2 (d, JP,P = 81.5 Hz), 12.3 ppm (d, JP,P = 81.5 Hz), ), 14.8 ppm (d, JP,P = 66.7

1 13 Hz). H (CDCl3): 1.54 ppm (s), 2.67 ppm (m), 2.91 ppm (m). C NMR (CDCl3):

38.8 ppm (b), 31.0 ppm (b).

Crystal data for [GaCl3(P2tBu)]: C14H39Cl3GaN7P2, Mr = 543.53, triclinic, a =

3 10.6819(3) Å, b = 14.6848(4) Å, c = 16.6312(5) Å, V = 2518.97(12) Å , T =

-1 100(2) K, space group = P-1, Z = 4, µ(Cu Kα) = 1.552 mm , 19417 reflections measured, 19417 independent reflections, (Rint = 0.0000). The final R1 values were 0.0452 (I > 2σ(I)). The final wR(F2) values were 0.1055 (I > 2σ(I)). The

2 final R1 values were 0.0671 (all data). The final wR(F ) values were 0.1144 (all data). The goodness of fit on F2 was 1.087.

31 2 [InCl3(P2tBu)]: P NMR (CDCl3): 14.1 ppm (d, JP,P = 74.1 Hz), 15.9 ppm

2 2 2 (d, JP,P = 74.1 Hz), 21.8 ppm (d, JP,P = 74.1 Hz), 23.7 ppm (d, JP,P = 74.1 Hz).

1 13 2 H (CDCl3): 2.94 ppm (s), 4.35 ppm (m). C NMR (CDCl3): 36.1 ppm (d, JP,C =

4.6 Hz), 41.9 ppm (b).

59

3.2.7 Attempted activation of H2(g) utilizing [MX3(P2tBu)] complexes

In the glove box, 200 μL (0.40 mmol) of P2tBu phosphazene base was added to a Schlenk flask containing 0.41 mmol of MX3 (AlCl3 = 0.053 g, GaCl3 =

0.070 g and InCl3 = 0.088 g) in toluene (~20 mL). The flask was removed from the glove box and the suspension was stirred overnight at room temperature.

The solution was purged with 5% H2(g) in Ar(g) for ~1 hr and stirred under this atmosphere overnight. The volatile compounds were slowly removed under reduced pressure (0.1 Torr, 25 oC) to yield an amorphous solid. The solids were identified as [MX3(P2tBu)] by NMR spectroscopy.

3.3 Results and Discussion

The reaction of MX3 (M = Al, Ga or In) and P2Et and P2tBu phosphazene superbases with exclusion of water and air gave 1:1 complexes (Eq. 1). The

Group 13 complexes were prepared from hexanes and [AlCl3(P2tBu)],

[GaCl3(P2Et)], [GaCl3(P2tBu)] and [InCl3(P2Et)] were recrystallized from THF.

Crystals suitable for X-ray diffraction of [AlCl3(P2Et)] and [InCl3(P2tBu)] could not be isolated. The adducts showed good solubility in a variety of solvents such as

CHCl3, CH2Cl2, and THF. The reactivity of the [MX3(P2R)] adducts toward dry CHCl3 is decreased relative to free base. [MX3(P2R)] could be dissolved in CHCl3 without reaction whereas P2Et and P2tBu interact with CHCl3, presumably by proton abstraction, producing a dark brown solution.

60 3.3.1 X-ray Crystal Structures

The thermal ellipsoid plots for the crystal structures of [AlCl3(P2tBu)],

[GaCl3(P2Et)], [GaCl3(P2tBu)], and [InCl3(P2Et)] are shown in Figures 3.1 and 3.2.

Selected distances and angles of the structures are given in Table 3.1. Both

[AlCl3(P2tBu)] and [GaCl3(P2tBu)] were solved as non-merohedral twins. These four complexes are best viewed as two different sets of structures classified by phosphazene superbase. P2tBu and P2Et have different steric requirements and different electronic effects. Both factors are significant when discussing Group13 adducts.10 A proton is small enough that the steric difference between the two bases would be negligible; therefore, electronic factors would be primarily reflected in the difference in the pKa of the protonated superbases. The different steric requirements can be measured by comparing the angle between the α- carbon atom of the alkyl group and the phosphazene backbone of the two GaCl3

61 o adducts. In (GaCl3(P2Et)], the C(1)-N(1)-P(1) angle is 115.7(5) whereas this

o angle is 123.1(4) and thereby ~7 degrees larger in (GaCl3(P2tBu)]. As seen in

Figure 3.1, Ga(1) in [GaCl3(P2Et)] is four-coordinate whereas In(1) in [InCl3(P2Et)] is five-coordinate. As expected, the smaller metal (covalent radii of Ga = 1.22 Å and In = 1.42 Å)11 has a larger coordination number. In Figure 3.2, the metal in both [MCl3(P2tBu)] structures is five-coordinate being that both metals, Al and

Ga, have similar covalent radii of 1.21 Å and 1.22 Å respectively.

In all four crystal structures, the metal has interactions with the imine nitrogen of the phosphazene superbase. For [AlCl3(P2tBu)] this Al-N bond length is 1.893(2) Å, which is shorter than the average Al-N bond distance of 2.044 Å,

12 seen in similar five-coordinate aluminum complexes such as [AlCl3(IP)] (IP =

13 iminopyridine) and (AlCl3(NH(Me3)2). A second Al-N short contact is observed between Al(1) and a dimethylamino group of the phosphazene superbase. This interaction is much weaker and is significantly longer at 2.507(2) Å, compared to an average Al-N distance of 2.044 Å previously discussed. The Ga(1)-N(1) bond distances for [GaCl3(P2Et)], and [GaCl3(P2tBu)] were 1.883(6) Å, and 1.919(3) Å respectively, compared to the average Ga-N distance of distance of 2.081 Å in similar structures. As can be seen from the thermal ellipsoid plot of

[GaCl3(P2Et)], a significant amount of disorder in the positions of Cl(2) and Cl(3).

This disorder is not seen in Cl(1) however. In [GaCl3(P2Et)] the metal remains

14 tetracoordinate, as is seen in structures of [GaCl3(Py)] and [GaCl3([P3Cl5N3)], which is the only other GaCl3 adduct of a phosphazene reported. The Ga-N bond in the phosphazene complex [GaCl3([P3Cl5N3)] is longer (2.048 Å) than that

62 observed in [GaCl3(P2tBu)] (1.883(6) Å). Whereas Ga(1) in [GaCl3(P2Et)] is tetracoordinate, in [GaCl3(P2tBu)] there is a second Ga-N short contact with N(3) of one of the dimethylamino groups is observed with a Ga-N distance of 2.829(4)

Å. With this short contact, the metal becomes five-coordinate.

As in the above (MCl3[P2R)] structures, the metal in [InCl3(P2Et)] interacts with the imine nitrogen of the phosphazene superbase with a distance of

2.0732(13) Å. A short In(1)-N(2) contact with the phosphazene backbone is also observed with a distance 2.9120(4) Å. This interaction with the backbone may decrease the vibrations in the molecule thus increase the rigidity of the

[InCl3(P2Et)] because a very low R value was observed for the structure. For

15 comparison, the average In-N bond distance in complexes of [InCl3(N(tBu3)]

16 and [InCl3(MeN(Mes2)] is 2.321 Å. In these complexes however, the coordination polyhedron of In is trigonal bipyramidal, having both nitrogen donating ligands in the axial positions. Structures of indium compounds that contain bisnitrogen chelating ligands were not found for comparison.

63 (a)

(b)

Figure 3.1. Thermal ellipsoid plot for crystal structures of (a) [GaCl3(P2Et)] and

(b) [InCl3(P2Et)] drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

64 (a)

(b)

Figure 3.2. Thermal ellipsoid plot for crystal structures of (a) [AlCl3(P2tBu)] and

(b) [GaCl3(P2tBu)] drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

65 o Table 3.1. Selected bond distances (Å) and angles ( ) in [AlCl3(P2tBu)],

[GaCl3(P2tBu)], [GaCl3(P2Et)], and [InCl3(P2Et)].

Bond Bond Distance (Å)

AlCl3•P2tBu GaCl3•P2tBu GaCl3•P2Et InCl3•P2Et

M(1)-N(1) 1.893(2) 1.919(3) 1.883(6) 2.0732(13)

M(1)-N(2) - - - 2.9122(10)

M(1)-N(3) 2.507(3) 2.829(4) - -

M(1)-Cl(1) 2.1726(10) 2.1963(11) 2.168(2) 2.3730(4)

M(1)-Cl(2) 2.2119(10) 2.2266(11) 2.167(3) 2.3626(4)

M(1)-Cl(3) 2.1648(10) 2.1944(11) 2.160(3) 2.4068(4)

P(1)-N(1) 1.620(2) 1.626(3) 1.608(6) 1.6197(14)

P(1)-N(2) 1.713(2) 1.553(3) 1.558(6) 1.5981(13)

Angle Bond Angle

M(1)-N(1)-P(1) 109.99(12) 115.84(17) 128.7(4) 115.73(7)

N(1)-P(1)-N(2) 97.47(11) 117.71(18) 114.6(3) 103.50(7)

P(1)-N(2)-P(2) 165.53(16) 167.5(2) 146.0(4) 133.37(9)

3.3.2 NMR Spectroscopy

31 Figures 3.3 and 3.6 contain P NMR spectra of unreacted P2R,

[AlCl3(P2R)], [GaCl3(P2R)], and [InCl3(P2R)] (R = Et or tBu) in THF-d8. In all spectra with the exception of the spectra for [AlCl3(P2Et)] and [GaCl3(P2Et)], two distinct set of doublets are evident. In the solid state structures, the metal has been shown to be either five-coordinate or four-coordinate. It is a possible that in solution there is an equilibrium of the intramolecular conversion between the

66 metal being four-coordinate and five-coordinate (Figure 3.5), giving rise to the second set of doublets that is observed. The coupling constants in each spectrum are nearly identical. The possibility of the second set of doublets being

+ 31 [HP2R] is ruled out based upon work done in chapter II. In the P NMR spectra for the adducts [AlCl3(P2Et)] and [GaCl3(P2Et)], only three doublets are observed.

The integration of resonance furthest upfield (13.6 ppm in both spectra) is equal to the summation of the integrations of the other two resonances, indicating the possibility that another doublet is present at nearly the same chemical shift. In the spectra for [AlCl3(P2Et)], another doublet can be seen at ~13.6 ppm (Figure

3.4).

[InCl3(P2Et)]

[GaCl3(P2Et)]

[AlCl3(P2Et)]

P Et 2

31 Figure 3.3. δ P (ppm) NMR spectra [InCl3(P2Et)], [GaCl3(P2Et)], [AlCl3(P2Et)], and P2Et in THF-d8.

67 [InCl3(P2Et)]

[GaCl3(P2Et)]

[AlCl3(P2Et)]

P Et 2

31 Figure 3.4. δ P (ppm) NMR spectra [InCl3(P2Et)], [GaCl3(P2Et), [AlCl3(P2E)], and P2Et in THF-d8.

Figure 3.5. Possible equilibria of intramolecular conversion of Group 13 metal in

[MCl3(P2Et)] between four-coordinate and five-coordinate.

68 [InCl3(P2tBu)]

(*) [GaCl3(P2tBu)]

(*) [AlCl3(P2tBu)]

P tBu (*) 2

31 Figure 3.6. δ P (ppm) NMR spectra [InCl3(P2tBu)], [GaCl3(P2tBu)],

[AlCl3(P2tBu)], and P2tBu in THF-d8. Anomaly seen at 0.0 ppm is an artifact of the instrument, indicated by an asterisk (*).

3.4 Conclusions

Reaction of P2 phosphazene superbases with group 13 Lewis acids gave complexes of the general formula [MCl3(P2R)] (R = Et or tBu, M = Al, Ga, or In).

Complexes of [AlCl3(P2tBu)], [GaCl3(P2Et)], [GaCl3(P2tBu)], and [InCl3(P2Et)] were able to be isolated in the solid state. In [GaCl3(P2Et)] the metal is four- coordinate whereas the metal is five-coordinate in the other three structures.

The 31P NMR spectra for all complexes showed the two set of doublets. These

69 doublets could be indicative of an equilibrium existing in solution of an intramolecular conversion between the metal being four-coordinate and five- coordinate. The FLP capabilities of [MCl3(P2R)] complexes was investigated via the attempted activation of H2(g). Activation of H2(g) was not observed via solution NMR.

3.5 References

(1) G. N. Lewis, Valence and the Structure of Atoms and Molecules, Chemical Catalogue Company, Inc., New York, 1923.

(2) (a) Stephan, D. W. Top Curr. Chem. 2013, 332, 1-44. (b) Welch, G. C.; Cabrera, L.; Chase, P. a; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407. (b) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 2, 5072. (c) Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem., Int. Ed. 2012, 51, 10164. (d) Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.

(3) (a) Momming, C. M.; Otten, E.; Kehr, G.; Frohlich, R.; Grimme, S.; Stephan, D. W.; Erker, G., Angew Chem Int Ed, 2009, 48, 6643-6645. (b) Peuser, I.; Neu, R. C.; Zhao, X.; Ulrich, M.; Schirmer, B.; Tannert, J. A.; Kehr, G.; Frohlich R.; Grimme, S.; Erker, G.; Stephan, D. W., Chem Eur. J., 2011, 17, 9640-9644. (c) Zhao, X.; Stephan, D.W., Chem. Commun, 2011, 47, 1833-1835.

(4) (a) Chen, E. Y. Top Curr. Chem. 2013, 239. (b) Stephan, D. W. Top Curr. Chem. 2013, 332, 1-44. (c) Welch, G. C.; Cabrera, L.; Chase, P. a; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407.

(5) Shriver, D. F.; Drexdon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.

(6) Plesch, P. H. High Vacuum Techniques for Chemical Syntheses and Measurements, Cambridge University Press: New York, 1989.

(7) Bruker (1997). SMART (Version 5.625), SAINT (Version 6.22) and SHELXTL (Version 6.10)

(8) Bruker (2007). APEX II. Bruker AXS Inc., Madison, Wisconsin, USA.

(9) G.M. Sheldrick, Acta Cryst. 2008, A64, 112.

70

(10) Aldridge, S.; Downs, A. J. ed. The Group 13 Metals Aluminum, , Indium and Thallium: Chemical Patterns and Peculiarities; Wiley-VCH: New York, NY., 2011.

(11) Emsley, J. ed. The Elements, Oxford, En., 1991.

(12) Myers, T. W.; Kazem, N.; Stoll, S.; Britt, D. R.; Shanmugam, M.; Berben, L. A. J. Am. Chem. Soc., 2011, 133, 8862-8672.

(13) Robinson, G. H., ed. Coordination Chemistry of Aluminum; Wiley-VCH: New York, NY.,1993.

(14) (a) Timoshkin, A. Y.; Bodensteiner, M.; Sevastianova, T. N.; Lisovenko, A. S.; Davydova, E. I.; Scheer, M.; Grabl, C.; Butlak, A. V. Inorg. Chem., 2011, 51, 11602- 11611. (b) Tun, Zin-Min; Heston, A. J.; Panzner, M. J; Medvtz, D. A.; Wright, B. D.; Savant, D.; Dudipala, V.; Banerjee, D.; Rinaldi, P. L.; Youngs, W. J.; Tessier, C. A. Inorg Chem., 2011, 50, 8937-8945.

(15) Pauls, J.; Chitsaz, S.; Neumϋller, B. Z. Anorg. Allg. Chem., 2001, 627, 1723-1730.

(16) Karia, R.; Willey, G. R.; Drew, B. G. M., .Acta. Crys. Sect. C, 1986, 42, 558-560.

71 CHAPTER IV

INTERACTIONS OF PHOSPHAZENE SUPERBASES WITH

PHOSPHONITRILIC CHLORIDE

4.1 Introduction

Polyphosphazenes are an important class of macromolecules. Many applications have been developed for them due to the ease of macromolecular

1 substitution of the parent chloro-polymer ([PCl2N]n). However, due to inconsistencies regarding the synthesis of [PCl2N]n and low yields of the polymerization, the commercial viability of polyphosphazenes has remained low.2

Phosphazene polymers are classically synthesized via high-temperature ring- opening polymerization (ROP) of cyclic phosphonitrilic chloride trimer ([PCl2N]3) to yield [PCl2N]n which then can be functionalized with a variety of different side groups.1a The mechanism of the polymerization is not well understood and is still under debate.1,3,4 The favored mechanism, which was discussed in chapter 1, involves the abstraction of a halide from [PCl2N]3 to produce the cationic initiating

2a species 1.1 (Scheme 1.5). Attack of 1.1 by the nitrogen of a cyclic [PCl2N]3 would produce the tadpole structure 1.2, seen in Scheme 1.5. Even though structure 1.2 has been implicated as the product of the initiating step in the ROP of [PCl2N]3, polymers or oligomers that clearly show a tadpole structure have not

72 been isolated. The exception has been the isolation of the fluoro-phosphazene analog, mentioned in chapter 1 (Scheme 1.7).5

The search for initiators and catalysts for the ROP has been well studied and includes a wide range of compounds including classic Lewis acids, 6 , 7 water,3,6 as well as silyl carborane reagents.8 This chapter describes the use of phosphazene superbases and their interactions with [PCl2N]3, as part of a search for novel initiators for the ROP of [PCl2N]3. Phosphazene superbases were chosen because they have been extensively studied for their efficacy as anionic initiators to ring-opening polymerizations, of which an entire review has been published.9 There is also the possibility that the phosphazene itself may act as a under stringent anaerobic conditions, which would give tadpole-like strutures. Isolation of these tadpole-like structures could give useful information into the initiating steps of the ROP of [PCl2N]3.

4.2 Experimental

This section describes the general experimental methods, materials used, characterization techniques and syntheses.

4.2.1 General Procedures.

All manipulations and reactions were performed under argon using standard anaerobic techniques. 10 , 11 The high vacuum line had an ultimate capability of 2x10-4 torr. The atmosphere of the glove box was routinely checked by light bulb test and the level of oxygen was kept between 1 and 5 ppm. All

73 glassware was dried overnight in the oven (~120 oC) and, when removed, the hot glassware was immediately placed in the port of the glove box and subjected to vacuum. The glassware used for the experiments was made with Fisher-Porter

Solv-seal glass joints. High vacuum valves on the flasks were purchased from

Kimble-Kontes.

4.2.2 Materials

Benzene (Fisher) and chlorobenzene (Fisher) were purified using a solvent system manufactured by PureSolv (Innovative Technologies, Inc.). PCl5

(Sigma-Aldrich) was taken into the glove box upon receipt and stored under argon. NH4Cl (Fisher Scientific) was crushed with a mortar and pestle and taken into the glove box after grinding and stored under argon. Deuterated benzene

(99.5%) and deuterated THF (99.5%) were purchased from Cambridge Isotopes, distilled from freshly activated 4 Å sieves three times12 and stored in the glove box over freshly activated 4 Å sieves, in foil-wrapped storage tubes. All phosphazene bases were purchased from Sigma Aldrich, stored in the glove box and used as received. Cyclic phosphonitrlic chloride trimer was synthesized via the classic method13 and was purified via sublimation and stored in the glove box.

4.2.3 NMR Spectroscopy

NMR samples were prepared in the glove-box and all NMR tubes were flame sealed under vacuum. Routine 31P and 1H NMR data were obtained using the Varian 500 MHz instrument. Proton NMR spectra were referenced to the

74 residual proton resonance in the deuterated solvent. External references were

31 used for P NMR, H3PO4 in deuterated tetrahydrofuran and deuterated benzene

(0 ppm).

4.2.4 X-Ray Crystallography

In the glove box, crystals were put into Paratone oil on a glass slide. The slide was transported from the glove-box to the instrument in a desiccator filled with argon. The crystals were immediately mounted to minimize exposure to the atmosphere.

Crystal structure data sets were collected on a Bruker APEX II Duo CCD system equipped with a Cu ImuS micro-focus source (λ = 1.54178 Å) and graphite-monochromated Mo KR radiation (λ = 0.71073 Å). The unit cell was determined by using reflections from three different orientations. The data was integrated using SAINT. 14 , 15 An empirical absorption correction and other corrections were applied to the data using multi-scan SADABS.14 Structure solution, refinement, and modeling were accomplished by using the Bruker

SHELXTL package.15, 16 The structure was determined by full-matrix least- squares refinement of F2 and the selection of the appropriate atoms from the generated difference map. Hydrogen atom positions were calculated and Uiso(H) values were fixed according to a riding model. Crystal structures of 4.1 and

4.1∙HCl were collected and solved by Matthew J. Panzner (Dept. of Chemistry,

The University of Akron).

75

4.2.5 ESI-MS

ESI spectra were acquired in both positive and negative mode, to detect the positive or negative ions, respectively, present in the solution analyzed or generated at the source. The mass spectrometer utilized in this study was a

SYNAPT HDMSTM hybrid quadrupole/time-of-flight (Q/oa-ToF) mass spectrometer (Waters, Beverly, MA) equipped with a Z-spray electrospray source operated in both positive and negative ion mode. The instrumental settings were tuned in order to optimize both signal and resolution as follows: capillary voltage

3.5 kV, cone voltage 35-40 V, sampling cone voltage 3-4 V. The source temperature and the desolvation gas temperature were held to 90-60 °C and

240-110 °C, respectively. The sample solution (0.01 mg/mL in THF) was electrosprayed at a flow rate of 15 µL/min. The data acquisition, data processing and theoretical isotope distribution generation were performed by using Waters’

MassLynx 4.1 software. Mass spectrometry experiments were completed by

Vincenzo Scionti (Dept. of Chemistry, The University of Akron).

4.2.6 Preparation of [(P3Cl5N3)(P2N2(NMe2)5]:

In the glove box, 0.100 g of [PCl2N]3 (0.288 mmol) was added to a Schlenk flask that contained 0.095 mL (0.286 mmol) of P2Et phosphazene base in benzene

(~20 mL). All components completely dissolved in benzene and gave a dull yellow solution. The flask was removed from the glove box and the solution was stirred at room temperature for ~6 hours. The volatile compounds were removed

76 under reduced pressure (0.1 Torr, 25 oC) overnight and colorless crystals suitable for X-ray crystallography were isolated. [(P3Cl5N3)(P2N2(NMe2)5] was

31 2 2 obtained in 65% yield. P NMR (C6D6): 8.9 ppm (dd, JP,P = 70.4 Hz, JP,P =

2 2 2 24.6 Hz), 15.2 ppm (td, JP,P = 54.4 Hz, JP,P = 24.7 Hz), 19.9 ppm (d, JP,P = 70.3

2 1 3 Hz), 20.2 ppm (d, JP,P = 70.4 Hz). H NMR (C6D6): 2.30 ppm (d, JP,H = 11.1

3 13 Hz), 2.58 ppm (d, JP,H = 10.8 Hz). C NMR (C6D6): 32.8 ppm (m).

Crystal data for [(P3Cl5N3)(P2N2(NMe2)5]: C10H30Cl5N10P5, Mr = 622.54, orthorhombic, a = 11.5981(4) Å, b = 28.8052(10) Å, c = 32.8157(12) Å, V =

-1 10963.3(7) Å3, t = 100(2) K, space group = Ibca, Z =16, µ(Mo Kα) = 0.842 mm ,

50488 reflections measured, 5574 independent reflections, (Rint = 0.0982). The

2 final R1 values were 0.0697 (all data). The final wR(F ) values were 0.0733 (all

2 data). The goodness of fit on F was 1.446.

4.2.7. Preparation of [(P3Cl5N3)(P2N2(NMe2)5]∙HCl

The above reaction mixture was exposed to air for ~24 hours and crystals suitable for X-ray crystallography were isolated

Crystal data for [(P3Cl5N3)(P2N2(NMe2)5]∙HCl: C10H31Cl6N10P5, Mr =

659.00, triclinic, a = 10.1733(5) Å, b = 10.6498(5) Å, c = 14.9205(6) Å, α =

o o o 3 81.075(2) , β = 70.330(2) , γ = 67.692(2) , V = 1407.59(11) Å , t = 100(2) K,

-1 space group = P-1, Z =2, µ(Mo Kα) = 0.916 mm , 37193 reflections measured,

5705 independent reflections, (Rint = 0.0334). The final R1 values were 0.0350

(all data). The final wR(F2) values were 0.0265 (all data). The goodness of fit on

F2 was 1.044.

77 4.2.8 Isolation of byproduct of P2Et and [PCl2N]3 reaction

In the glove box, 0.300 g of [PCl2N]3 (0.864 mmol) was dissolved in ~20 mL of benzene and the solution was added to a liquid addition tube that had a valve. The liquid addition tube was attached to a Schlenk flask that contained

0.285 mL (0.864 mmol) of P2Et phosphazene superbase dissolved in ~10 mL of benzene. The apparatus was removed from the glove box. The [PCl2N]3 solution was added to the Schlenk flask. The mixture was stirred at room temperature for ~24 hours. The flask was attached to vacuum line and the products of the reaction were pumped through four consecutive traps submerged in cold baths of 0 oC, -78 oC, -196 oC and -196 oC respectively. The gaseous products trapped in the -196 oC cold baths were pumped into a reinforced thick- walled NMR tube (I.D. = 3 mm and O.D. = 5 mm) that contained ~0.5 mL of C6D6.

1 3 The tube was flamed sealed. H NMR (C6D6): 1.47 ppm (t, JH,H = 7.3 Hz), 3.54

3 13 ppm (q, JH,H =7.3 Hz). C NMR (C6D6): 19.2 ppm (s), 39.8 ppm (s).

4.3 Results and Discussion

[PCl2N]3 was reacted with P2Et phosphazene superbase under strict anaerobic conditions and gave 1:1 complexes as colorless crystals (Eq. 4.1).

[(P3Cl5N3)(P2N2(NMe2)5] (structure 4.3) was characterized by X-ray crystallography, NMR and mass spectral data. The 31P NMR spectrum of the reaction mixture can be seen in Figure 4.1. The substitution reaction only proceeds through the use of P2Et phosphazene superbase. Substitution of

78 31 chloride from [PCl2N]3 was not observed via P NMR spectroscopy when the reaction was attempted with P2tBu phosphazene superbase, which is both more

17 basic and more sterically hindered reagent than P2Et. Complex 4.3 is water sensitive in the solid state. Protonation of one of the dimethylamino groups of the phosphazene base unit of 4.3 occurred readily and when the flask was exposed to air and 4.3∙HCl was formed. A crystal structure of 4.3∙HCl was obtained. Protonation occurs on the one of the dimethylamino substituents because the nitrogen atoms in the chlorinated ring would be expected to be very

18 weak Brønsted bases, similar to those of [PCl2N]3 (pKa = -6 in nitrobenzene) It has been shown that such nitrogen atoms can only be protonated by superacids.19 Protonation at the nitrogen nearest the ring of 4.3 may be less favorable because it is near a P-Cl unit.

(4.1)

4.3

When the reaction was performed in a closed system, gaseous byproducts were isolated, which helped to elucidate the mechanism. It seemed possible that either CH3CH2Cl or a mixture of HCl and H2C=CH2 could has formed as volatile products. Based upon NMR spectra, it was determined that

79 the byproduct was exclusively CH3CH2Cl. With this information a mechanism of substitution was proposed (Scheme 4.2). The mechanism would most likely proceed via an SN2 substitution, given the propensity for elements of row 3 or higher to become higher coordinate rather than lower.20 Intermediate 4.4 would be sterically hindered and the loss of ethyl chloride could occur, thereby producing 4.3.

Scheme 4.1. Proposed mechanism of P2Et and [PCl2N]3 reaction

80 The 31P NMR spectrum in Figure 4.2 shows the resonances for 4.3 and another species. In addition to the signals for the protonated phosphazene superbase, the 31P NMR spectrum of the other product showed a triplet at -4.4 ppm and a doublet at 20.9 ppm. This triplet-doublet pattern is also seen in the

31 P NMR spectrum of reaction between [PCl2N]3 and P2Et, at -4.5 ppm and 20.1 ppm respectively (Figure 4.2). In previous work done by the Tessier group,

[PCl2N]3 was reacted with P1tBu-tris(tetramethylene) and [(t-Bu)NH-

+ - 21 P(N(CH2)4)3 ][(PCl2N)2(POClN) ] (structure 4.5) was isolated as a crystal.

Compound 4.5 can be rationalized as forming the deprotonation of

[(PCl2N)2(P(OH)ClN)] by (t-Bu)-N=P(N(CH2)4)3 as shown in Figure 4.1. This compound would be expected to be formed from the reaction of [PCl2N]3 and trace amounts of water. Anion 4.5 has also been observed in other salts.22

Based upon the precedent set in Equation 4.2, we propose the mechanism in

Scheme 4.3 to account for the formation of 4.5.

- Figure 4.1. Formation of [P3Cl5N3O] via treatment of [PCl2N]3 with P1tBu phosphazene superbase. Equation adapted from Heston, A. J., Lewis and

Brønsted Acid Adducts of Hexachlorotriphosphazene and Carboxylate

Derivatives of Disilanes. PhD Dissertation.

81

- Scheme 4.2. Formation of [P3Cl5N3O] via treatment of [PCl2N]3 with P1tBu phosphazene superbase.

82

* ,proposed in equation 4.2 equation in ,proposed - - O] 3 N 5 Cl 3 . Resonances denoted with a hash (#) are assigned to assigned are (#) a hash with denoted .Resonances

(c) 4.1

#

(b)

# NMR spectrum for compound for compound spectrum NMR

(a)

* (d) P (ppm)P 31

δ Resonances denoted with an asterix (*) are assigned to [P to are assigned (*) an asterix with denoted Resonances . + Et] 2 P Figure 4.2. 4.2. Figure H[

83 Single crystals suitable for X-ray diffraction of 4.3 were isolated from benzene. Compound 4.3•HCl was isolated as suitable crystals by exposing 4.3 to air. The thermal ellipsoid plots of both structures are shown Figure 4.3.

Selected bond distances and angles for 4.3 and 4.3∙HCl are given in Table 4.1.

At the site of substitution on the ring, P(1)-N(1) and P(1)-N(3) bonds are weakened, having lengthened distances to 1.606(2) Å and 1.615(2) Å respectively, from an average P-N distance of 1.577 Å in non-substituted cyclic

23 [PCl2N]3. The P-Cl distance of the ring in 4.3 increases to an average of 2.019

Å from 1.986 Å in [PCl2N]3. At the site of substitution in 4.3, the P-Cl bond is the most significantly weakened with a distance of 2.0668(10) Å. The unsubstituted

[PCl2N]3 ring adopts a near planar conformation however the ring moiety in 4.3 and 4.3∙HCl deviates from planarity. The ring is composed of two planes (P(2),

o N(2), P(3) and N(1), P(1), N(3)) with angles between them of 162.34 for 4.3 and

152.89o for 4.3∙HCl.

(a) (b)

Figure 4.3. Thermal ellipsoid plot for crystal structures of (a) structure 4.3 and (b) structure 4.3•HCl drawn at the 50% probability level.

84 Table 4.1. Selected bond distances (Å) and angles (o) 4.3 and 4.3•HCl.

Bond Bond Distance (Å)

P2Et•[P3Cl5N3] P2Et•[P3Cl5N3] •HCl

P(1)-N(1) 1.615(2) 1.6073(15)

P(1)-N(3) 1.606(2) 1.5986(17)

P(2)-N(1) 1.555(2) 1.5690(16)

P(2)-N(2) 1.584(2) 1.5763(18)

P(3)-N(2) 1.587(2) 1.5919(16)

P(3)-N(3) 1.558(2) 1.5735(16)

P(1)-N(4) 1.545(2) 1.5506(16)

P(4)-N(4) 1.597(2) 1.5596(16)

P(4)-N(7) 1.576(2) 1.5597(16)

P(5)-N(7) 1.561(2) 1.5860(16)

P(1)-Cl(1) 2.0668(10) 2.0749(7)

P(2)-Cl(2) 2.0159(7) 2.0145(10)

Angle Bond Angle

P(1)-N(4)-P(4) 136.85(16) 148.95(12)

P(4)-N(7)-P(5) 140.47(16) 133.41(10)

Compound 4.3 was studied with electrospray ionization mass spectrometry (ESI-MS) in the positive mode. The positive mode showed not only the mass that was expected for 4.3 (Figure 4.4 (b)), but also showed further substitution or dimerization (Figure 4.5, Figure 4.6 and Figure 4.7). Tentative assignments of the structures of these higher mass compounds are given in the figures.

85

622.98 P N Cl C H 5 10 5 10 31 Exact Mass: 623.5480 620.98 624.97 (a) 623.98 626.97 621.98 625.97 628.97

625.39

(b) 622.99 620.98 624.96 621.98 623.99 629.09 621 624 627 m/z

Figure 4.4. The ESI-MS in the positive mode for selected isotope pattern for 4.3 reaction mixture. (a) Theoretical isotope distribution (b) experimental distribution.

Proposed structure for given isotopic pattern picture to left.

C H Cl N P 22 65 4 17 7 Exact Mass: 924.2526 926.25

924.25 928.24 925.25 927.25 929.25 930.24 931.24 (a)

926.24 924.24

928.23 927.24 925.25 929.24 930.23 931.23 (b) 924 927 930 m/z

Figure 4.5. The ESI-MS in the positive mode for selected isotope pattern for 4.3 reaction mixture. (a) Theoretical isotope distribution (b) experiemntal distribution.

Proposed structure for given isotopic pattern picture to left.

86 P N OCl C H 10 20 8 22 65 Exact Mass: 1216.0607 1219.045 1217.05 1221.04

1215.05 1218.05 1220.05 1223.045 1222.04 1216.05 1225.03 (a)

1219.04 1217.05 1221.03

1215.02 1218.05 1223.03 1220.04 1222.06 1216.05 1225.05 (b)

1214 1217 1220 1223 1226 m/z

Figure 4.6. The ESI-MS in the positive mode for selected isotope pattern for 4.3 reaction mixture. (a) Theoretical isotope distribution (b) experimental distribution.

Proposed structure for given isotopic pattern picture to left.

87

. 4.3 1219.0289

947.2302 962.2460

917.1674

633.0474

MS full spectrum in the positive modefor fullpositive compound inMS spectrum the -

313.1968 268.1368 Figure 4.7.ESIFigure The

88 4.4 Conclusion

The synthesis of a tadpole-like structure, [(P3Cl5N3)(P2N2(NMe2)5], was achieved. It was characterized via multinuclear NMR spectroscopy, ESI-MS and

X-ray crystallography. Studies to chlorinate [(P3Cl5N3)(P2N2(NMe2)5] to produce a tadpole structure that is more like the one proposed in the initiating steps of the

ROP would be useful.

4.5 References

(1) (a) Allcock, H. R. Chemistry and Applications of Polyphosphazenes, Wiley- Interscience: New York, 2003. b) Gleria, M.; De Jaeger, R., eds. Phosphazenes a Worldwide Insight, Nova Science: New York, 2004. c) van de Grampel, J. C. “Phosphazenes” Organophosphorus Chemistry 2005, 34, 341-404. d) Gleria, M.; De Jaeger, R., Top. Curr. Chem. 2005, 250, 165–251

(2) (a) Mark, J. E.; Allcock, H. R.; West, R. “Polyphosphazenes” in Inorganic Polymers; 2nd ed., Prentice Hall: Englewood Cliffs, NJ, 2005; Chapter 3. (b) Archer, R. D. Inorganic and Organometallic Polymers; Wiley-VCH: New York, 2001; Chapter 4. (c) Gleria, M.; DeJaeger, R. Top. Curr. Chem. 2005, 250, 165-251. (d) De Jaeger, R.; Gleria, M. Prog. Polym. Sci. 1998, 23. 179-276.

(3) Emsley, J.; Udy, P. B.; Polymer 1972, I, 593-594.

(4) Hagnauer, G. L J. Macromol. Sci.-Chem. 1981, A16, 385-408.

(5) Lork, E.; Watson, P. G.; Mews, R. J. Chem. Soc., Chem. Commun., 1995, 1717- 1718.

(6) De Jaeger, R.; Gleria,M. Prog. Polym. Sci. 1998, 23, 179-276.

(7) (a) Potts, M. K.; Hagnauer, G. L.; Sennett, M. S.; Davies, G. Macromolecules 1989, 22, 4235-4239. (b) Sohn, Y.S.; Cho, Y. H.; Baek, H.; Jung, O. S. Macromolecules 1995, 28, 7566-7568.

(8) Zhang, Y.; Huynh, K.; Manners, I.; Reed, C. A. Chem. Commun., 2008, 494–496

(9) Boileau, S.; Illy, N. Prog. Ploym. Sci. 2011, 36, 1132-1151.

(10) Shriver, D. F.; Drexdon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.

89 (11) Plesch, P. H. High Vacuum Techniques for Chemical Syntheses and Measurements, Cambridge University Press: New York, 1989.

(12) Armarego, W. L.; Chai, C. L.; Purification of Laboratory Chemicals, 7th ed.; Pergamon: Elmsford, NY, 2013.

(13) (a) Jolly, W. L. The Synthesis and Characterization of Inorganic Compounds. Prentice-Hall: New York, 1970; Chapter 30. (b) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic: New York, 1972; Chapter 4. (c) Allcock, H. R. Chem. Rev. 1972, 72, 315-356. (d) Emsley, J.; Udy, P. B. J. Chem. Soc. A. 1970, 3025-3029. (e) Emsley, J.; Udy, P. B. J. Chem. Soc. A. 1971, 768-772.

(14) Bruker (1997). SMART (Version 5.625), SAINT (Version 6.22) and SHELXTL (Version 6.10)

(15) Bruker (2007). APEX II. Bruker AXS Inc., Madison, Wisconsin, USA.

(16) G.M. Sheldrick, Acta Cryst. 2008, A64, 112.

(17) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G.; Peters, E.; Peters, K.; Georg von Schering, H.; Walz, L.; Liebigs Ann. 1996, 1055-1081.

(18) Allcock, H. R. Phosphorus-Nitrogen Compound; Academic: New York, 1972; Chapter 12.

(19) (a) Reed, C. A.; Acc. Chem. Res., 2010, 121-128. (b) Zhang, Y.; Tham, F. S.; Reed, C. A.; Inorg. Chem. 2006, 45, 10446-10448.

(20) Ghosh, A.; Berg, S. ed. Arrow Pushing in Inorganic Chemistry: A Logical Approach to the Chemistry of Main-Group Elements, John Wiley and Sons, Chicester, U.K., 2014.

(21) ( a) Heston, A. J. Lewis and Brønsted Acid Adducts of Hexachlorotriphosphazene and Carboxylate Derivatives of Disilanes. PhD Dissertation, University of Akron, Akron, OH, 2005. (b) Heston A. J.; Tessier, C. A. Unpublished results.

(22) (a) Allcock, H. R.; Walsh, E. J., J. Am. Chem. Soc., 1972, 94, 4538-4544. (b) Bolhuis, F.; Meetsma, A.; Grampel, A. G. Acta Cryst., 1992, C48, 337-339. (c) Kroger, J. l.; Fried, J. R.; Skelton, A. A., Int. J. Quant. Chem., 2013, 113, 63-70.

90 CHAPTER V

PHOSPHAZENES IN BIOLOGICAL APPLICATIONS

5.1 Introduction

Phosphazenes can be tailored with many features that make them appealing molecules for drug delivery systems. They contain a hydrolytically unstable inorganic backbone whose degradation profile can be tuned based upon the choice of side groups.1 The phosphazene backbone can be easily substituted, with a wide variety of side groups to be introduced via macromolecular substitution, which gives phosphazenes unparalleled structural diversity.2 Polyphosphazenes have been the main focus of recent research for their efficacy in biological applications, of which an entire book has been published.3 Regardless of their many attractive qualities, phosphazene- based polymers are underutilized due to inconsistency as well as expense related to their synthesis.2a By utilizing the oligomeric phosphazene rings instead of the polymer many of the inherent issues with the synthesis and handling can be circumvented.

Cyclic chlorophosphazenes ([PCl2N]m) are synthesized from inexpensive starting materials (PCl5 and NH4Cl) in high yields (Scheme 5.1) and each individual oligomeric ring (m = 3-8) can be purified via sublimation or column chromatography. 4 Like polyphosphazenes, [PCl2N]m can be substituted with a variety of side groups. With the complete substitution by alkoxy side groups, the phosphazene structure becomes more hydrolytically stable, with alkoxy substituted phosphazenes being used for fire retardants, hydrophobic films and elastomers.1 With the addition of amine based side

91 groups, the phosphazene complex becomes more hydrolytically labile, with the addition of more sterically hindering side groups slowing the degradation process.1

Scheme 5.1 Synthesis of chlorophosphazene rings and chlorophosphazene polymer.

The substitution patterns of cyclic chlorophophsazenes have been well studied.

The interplay of at least three factors dictates the substitution patterns in making the disubstituted chlorophosphazene product.5 The most straightforward effect in the substitution of alkoxy groups on [PCl2N]3 are steric considerations. With the addition of more sterically demanding groups, the substitution should favor a non-geminal as well as substituting on opposite sides of the ring if possible. An implicit assumption when considering the steric effects is that the incoming OR groups have no attraction to each other. The usual reagents for alkoxy substitutions of [PCl2N]3 are MOR (M = Na or K).

MOR groups exists as oligomers and therefore OR groups may substitute at nearby positions, thereby favoring substitution on the same side of the ring as the initial OR group or may even occur on the same P, thus giving a geminal substitution. This factor can also be attributed to substitutions with amines as well, given the propensity of amines to participate in hydrogen bonding. Finally, electronic factors of the mono- substituted phosphazene structure needs to be considered. With addition of an OR group to the ring structure, the subsequent P-Cl bond at that P atom can either be

92 weakened or strengthened based upon the electronic structure or the attached alkoxy

5 group. Because of all of these contributing factors the substitution patterns on [PCl2N]3 can be convoluted (Scheme 5.2). Thus, the reports of the easy synthesis and isolation of cis-2,4,6 products was very intriguing.

Scheme 5.2 Possible isomers for trisubstitution of [PCl2N]3 by OR groups. 93 The preparation of a drug delivery system based upon a trimeric (m = 3) phosphazene ring system with polyethylene glycol (PEG) type groups to add stealth and increase solubility in water would be desirable.6 Control of the extent of substitution as well as the stereochemistry at the core ring structure is an important consideration for drug delivery systems in order for approval as a viable drug delivery canidate. Recent publications have suggested that control of substitution of all cis-2,4,6-polyether substituted triphosphazene is possible.7,8 With subsequent addition of amine-containing drugs to the core ring structure, slow degradation and release of the drug should be possible. This chapter describes attempts to reproduce a synthesis of 2,4,6-tripolyether substituted trimeric phosphazene as seen in Scheme 5.3.

5.2 Experimental

5.2.1 General Experimental Methods

Standard anaerobic techniques were used.9,10 The glove-box atmosphere was checked for oxygen regularly using a light bulb. Glassware was dried at least 12 hours in an oven (~120 C) and placed directly into the vacuum port of the glove box. Reaction vessels were assembled and reactions were performed in an anaerobic argon atmosphere with oxygen levels between 1 and 5 ppm, unless stated otherwise. All reaction flasks were made with Fisher-Porter Solv-seal glass joints and valves purchased from Kimble-Kontes. The high vacuum line had maximum vacuum pressure of 2x10-4 Torr. Product filtration and column chromatography were performed in air.

94 5.2.2 Materials.

Chlorobenzene and THF were purified with alumina and copper columns in a solvent system manufactured by PureSolv™.11 MH (M = K or Na), tetraethyleneglycol monomethyl ether (TEGME-H) and phenol were purchased from Sigma Aldrich and used as received. Deuterated CDCl3 was purchased from Cambridge Isotopes. CDCl3

12 was dried over P2O5 and distilled from freshly activated 4 Å molecular sieves three times and stored in the glove box, over freshly activated 4 Å sieves, in foil-wrapped storage tubes. Chloroform, THF (Sigma Aldrich), and silica gel (Sorbent Technologies,

32-63 D 60 Å) used in column chromatography were used as received.

5.2.3 NMR Spectroscopy.

Routine NMR spectra were obtained using Varian 300 MHz, 400 MHz, or 500

MHz instruments. 1H NMR spectra were referenced to the resonance of the residual

31 in the deuterated solvent (7.41 ppm for CDCl3). P NMR spectra were

31 referenced to 0.15 M H3PO4 in deuterated solvent (0.0 ppm). P NMR integrated spectra for [PCl2N]3 synthesis products were obtained using a Varian Gemini 500 MHz instrument with a relaxation delay (d1) of 70 s.4 31P NMR spectrum integrations for tetraethyleneglycol monomethyl ether substitution reaction products were obtained using a Varian Gemini 500 MHz instrument with a d1 of 70 s.

5.2.4 Tetraethyleneglycol monomethyl ether (TeEGME-H) substitution of [PCl2N]3.

In air, TeEGME-H (1.72 mL, 8.63 mmol) was added to a Schlenk flask and degassed. The flask was degassed and transported into the glove box. In the glove box, the TeEGME-H was dissolved in ~10 mL THF. While stirring, 0.207 g (8.63 mmol) of NaH was added. Bubbling that was consistent with the evolution of H2 occurred for ~2 95 minutes and a clear solution of TeEGME-Na formed. In a separate Schlenk flask, 1.00 g

(2.88 mmol) [PCl2N]3 was added and dissolved in ~30 mL THF. The solution was transferred to a liquid addition flask. The liquid addition flask was attached to the top of the reaction flask and the apparatus was removed from the glove box. The reaction flask was cooled to -78 C in slurry of liquid nitrogen in . The solution containing

TeEGME-Na was slowly dripped into the reaction flask with stirring over ~30 minutes.

The mixture was stirred at -78 C for 30 minutes, slowly warmed to room temperature and stirred for ~24 hours. A colorless solution with a white precipitate, presumably NaCl, formed. In air, the reaction was filtered into a clean Schlenk flask to remove the precipitate. The volatile compounds were removed from the solution using the high vacuum line and a cloudy oil remained. The crude mixture was collected, which also contained small amounts of di-substituted product, having a final weight of 1.85 g.

Based upon 31P NMR analysis, the yields of individual isomers from the reaction were as follows: cis-2,4,6, 53%; trans-2,4,6, 19%; geminal-2,2,4, 20%. The remainder of the crude product (~8%) was a mixture of mono and di-substituted triphosphazene product.

5.2.5 Chromatographic isolation of 2,4,6-tri-TeEGME triphosphazene

A silica column chromatography (in air) was used in the purification of the above reaction mixture above. A slurry of ~23 g silica powder and THF-chloroform (2:1) solvent system was made. The final column length was 14.2 cm with a diameter of 1.6 cm.

Twenty 8 mL fractions were collected in glass vials and fractions were spotted and run on thin layer chromatography (TLC) plates. The desired fractions (10-15) were transferred into a Schlenk flask and volatile compounds were removed on a high- vacuum line. A colorless oil remained with a final weight of 0.507 g. Rf values were

96 determined by TLC that was conducted on flexible sheets (Baker-flex) precoated with

SiO2 (60-200 mesh) from Sorbent Technologies, Rf for mono- and di-substituted isomers

= 0.77, Rf for trams-2,4,6 and 2,2,4 isomers = 0.58, and Rf for cis-2,4,6 isomer = 0.33.

31 1 P NMR (CDCl3) δ 21.9 ppm (s). H NMR (CDCl3): 3.34 ppm (s), 3.51 ppm (m), 3.62

13 ppm (m), 3.72 (m). C NMR (CDCl3): 61.6 ppm (s), 70.2 (s), 70.4 (s), 70.5 (s), 71.8 (s),

72.4 (s).

5.2.6 Synthesis of 2,4,6-triphenoxy-2,4,6-tri-TeEGME triphosphazene

In the glovebox, 0.400 g (0.462 mmol) of cis-2,4,6 TeEGME-trimer was dissolved in ~15 mL of THF in a Schlenk flask. In a separate Schlenk flask containing a 1-inch stir bar, 0.130 g of phenol (1.39 mmol) was dissolved in ~20 mL of THF. To the phenol solution, 0.032 g of NaH (1.39 mmol) was added. The solution immediately evolved H2 and became pink. When gas evolution ceased, the cis-2,4,6 TeEGME-trimer solution was added. The flask was equipped with a condenser topped with a silicone oil bubbler, removed from the glove box and the contents were heated to reflux for ~24 h. The pink solution was filtered in air and the volatile components were removed under reduced pressure at 0.1 Torr. The product was washed with water (20 mL x 4) to remove unreacted NaOPh and phenol. The product 2,4,6-triphenoxy-2,4,6-tri-TeEGME

31 triphosphazene was dried in vacuo and was a colorless oil. P NMR (CDCl3): 13.3 ppm

1 1 (s). H NMR (CDCl3): H NMR (CDCl3): 3.44 ppm (s), 3.57 ppm (m), 3.63 ppm (m),

13 3.74 ppm (m), 6.79 ppm (m), 6.94 ppm (m), 7.33 ppm (m). C NMR (CDCl3): 61.6 ppm

(s), 70.2 ppm (s), 70.4 ppm (s), 70.5 ppm (s), 71.8 ppm (s), 72.4 ppm (s), 120.2 ppm (s),

124.9 ppm (s), 129.5 ppm (s), 152.0 ppm (s).

97 5.3 Results and Discussion

5.3.1 Synthesis and spectral characterization of cis-2,4,6 TeEGME-trimer

The reaction of three equivalents of TeEGME-Na with [PCl2N]3 at -78 C gave a slightly cloudy oil containing three major isomers, cis-2,4,6, trans-2,4,6 and 2,2,4 and a white solid expected to be NaCl, which was filtered away (Scheme 5.3). The same substitution patterns are seen with low temperature addition of short length ethylene glycol oligomers at a 3:1 equivalence.7 In the 31P NMR spectrum, the large singlet at

21.9 ppm is determined to be the major product, the cis-2,4,6 isomer (Figure 5.2). The multiplet slightly downfield at 22.1 ppm is assigned to the trans-2,4,6 isomer and the three multiplets at 8.8 ppm, 20.9 ppm and 25.8 ppm were assigned to the three phosphorus atoms in the 2,2,4 isomer. Integration (d1 = 70 s) shows a ratio of 2.7:1:1 for cis-2,4,6:trans-2,4,6 and 2,2,4 at -78 C.

Figure 5.1. Deprotonation of TeEGME-H to give TeEGME-Na.

Initially, this reaction was being performed as an attempt to reproduce results from a literature procedure in which the cis-2,4,6 substituted product, of various length methoxy-PEG substituents, resulted exclusively from low temperature addition.8 The 31P

NMR spectra from this study showed only one singlet at ~43 ppm, which was reported to be the cis-2,4,6 substituted major product. No other characterization was given for the proposed compound. After several attempted syntheses, no 31P NMR spectrum that was

98 obtained showed any shifts further than 28 ppm downfield. All 31P NMR spectra showed what appeared to be a mixture of various substitution patterns, as shown in Scheme 5.3, rather than one exclusive product. Further literature search resulted in finding a similar procedure with NMR shifts and results that also refuted that the cis-2,4,6 product was exclusively formed at -60 C. This study showed a very similar mixture of products to what resulted from the reaction shown in Scheme 3, as well as similar shifts in the 31P

NMR spectra (Figure 5.2).

cis-2,4,6

trans-2,4,6

2,2,4

Scheme 5.3 Substitution reaction of TeEGME-Na onto [PCl2N]3 and major products.

In early trials of this reaction, KH was used to deprotonate TeEGME-H prior to substitution due to availability. The deprotonation resulted in a cloudy solution and the 99

31P NMR spectrum of the final reaction product showed a large singlet ~18 ppm. This appeared to be the major product, but the chemical shift was upfield of the expected resonance for the major product. When the deprotonation step was attempted using

31 NaH, the solution turned clear after the evolution of H2 gas. The P NMR of product from the low temperature reaction with [PCl2N]3 after using NaH for TEGME-H deprotonation closely resembled what was seen in the literature with a major singlet seen at ~22 ppm. This result is likely contributed to by the greater solubility of NaH and

Na+ salts in THF versus KH and K+, resulting in increased formation of TeEGME-cation salt.13

Chromatography separation is not commonly performed in chlorophosphazene chemistry; however, earlier work done in the Tessier lab showed this to be a viable option for purification.4 Several solvent systems were attempted for the chromatographic separation of the three major isomers, but all but one resulted in low Rf values.

Relatively good separation of all isomers was obtained with 2% methanol in ethyl acetate. Thin layer chromatography was performed on all columns in order to determine which fractions should be isolated to obtain the cis-2,4,6 TeEGME3-[PClN]3 unit (Figure

5.2). 31P NMR spectra were obtained of the fractions. Mono- and di-substituted isomers elute from the column first, followed by the trans-2.4.6 isomer, the 2,2,4 isomer, and lastly the cis-2,4,6 isomer (Figure 5.2). Although complete separation does not occur, the pure cis-2,4,6 isomer can be collected because it is the last isomer to elute off the column. This results in a slight loss of the desired major product, but is the most viable method found for obtaining the pure isomer. The resulting cis-2,4,6 TeEGME-trimer product was a clear oil.

100 major productmajor isomers Figure5.2. Integrated . 31 PNMR spectrumof reaction mixture with resonances cis - 2,4,6

2,2,4

indicated for three trans - 2,4,6

101 Several solvent systems were used for the chromatographic separation of the three major isomers, but all but one resulted in low Rf values. Relatively good separation of all isomers was obtained with 2% methanol in ethyl acetate. Thin layer chromatography was run on all columns in order to determine which fractions contained the cis-2,4,6 isomer (Figure 5.3). 31P NMR spectra were obtained of the fractions. Mono- and di-substituted isomers elute from the column first, followed by the trans-2,4,6 isomer, the 2,2,4 isomer, and lastly the cis-2,4,6 isomer. Although complete separation does not occur, the pure cis-2,4,6 isomer can be collected because it is the last isomer to elute off the column (Figure 5.4). This results in a slight loss of the desired major product, but is the most viable method found for obtaining the pure isomer. The resulting cis-2,4,6 TeEGME-trimer product was a clear oil.

Figure 5.3 Typical TLC plates of fractions from column chromatography of TEGME-H

[PCl2N]3 reaction products. Rf for mono- and di-substituted isomers = 0.77, Rf for trans-

2,4,6 and 2,2,4 = 0.58, and Rf for cis-2,4,6 = 0.33. The cis-2,4,6 isomer is present in fractions 8-14, though only fractions 10-15 were combined

102 cis-2,4,6 trans-2,4,6 2,2,4

Fraction 5

trans-2,4,6 2,2,4 2,2,4 2,2,4 Fraction 7

cis-2,4,6

Fraction 9

cis-2,4,6 Fraction 10-15

Figure 5.4 31P NMR spectra of column chromatography fractions, indicating the order in which each isomer elutes from the column.

5.3.2 Synthesis and spectral characterization of phenoxy-substituted tris-TeEGME-trimer unit.

The phenoxide substitution reaction was performed as an attempt to substitute the remaining chlorides of the cis-2,4,6 isomer previously discussed in order to obtain a crystal structure for further characterization. Deprotonation of 3.5 equivalents of phenol to the phenoxide- salt resulted in a clear solution after bubbling ceased. The product had an opaque peach/white hue and a white solid, presumably NaCl, was

103 filtered off, leaving an opaque oil. The 31P NMR spectrum resulted in a single peak, a singlet at 13.3 ppm, which shifted upfield from the resonance of the cis-2,4,6 isomer which was observed at 21.9 ppm (Figure 5.5). This indicates that the complete substitution shown in equation 5.1 occurred, though minor products were also seen in the NMR spectrum. No crystals resulted from this substitution.

3.5 Phenol/NaH (5.1) THF

Figure 5.5. 31P NMR spectrum of phenoxy-substitution reaction of 2,4,6-tri-TeEGME triphosphazene

104 5.4 Conclusions

2,4,6-tri-TeEGME triphosphazene and other isomers have been synthesized and a viable, reproducible method for isolation has been found. The substitution of this unit with three equivalents of phenoxide has been accomplished. Future directions include further characterization and crystallization of trials of 2,4,6-triphenoxy-2,4,6-tri-TeEGME triphosphazene as well as attempts of substituting of remaining chlorides of cis-2,4,6-tri-

TeEGME triphosphazene with amine-containing drugs and concomitant in vitro studies.

5.5 References

(1) (a) Allcock, H. R., Pucher, S. R., Scopelianos, A. G.; Biomaterials, 1994, 15, 563- 569. (b) Allcock, H. R., Singh, A.; Ambrosio, A. M., Laredo, W. R.; Biomacromolecules, 2003, 4, 1646-1653. (c) Ambrosio, A. M., Allcock, H. R., Katti, D. S., Laurencin, C. T., Biomaterials, 2002, 23, 1667-1672.

(2) (a) Allcock, H. R. Chemistry and Applications of Polyphosphazenes, Wiley- Interscience: New York, 2003 (b) Gleria, M.; De Jaeger, R., eds. Phosphazenes a Worldwide Insight, Nova Science: New York, 2004. (c) ADD REVIEW??

(3) Andrianov, A. K. Polyphosphazenes for Biomedical Applications; John Wiley & Sons: Hoboken, NJ, 2009.

(4) Bowers, D. J., Wright, B. D., Scionti, V., Schultz, A., Panzner, M. J., Twum, E. B., Li, L., Katzenmeyer, B. C., Thome, B. S., Rinaldi, P. L., Wesdemotis, C., Youngs, W. J., Tessier, C. A.; Inorganic Chemisry, 2014, 53, 8874-8886.

(5) Allen, C. W., Chem Rev., 1991, 91, 119-135.

(6) Zalipsky, S.; Adv. Drug Deliv. Rev., 1995, 16, 157-182.

(7) Uslu, A., Guvenaltm, S. Dalton Trans. 2010, 39, 10685-10691.

(8) Lee, S. B., Song, S. C., Jin, J. I., Sohn, Y. S. J. Am. Chem. Soc,. 2000, 122, 8315- 8316.

(9) Shriver, D. F., Drexdon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, NY, 1986.

105 (10) Plesch, P. H. High Vacuum Techniques for Chemical Synthesis and Measurements; Cambridge University Press: Cambridge, U.K., 1989.

(11) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J.; Organometallics, 1996, 15, 1518-1520.

(12) Armarego, W. L.; Chai, C. L.; Purification of Laboratory Chemicals, 7th ed.; Pergamon: Elmsford, NY, 2013.

(13) Harrison-Marchand, A., Mongin, F. Chem. Rev. 2013, 113, 7470-7562.

106 CHAPTER VI

CONCLUSIONS

This dissertations focuses on the fundamental chemistry of phosphazene based compounds. The work described within this dissertation aims to investigate the reaction of phosphazene superbases with Lewis acids and [PCl2N]3 as well as the use of phosphazene based compounds as drug delivery systems. Products were characterized by 31P, 1H, 13C, 7Li NMR, VT NMR, ESI-MS and X-ray crystallography.

Exploratory synthesis and characterization of P2 phosphazene superbases with group 1 and 12 Lewis acids gave complexes of the general formula [MX•P2R] (R = Et or tBu, M = Li or ZnCl, and X = Cl or Br). The complexes were able to be isolated in the solid state, with five of the six existing as dimers, the exception being [ZnCl2(P2tBu)] that was only isolated as the monomer. All four complexes containing the Lewis acid LiX (X

= Cl or Br) showed some level of instability in solution.

Reaction of P2 phosphazene superbases with group 13 Lewis acids gave complexes of the general formula [MCl3(P2R)] (R = Et or tBu, M = Al, Ga, or In). Of the complexes that were isolated in the solid state, the group 13 metal varies between being four-coordinate and five-coordinate with the phosphazene superbase. The 31P NMR spectra for these complexes could be indicative of an equilibrium existing in solution of this intramolecular conversion. The FLP capabilities of [MCl3(P2R)] complexes was investigated via the attempted activation of H2(g). Activation of H2(g) was not observed via solution NMR.

107 A tadpole structure has been proposed as the initiating species of the

ROP of [PCl2N]3 to produce [PCl2N]n; however, this structure has yet to be isolated. The synthesis of a tadpole-like structure was explored via the reaction of phosphazene superbases with [PCl2N]3 and [(P3Cl5N3)(P2N2(NMe2)5] was synthesized. Further chlorination of [(P3Cl5N3)(P2N2(NMe2)5] needs to be accomplished to produce the tadpole structure proposed in the initiating steps of the ROP.

The use of [PCl2N]3 as starting material for drug delivery systems was investigated. Ethylene glycol substituted triphosphazenes were synthesized and a viable, reproducible method for isolation has been found. Further substitution of phosphazene ring with amine containing drugs followed by in vitro studies needs to be accomplished.

108 APPENDIX A

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[LiCl(P2Et)]2

Table A-1. Crystal data and structure refinement for [LiCl(P2Et)]2

Empirical formula C24H70Cl2Li2N14P4 Formula weight 763.60 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/n Unit cell dimensions a = 7.176(3) Å α = 90° b = 20.182(9) Å β = 93.553(6)° c = 14.172(6) Å γ = 90° Volume 2048.4(16) Å3 Z 2 Density (calculated) 1.238 Mg/m3 Absorption coefficient 0.351 mm-1 F(000) 824 Crystal size 0.10 x 0.09 x 0.02 mm3 Theta range for data collection 1.76 to 26.30° Index ranges -8<=h<=8, -25<=k<=25, -17<=l<=17 Reflections collected 15747 Independent reflections 4145 [R(int) = 0.0956] Completeness to theta = 26.30° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9930 and 0.9674 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4145 / 0 / 219 Goodness-of-fit on F2 1.005 Final R indices [I>2sigma(I)] R1 = 0.0512, wR2 = 0.1055

109 R indices (all data) R1 = 0.1017, wR2 = 0.1284 Largest diff. peak and hole 0.377 and -0.302 e.Å-3

Table A-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [LiCl(P2Et)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Cl(1) 10408(1) 752(1) 5631(1) 35(1) Li(1) 9275(9) 384(3) 4160(4) 31(1) P(1) 8612(1) 1124(1) 2119(1) 19(1) P(2) 8778(1) 2528(1) 2548(1) 19(1) N(1) 7976(4) 835(1) 3082(2) 21(1) N(2) 8648(4) 1900(1) 1906(2) 20(1) N(3) 10799(4) 858(1) 2023(2) 22(1) N(4) 7173(4) 839(1) 1229(2) 24(1) N(5) 6677(4) 2833(1) 2633(2) 22(1) N(6) 10258(4) 3042(1) 2068(2) 22(1) N(7) 9628(4) 2478(1) 3646(2) 22(1) C(1) 6002(5) 950(2) 3274(2) 28(1) C(2) 5453(5) 543(2) 4109(2) 33(1) C(3) 11190(5) 148(2) 2111(3) 33(1) C(4) 11859(5) 1155(2) 1283(2) 28(1) C(5) 6666(5) 141(2) 1211(2) 28(1) C(6) 6999(5) 1146(2) 298(2) 28(1) C(7) 5158(5) 2672(2) 1933(2) 27(1) C(8) 6407(5) 3479(2) 3083(2) 30(1) C(9) 10138(5) 3111(2) 1031(2) 28(1) C(10) 10810(5) 3669(2) 2522(3) 32(1) C(11) 8439(5) 2332(2) 4429(2) 29(1) C(12) 11537(5) 2230(2) 3818(2) 31(1) ______

110 Table A- 3. Bond lengths [Å] and angles [°] for [LiCl(P2Et)]2. ______Cl(1)-Li(1) 2.312(6) Cl(1)-Li(1)#1 2.322(6) Li(1)-N(1) 1.964(6) Li(1)-Cl(1)#1 2.322(6) Li(1)-Li(1)#1 2.974(11) P(1)-N(1) 1.577(3) P(1)-N(2) 1.595(3) P(1)-N(3) 1.673(3) P(1)-N(4) 1.682(3) P(2)-N(2) 1.560(3) P(2)-N(5) 1.639(3) P(2)-N(7) 1.640(3) P(2)-N(6) 1.660(3) N(1)-C(1) 1.477(4) N(3)-C(4) 1.461(4) N(3)-C(3) 1.463(4) N(4)-C(5) 1.454(4) N(4)-C(6) 1.455(4) N(5)-C(7) 1.464(4) N(5)-C(8) 1.469(4) N(6)-C(10) 1.463(4) N(6)-C(9) 1.472(4) N(7)-C(12) 1.465(4) N(7)-C(11) 1.470(4) C(1)-C(2) 1.511(5) C(1)-H(2A) 0.9700 C(1)-H(2B) 0.9700 C(2)-H(1A) 0.9600 C(2)-H(1B) 0.9600 C(2)-H(1C) 0.9600 C(3)-H(3A) 0.9600 C(3)-H(3B) 0.9600 C(3)-H(3C) 0.9600 C(4)-H(4A) 0.9600 111 C(4)-H(4B) 0.9600 C(4)-H(4C) 0.9600 C(5)-H(5A) 0.9600 C(5)-H(5B) 0.9600 C(5)-H(5C) 0.9600 C(6)-H(6A) 0.9600 C(6)-H(6B) 0.9600 C(6)-H(6C) 0.9600 C(7)-H(7A) 0.9600 C(7)-H(7B) 0.9600 C(7)-H(7C) 0.9600 C(8)-H(8A) 0.9600 C(8)-H(8B) 0.9600 C(8)-H(8C) 0.9600 C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600 C(9)-H(9C) 0.9600 C(10)-H(10A) 0.9600 C(10)-H(10B) 0.9600 C(10)-H(10C) 0.9600 C(11)-H(11A) 0.9600 C(11)-H(11B) 0.9600 C(11)-H(11C) 0.9600 C(12)-H(12A) 0.9600 C(12)-H(12B) 0.9600 C(12)-H(12C) 0.9600

Li(1)-Cl(1)-Li(1)#1 79.8(2) N(1)-Li(1)-Cl(1) 132.5(3) N(1)-Li(1)-Cl(1)#1 126.5(3) Cl(1)-Li(1)-Cl(1)#1 100.2(2) N(1)-Li(1)-Li(1)#1 171.9(4) Cl(1)-Li(1)-Li(1)#1 50.22(17) Cl(1)#1-Li(1)-Li(1)#1 49.93(17) N(1)-P(1)-N(2) 122.40(14) N(1)-P(1)-N(3) 105.96(14) 112

N(2)-P(1)-N(3) 105.88(14) N(1)-P(1)-N(4) 108.99(14) N(2)-P(1)-N(4) 102.17(14) N(3)-P(1)-N(4) 111.35(14) N(2)-P(2)-N(5) 109.04(14) N(2)-P(2)-N(7) 120.59(14) N(5)-P(2)-N(7) 104.05(14) N(2)-P(2)-N(6) 106.57(14) N(5)-P(2)-N(6) 114.23(14) N(7)-P(2)-N(6) 102.57(14) C(1)-N(1)-P(1) 115.7(2) C(1)-N(1)-Li(1) 110.1(3) P(1)-N(1)-Li(1) 134.1(2) P(2)-N(2)-P(1) 133.53(17) C(4)-N(3)-C(3) 110.9(3) C(4)-N(3)-P(1) 117.4(2) C(3)-N(3)-P(1) 118.9(2) C(5)-N(4)-C(6) 112.9(3) C(5)-N(4)-P(1) 119.0(2) C(6)-N(4)-P(1) 123.3(2) C(7)-N(5)-C(8) 112.3(3) C(7)-N(5)-P(2) 121.0(2) C(8)-N(5)-P(2) 120.8(2) C(10)-N(6)-C(9) 110.8(3) C(10)-N(6)-P(2) 121.5(2) C(9)-N(6)-P(2) 117.9(2) C(12)-N(7)-C(11) 112.7(3) C(12)-N(7)-P(2) 117.9(2) C(11)-N(7)-P(2) 122.0(2) N(1)-C(1)-C(2) 111.0(3) N(1)-C(1)-H(2A) 109.4 C(2)-C(1)-H(2A) 109.4 N(1)-C(1)-H(2B) 109.4 C(2)-C(1)-H(2B) 109.4 H(2A)-C(1)-H(2B) 108.0 C(1)-C(2)-H(1A) 109.5 113

C(1)-C(2)-H(1B) 109.5 H(1A)-C(2)-H(1B) 109.5 C(1)-C(2)-H(1C) 109.5 H(1A)-C(2)-H(1C) 109.5 H(1B)-C(2)-H(1C) 109.5 N(3)-C(3)-H(3A) 109.5 N(3)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(3)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 N(3)-C(4)-H(4A) 109.5 N(3)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(3)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(4)-C(5)-H(5A) 109.5 N(4)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(4)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(4)-C(6)-H(6A) 109.5 N(4)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(4)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(5)-C(7)-H(7A) 109.5 N(5)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(5)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(5)-C(8)-H(8A) 109.5 114 N(5)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(5)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(6)-C(9)-H(9A) 109.5 N(6)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(6)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(6)-C(10)-H(10A) 109.5 N(6)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(6)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(7)-C(11)-H(11A) 109.5 N(7)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(7)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(7)-C(12)-H(12A) 109.5 N(7)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(7)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 ______Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1

115 2 3 Table A- 4. Anisotropic displacement parameters (Å x 10 ) for [LiCl(P2Et)]2. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Cl(1) 62(1) 18(1) 24(1) 0(1) -7(1) 3(1) Li(1) 45(4) 25(3) 23(3) 3(3) 1(3) 2(3) P(1) 26(1) 14(1) 18(1) 0(1) 1(1) 0(1) P(2) 26(1) 14(1) 16(1) 0(1) 2(1) 0(1) N(1) 28(2) 17(1) 18(1) 2(1) 2(1) 1(1) N(2) 30(2) 13(1) 17(1) 0(1) 5(1) 2(1) N(3) 28(2) 16(1) 21(2) 5(1) 5(1) 1(1) N(4) 38(2) 15(1) 17(1) 2(1) -3(1) -3(1) N(5) 28(2) 18(2) 20(1) -1(1) 2(1) 0(1) N(6) 31(2) 14(1) 22(2) -2(1) 7(1) -2(1) N(7) 29(2) 22(2) 15(1) 1(1) 0(1) -1(1) C(1) 33(2) 27(2) 24(2) 3(2) 4(2) -3(2) C(2) 37(2) 31(2) 31(2) 6(2) 10(2) -2(2) C(3) 33(2) 18(2) 48(2) 1(2) 8(2) 5(2) C(4) 28(2) 26(2) 31(2) 5(2) 6(2) 4(2) C(5) 34(2) 19(2) 30(2) 1(2) -1(2) -3(2) C(6) 40(2) 24(2) 21(2) 4(2) -1(2) 1(2) C(7) 27(2) 22(2) 31(2) 2(2) -1(2) 2(2) C(8) 40(2) 22(2) 29(2) -4(2) 2(2) 7(2) C(9) 39(2) 23(2) 23(2) 3(2) 8(2) -2(2) C(10) 41(2) 19(2) 35(2) -1(2) 3(2) -3(2) C(11) 45(2) 29(2) 13(2) 2(2) 3(2) 3(2) C(12) 36(2) 27(2) 28(2) -2(2) -3(2) 4(2) ______

116

Table A-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for[LiCl(P2Et)]2. ______x y z U(eq) ______

H(2A) 5210 832 2720 33 H(2B) 5814 1416 3403 33 H(1A) 5608 81 3974 49 H(1B) 4171 629 4223 49 H(1C) 6232 661 4658 49 H(3A) 10916 -64 1513 49 H(3B) 10428 -41 2575 49 H(3C) 12484 84 2304 49 H(4A) 13168 1078 1421 42 H(4B) 11625 1623 1257 42 H(4C) 11481 958 684 42 H(5A) 5386 95 981 42 H(5B) 6824 -38 1839 42 H(5C) 7454 -94 802 42 H(6A) 7803 922 -116 43 H(6B) 7350 1604 349 43 H(6C) 5729 1113 46 43 H(7A) 3984 2704 2220 40 H(7B) 5320 2228 1707 40 H(7C) 5174 2976 1413 40 H(8A) 6305 3818 2608 45 H(8B) 7454 3572 3518 45 H(8C) 5285 3469 3419 45 H(9A) 9114 3397 841 42 H(9B) 9941 2683 746 42 H(9C) 11279 3297 831 42 H(10A) 12028 3793 2340 48 H(10B) 10835 3618 3196 48 H(10C) 9927 4007 2328 48 H(11A) 8571 1874 4602 43 117 H(11B) 7160 2422 4233 43 H(11C) 8811 2605 4962 43 H(12A) 12156 2474 4328 46 H(12B) 12205 2284 3257 46 H(12C) 11501 1769 3981 46 ______

118 APPENDIX B

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[LiBr(P2Et)]2

Table B-1. Crystal data and structure refinement for [LiBr(P2Et)]2.

Empirical formula C24H70Br2Li2N14P4 Formula weight 852.52 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic

Space group P1 Unit cell dimensions a = 8.2172(3) Å α = 97.021(2)° b = 10.7743(3) Å β = 95.951(2)° c = 26.0956(9) Å γ = 109.5960(10)° Volume 2134.21(12) Å3 Z 2 Density (calculated) 1.327 Mg/m3 Absorption coefficient 2.084 mm-1 F(000) 896 Crystal size 0.12 x 0.11 x 0.05 mm3 Theta range for data collection 1.59 to 26.30° Index ranges -10<=h<=10, -13<=k<=13, - 32<=l<=32 Reflections collected 42932 Independent reflections 8576 [R(int) = 0.0316] Completeness to theta = 26.30° 98.9 % Max. and min. transmission 0.9084 and 0.7807 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 8576 / 0 / 438 Goodness-of-fit on F2 1.919 119 Final R indices [I>2sigma(I)] R1 = 0.0311, wR2 = 0.0458 R indices (all data) R1 = 0.0464, wR2 = 0.0470 Extinction coefficient 0.00003(6) Largest diff. peak and hole 0.444 and -0.367 e.Å-3

Table B-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [LiBr(P2Et)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Br(1) 6648(1) 8806(1) 2250(1) 21(1) Br(2) 8326(1) 6100(1) 2694(1) 27(1) P(1) 11704(1) 10820(1) 3749(1) 14(1) P(2) 11214(1) 13484(1) 3876(1) 14(1) P(3) 3447(1) 4407(1) 1286(1) 14(1) P(4) 3185(1) 1542(1) 1113(1) 14(1) N(1) 9801(2) 9747(2) 3591(1) 16(1) N(2) 12009(2) 12377(2) 3823(1) 17(1) N(3) 12952(2) 10618(2) 3306(1) 17(1) N(4) 12647(2) 10598(2) 4309(1) 17(1) N(5) 11083(2) 14080(2) 4487(1) 16(1) N(6) 12526(2) 14745(2) 3647(1) 15(1) N(7) 9208(2) 13060(2) 3584(1) 15(1) N(8) 5426(2) 5286(2) 1327(1) 16(1) N(9) 2774(2) 2830(2) 1250(1) 17(1) N(10) 2936(2) 4994(2) 1852(1) 21(1) N(11) 2297(2) 4660(2) 769(1) 16(1) N(12) 5245(2) 1742(2) 1270(1) 17(1) N(13) 1997(2) 409(2) 1422(1) 14(1) N(14) 2634(2) 942(2) 480(1) 17(1) C(1) 8510(3) 9792(2) 3939(1) 25(1) C(2) 7073(3) 8441(2) 3877(1) 32(1) C(3) 12849(3) 11195(2) 2830(1) 32(1) C(4) 13171(3) 9319(2) 3209(1) 28(1) C(5) 14372(3) 11510(2) 4552(1) 28(1) 120 C(6) 12159(3) 9305(2) 4485(1) 28(1) C(7) 10011(3) 13107(2) 4778(1) 23(1) C(8) 12775(3) 14876(2) 4811(1) 26(1) C(9) 12108(3) 15955(2) 3625(1) 25(1) C(10) 14359(3) 14936(2) 3627(1) 29(1) C(11) 7942(3) 13689(2) 3718(1) 24(1) C(12) 8720(3) 12291(2) 3052(1) 28(1) C(13) 6405(3) 5192(2) 901(1) 22(1) C(14) 8033(3) 6440(2) 975(1) 28(1) C(15) 2259(3) 6093(2) 1845(1) 26(1) C(16) 2016(3) 4056(2) 2178(1) 39(1) C(17) 2798(3) 5948(2) 590(1) 24(1) C(18) 491(3) 3806(2) 575(1) 26(1) C(19) 6209(3) 2480(2) 1784(1) 27(1) C(20) 6135(3) 957(2) 1002(1) 30(1) C(21) 155(3) 234(2) 1420(1) 22(1) C(22) 2478(3) -722(2) 1550(1) 22(1) C(23) 3350(3) 1808(2) 106(1) 26(1) C(24) 1888(3) -477(2) 261(1) 25(1) Li(1) 8691(5) 8481(4) 2945(1) 25(1) Li(2) 6121(5) 6329(4) 2027(1) 26(1) ______

Table B-3. Bond lengths [Å] and angles [°] for [LiBr(P2Et)]2. ______Br(1)-Li(1) 2.479(4) Br(1)-Li(2) 2.538(4) Br(2)-Li(2) 2.475(4) Br(2)-Li(1) 2.477(4) P(1)-N(1) 1.5776(17) P(1)-N(2) 1.5953(16) P(1)-N(4) 1.6628(16) P(1)-N(3) 1.6655(16) P(2)-N(2) 1.5384(16) P(2)-N(7) 1.6292(17) P(2)-N(6) 1.6479(16) 121 P(2)-N(5) 1.6727(15) P(3)-N(8) 1.5686(17) P(3)-N(9) 1.5878(16) P(3)-N(11) 1.6683(16) P(3)-N(10) 1.6848(16) P(4)-N(9) 1.5446(16) P(4)-N(12) 1.6339(17) P(4)-N(13) 1.6426(16) P(4)-N(14) 1.6553(16) N(1)-C(1) 1.475(2) N(1)-Li(1) 1.953(4) N(3)-C(3) 1.461(2) N(3)-C(4) 1.465(2) N(4)-C(5) 1.451(2) N(4)-C(6) 1.461(2) N(5)-C(8) 1.471(2) N(5)-C(7) 1.472(2) N(6)-C(10) 1.458(2) N(6)-C(9) 1.461(2) N(7)-C(11) 1.467(2) N(7)-C(12) 1.469(2) N(8)-C(13) 1.451(2) N(8)-Li(2) 1.944(4) N(10)-C(16) 1.465(2) N(10)-C(15) 1.469(2) N(10)-Li(2) 2.489(4) N(11)-C(18) 1.456(2) N(11)-C(17) 1.460(2) N(12)-C(20) 1.454(2) N(12)-C(19) 1.469(2) N(13)-C(21) 1.461(2) N(13)-C(22) 1.465(2) N(14)-C(24) 1.458(2) N(14)-C(23) 1.462(2) C(1)-C(2) 1.513(3) C(1)-H(1A) 0.9900 122 C(1)-H(1B) 0.9900 C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 C(12)-H(12A) 0.9800 C(12)-H(12B) 0.9800 C(12)-H(12C) 0.9800 C(13)-C(14) 1.520(3) C(13)-H(13A) 0.9900 123 C(13)-H(13B) 0.9900 C(14)-H(14A) 0.9800 C(14)-H(14B) 0.9800 C(14)-H(14C) 0.9800 C(15)-H(15A) 0.9800 C(15)-H(15B) 0.9800 C(15)-H(15C) 0.9800 C(16)-H(16A) 0.9800 C(16)-H(16B) 0.9800 C(16)-H(16C) 0.9800 C(17)-H(17A) 0.9800 C(17)-H(17B) 0.9800 C(17)-H(17C) 0.9800 C(18)-H(18A) 0.9800 C(18)-H(18B) 0.9800 C(18)-H(18C) 0.9800 C(19)-H(19A) 0.9800 C(19)-H(19B) 0.9800 C(19)-H(19C) 0.9800 C(20)-H(20A) 0.9800 C(20)-H(20B) 0.9800 C(20)-H(20C) 0.9800 C(21)-H(21A) 0.9800 C(21)-H(21B) 0.9800 C(21)-H(21C) 0.9800 C(22)-H(22A) 0.9800 C(22)-H(22B) 0.9800 C(22)-H(22C) 0.9800 C(23)-H(23A) 0.9800 C(23)-H(23B) 0.9800 C(23)-H(23C) 0.9800 C(24)-H(24A) 0.9800 C(24)-H(24B) 0.9800 C(24)-H(24C) 0.9800

Li(1)-Br(1)-Li(2) 77.62(12) 124 Li(2)-Br(2)-Li(1) 78.84(12) N(1)-P(1)-N(2) 120.56(9) N(1)-P(1)-N(4) 110.09(9) N(2)-P(1)-N(4) 105.06(8) N(1)-P(1)-N(3) 110.20(9) N(2)-P(1)-N(3) 103.89(8) N(4)-P(1)-N(3) 105.97(9) N(2)-P(2)-N(7) 115.47(9) N(2)-P(2)-N(6) 106.25(9) N(7)-P(2)-N(6) 110.72(8) N(2)-P(2)-N(5) 115.45(9) N(7)-P(2)-N(5) 102.21(8) N(6)-P(2)-N(5) 106.45(8) N(8)-P(3)-N(9) 123.12(9) N(8)-P(3)-N(11) 109.68(9) N(9)-P(3)-N(11) 104.57(8) N(8)-P(3)-N(10) 102.27(9) N(9)-P(3)-N(10) 105.31(8) N(11)-P(3)-N(10) 111.82(8) N(9)-P(4)-N(12) 113.79(9) N(9)-P(4)-N(13) 107.88(9) N(12)-P(4)-N(13) 109.15(8) N(9)-P(4)-N(14) 111.37(9) N(12)-P(4)-N(14) 107.13(8) N(13)-P(4)-N(14) 107.31(8) C(1)-N(1)-P(1) 117.46(13) C(1)-N(1)-Li(1) 111.10(16) P(1)-N(1)-Li(1) 130.77(14) P(2)-N(2)-P(1) 148.09(12) C(3)-N(3)-C(4) 112.55(16) C(3)-N(3)-P(1) 118.76(14) C(4)-N(3)-P(1) 117.34(13) C(5)-N(4)-C(6) 113.34(17) C(5)-N(4)-P(1) 120.56(13) C(6)-N(4)-P(1) 122.65(14) C(8)-N(5)-C(7) 110.04(15) 125

C(8)-N(5)-P(2) 114.73(13) C(7)-N(5)-P(2) 116.08(13) C(10)-N(6)-C(9) 113.95(15) C(10)-N(6)-P(2) 122.64(13) C(9)-N(6)-P(2) 120.20(14) C(11)-N(7)-C(12) 112.10(16) C(11)-N(7)-P(2) 126.36(13) C(12)-N(7)-P(2) 118.77(13) C(13)-N(8)-P(3) 121.85(13) C(13)-N(8)-Li(2) 131.84(17) P(3)-N(8)-Li(2) 106.26(14) P(4)-N(9)-P(3) 145.92(12) C(16)-N(10)-C(15) 110.60(17) C(16)-N(10)-P(3) 119.71(13) C(15)-N(10)-P(3) 116.71(13) C(16)-N(10)-Li(2) 124.78(17) C(15)-N(10)-Li(2) 98.88(15) P(3)-N(10)-Li(2) 82.54(10) C(18)-N(11)-C(17) 113.58(16) C(18)-N(11)-P(3) 121.98(13) C(17)-N(11)-P(3) 121.68(13) C(20)-N(12)-C(19) 113.10(17) C(20)-N(12)-P(4) 124.65(14) C(19)-N(12)-P(4) 120.23(13) C(21)-N(13)-C(22) 114.98(15) C(21)-N(13)-P(4) 119.04(13) C(22)-N(13)-P(4) 122.89(14) C(24)-N(14)-C(23) 114.44(15) C(24)-N(14)-P(4) 124.24(13) C(23)-N(14)-P(4) 119.07(13) N(1)-C(1)-C(2) 110.87(17) N(1)-C(1)-H(1A) 109.5 C(2)-C(1)-H(1A) 109.5 N(1)-C(1)-H(1B) 109.5 C(2)-C(1)-H(1B) 109.5 H(1A)-C(1)-H(1B) 108.1 126 C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 N(3)-C(3)-H(3A) 109.5 N(3)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(3)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 N(3)-C(4)-H(4A) 109.5 N(3)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(3)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(4)-C(5)-H(5A) 109.5 N(4)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(4)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(4)-C(6)-H(6A) 109.5 N(4)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(4)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(5)-C(7)-H(7A) 109.5 N(5)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(5)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 127 N(5)-C(8)-H(8A) 109.5 N(5)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(5)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(6)-C(9)-H(9A) 109.5 N(6)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(6)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(6)-C(10)-H(10A) 109.5 N(6)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(6)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(7)-C(11)-H(11A) 109.5 N(7)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(7)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(7)-C(12)-H(12A) 109.5 N(7)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(7)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 N(8)-C(13)-C(14) 109.32(16) N(8)-C(13)-H(13A) 109.8 C(14)-C(13)-H(13A) 109.8 N(8)-C(13)-H(13B) 109.8 C(14)-C(13)-H(13B) 109.8 H(13A)-C(13)-H(13B) 108.3 128 C(13)-C(14)-H(14A) 109.5 C(13)-C(14)-H(14B) 109.5 H(14A)-C(14)-H(14B) 109.5 C(13)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(14B)-C(14)-H(14C) 109.5 N(10)-C(15)-H(15A) 109.5 N(10)-C(15)-H(15B) 109.5 H(15A)-C(15)-H(15B) 109.5 N(10)-C(15)-H(15C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(15B)-C(15)-H(15C) 109.5 N(10)-C(16)-H(16A) 109.5 N(10)-C(16)-H(16B) 109.5 H(16A)-C(16)-H(16B) 109.5 N(10)-C(16)-H(16C) 109.5 H(16A)-C(16)-H(16C) 109.5 H(16B)-C(16)-H(16C) 109.5 N(11)-C(17)-H(17A) 109.5 N(11)-C(17)-H(17B) 109.5 H(17A)-C(17)-H(17B) 109.5 N(11)-C(17)-H(17C) 109.5 H(17A)-C(17)-H(17C) 109.5 H(17B)-C(17)-H(17C) 109.5 N(11)-C(18)-H(18A) 109.5 N(11)-C(18)-H(18B) 109.5 H(18A)-C(18)-H(18B) 109.5 N(11)-C(18)-H(18C) 109.5 H(18A)-C(18)-H(18C) 109.5 H(18B)-C(18)-H(18C) 109.5 N(12)-C(19)-H(19A) 109.5 N(12)-C(19)-H(19B) 109.5 H(19A)-C(19)-H(19B) 109.5 N(12)-C(19)-H(19C) 109.5 H(19A)-C(19)-H(19C) 109.5 H(19B)-C(19)-H(19C) 109.5 129 N(12)-C(20)-H(20A) 109.5 N(12)-C(20)-H(20B) 109.5 H(20A)-C(20)-H(20B) 109.5 N(12)-C(20)-H(20C) 109.5 H(20A)-C(20)-H(20C) 109.5 H(20B)-C(20)-H(20C) 109.5 N(13)-C(21)-H(21A) 109.5 N(13)-C(21)-H(21B) 109.5 H(21A)-C(21)-H(21B) 109.5 N(13)-C(21)-H(21C) 109.5 H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5 N(13)-C(22)-H(22A) 109.5 N(13)-C(22)-H(22B) 109.5 H(22A)-C(22)-H(22B) 109.5 N(13)-C(22)-H(22C) 109.5 H(22A)-C(22)-H(22C) 109.5 H(22B)-C(22)-H(22C) 109.5 N(14)-C(23)-H(23A) 109.5 N(14)-C(23)-H(23B) 109.5 H(23A)-C(23)-H(23B) 109.5 N(14)-C(23)-H(23C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(23B)-C(23)-H(23C) 109.5 N(14)-C(24)-H(24A) 109.5 N(14)-C(24)-H(24B) 109.5 H(24A)-C(24)-H(24B) 109.5 N(14)-C(24)-H(24C) 109.5 H(24A)-C(24)-H(24C) 109.5 H(24B)-C(24)-H(24C) 109.5 N(1)-Li(1)-Br(2) 131.45(19) N(1)-Li(1)-Br(1) 124.66(18) Br(2)-Li(1)-Br(1) 102.47(12) N(8)-Li(2)-Br(2) 123.76(18) N(8)-Li(2)-N(10) 68.47(12) Br(2)-Li(2)-N(10) 126.62(15) 130 N(8)-Li(2)-Br(1) 125.20(18) Br(2)-Li(2)-Br(1) 100.84(12) N(10)-Li(2)-Br(1) 110.93(15) ______

2 3 Table B-4. Anisotropic displacement parameters (Å x 10 ) for [LiBr(P2Et)]2. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Br(1) 22(1) 16(1) 23(1) 1(1) -2(1) 6(1) Br(2) 33(1) 20(1) 26(1) -1(1) -11(1) 11(1) P(1) 14(1) 12(1) 15(1) 2(1) 1(1) 4(1) P(2) 14(1) 12(1) 16(1) 1(1) 0(1) 3(1) P(3) 16(1) 12(1) 14(1) 1(1) 0(1) 5(1) P(4) 13(1) 12(1) 15(1) 1(1) 0(1) 3(1) N(1) 12(1) 14(1) 18(1) -2(1) 2(1) 0(1) N(2) 15(1) 11(1) 24(1) 2(1) -1(1) 4(1) N(3) 23(1) 16(1) 17(1) 5(1) 6(1) 9(1) N(4) 18(1) 15(1) 14(1) 4(1) -1(1) 2(1) N(5) 15(1) 16(1) 13(1) -1(1) -2(1) 3(1) N(6) 11(1) 13(1) 22(1) 4(1) 2(1) 5(1) N(7) 12(1) 18(1) 14(1) 0(1) -3(1) 5(1) N(8) 14(1) 16(1) 16(1) 0(1) -1(1) 2(1) N(9) 15(1) 12(1) 22(1) 2(1) 2(1) 4(1) N(10) 33(1) 18(1) 18(1) 6(1) 10(1) 14(1) N(11) 13(1) 16(1) 16(1) 4(1) -3(1) 4(1) N(12) 9(1) 22(1) 17(1) -1(1) -4(1) 6(1) N(13) 12(1) 13(1) 18(1) 4(1) 1(1) 5(1) N(14) 20(1) 13(1) 13(1) 0(1) -2(1) 2(1) C(1) 19(1) 20(1) 30(1) -3(1) 3(1) 0(1) C(2) 24(2) 26(1) 37(2) 1(1) 9(1) -1(1) C(3) 46(2) 35(2) 22(1) 12(1) 16(1) 16(1) C(4) 34(2) 27(1) 29(1) 4(1) 12(1) 17(1) C(5) 24(2) 30(1) 26(1) 5(1) -5(1) 8(1) 131 C(6) 38(2) 24(1) 22(1) 9(1) 3(1) 10(1) C(7) 23(1) 26(1) 19(1) 4(1) 4(1) 6(1) C(8) 23(2) 27(1) 23(1) -2(1) -3(1) 5(1) C(9) 23(1) 17(1) 33(1) 8(1) 0(1) 5(1) C(10) 22(2) 22(1) 46(2) 10(1) 10(1) 8(1) C(11) 15(1) 32(1) 26(1) 6(1) 1(1) 11(1) C(12) 27(2) 30(1) 23(1) -4(1) -8(1) 11(1) C(13) 16(1) 20(1) 29(1) 4(1) 2(1) 6(1) C(14) 22(2) 23(1) 34(1) 5(1) 5(1) 4(1) C(15) 30(2) 27(1) 26(1) 0(1) 3(1) 17(1) C(16) 68(2) 29(1) 24(1) 9(1) 23(1) 15(1) C(17) 27(2) 24(1) 22(1) 9(1) 2(1) 11(1) C(18) 20(2) 26(1) 26(1) -1(1) -7(1) 9(1) C(19) 17(1) 30(1) 28(1) 3(1) -8(1) 4(1) C(20) 21(2) 40(2) 33(1) 3(1) 4(1) 16(1) C(21) 17(1) 17(1) 31(1) 5(1) 5(1) 4(1) C(22) 25(1) 16(1) 27(1) 6(1) 3(1) 8(1) C(23) 34(2) 24(1) 17(1) 4(1) 1(1) 7(1) C(24) 28(2) 22(1) 21(1) -1(1) -2(1) 6(1) Li(1) 22(2) 27(2) 22(2) -1(2) 0(2) 4(2) Li(2) 28(3) 26(2) 23(2) -1(2) -2(2) 9(2) ______

Table B- 5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for[LiBr(P2Et)]2. ______x y z U(eq) ______

H(1A) 7996 10466 3856 30 H(1B) 9103 10062 4306 30 H(2A) 6477 8178 3515 47 H(2B) 6230 8494 4111 47 H(2C) 7580 7777 3966 47 H(3A) 13855 11214 2655 49 H(3B) 12858 12107 2921 49 132 H(3C) 11766 10651 2595 49 H(4A) 12109 8661 2996 42 H(4B) 13384 9028 3543 42 H(4C) 14168 9399 3022 42 H(5A) 14427 11643 4933 42 H(5B) 14599 12370 4432 42 H(5C) 15253 11134 4457 42 H(6A) 13072 8922 4441 41 H(6B) 11049 8700 4279 41 H(6C) 12028 9425 4855 41 H(7A) 10614 12498 4867 35 H(7B) 8878 12593 4562 35 H(7C) 9827 13581 5099 35 H(8A) 12576 15319 5137 40 H(8B) 13455 15552 4621 40 H(8C) 13420 14289 4891 40 H(9A) 12689 16604 3944 37 H(9B) 10840 15732 3597 37 H(9C) 12515 16341 3321 37 H(10A) 14685 15272 3306 44 H(10B) 14534 14081 3630 44 H(10C) 15089 15583 3931 44 H(11A) 7768 14212 3449 36 H(11B) 8387 14280 4057 36 H(11C) 6826 12996 3737 36 H(12A) 7543 11621 3015 42 H(12B) 9556 11842 2987 42 H(12C) 8736 12895 2800 42 H(13A) 5669 5105 563 27 H(13B) 6743 4391 894 27 H(14A) 7690 7228 973 41 H(14B) 8703 6374 690 41 H(14C) 8754 6523 1310 41 H(15A) 1025 5735 1686 39 H(15B) 2930 6734 1641 39 H(15C) 2369 6542 2204 39 133 H(16A) 2052 4547 2523 59 H(16B) 2584 3398 2216 59 H(16C) 797 3597 2013 59 H(17A) 2759 5807 210 36 H(17B) 3987 6503 758 36 H(17C) 1985 6399 680 36 H(18A) -296 4231 711 38 H(18B) 261 2940 691 38 H(18C) 293 3671 192 38 H(19A) 6401 1851 2004 41 H(19B) 5530 2962 1951 41 H(19C) 7339 3118 1741 41 H(20A) 7261 1554 936 46 H(20B) 5412 460 669 46 H(20C) 6333 328 1221 46 H(21A) -547 -397 1108 33 H(21B) 3 1097 1416 33 H(21C) -227 -116 1733 33 H(22A) 2085 -952 1879 34 H(22B) 3751 -477 1587 34 H(22C) 1919 -1492 1270 34 H(23A) 4426 1687 21 39 H(23B) 3610 2743 261 39 H(23C) 2494 1575 -213 39 H(24A) 1063 -613 -58 38 H(24B) 1275 -973 517 38 H(24C) 2826 -801 177 38

134 APPENDIX C

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[ZnCl2(P2Et)]2

Table C-1. Crystal data and structure refinement for [ZnCl2(P2Et)]2

Empirical formula C24H70Cl4N14P4Zn2 Formula weight 951.40 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/n Unit cell dimensions a = 10.7304(3) Å α= 90° b = 13.5723(5) Å β = 102.243(2)° c = 15.3764(5) Å γ = 90° Volume 2188.43(12) Å3 Z 2 Density (calculated) 1.444 Mg/m3 Absorption coefficient 1.523 mm-1 F(000) 1000 Crystal size 0.13 x 0.06 x 0.05 mm3 Theta range for data collection 2.02 to 26.29° Index ranges -13<=h<=13, -16<=k<=16, - 19<=l<=19 Reflections collected 24779 Independent reflections 4436 [R(int) = 0.0556] Completeness to theta = 26.29° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9250 and 0.8254 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4436 / 0 / 228 Goodness-of-fit on F2 1.035

135 Final R indices [I>2sigma(I)] R1 = 0.0322, wR2 = 0.0656 R indices (all data) R1 = 0.0483, wR2 = 0.0739 Largest diff. peak and hole 0.475 and -0.390 e.Å-3

Table C-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for[ZnCl2(P2Et)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Zn(1) 5863(1) 4161(1) 649(1) 13(1) Cl(1) 4703(1) 4156(1) -828(1) 19(1) Cl(2) 7940(1) 4030(1) 672(1) 19(1) P(1) 4820(1) 2265(1) 1426(1) 12(1) P(2) 2065(1) 2367(1) 1465(1) 12(1) N(1) 5204(2) 3407(2) 1525(1) 16(1) N(2) 3437(2) 1966(2) 1520(1) 15(1) N(3) 5008(2) 1870(2) 446(1) 19(1) N(4) 5783(2) 1637(2) 2222(1) 17(1) N(5) 1529(2) 3351(2) 890(1) 15(1) N(6) 1098(2) 1494(2) 964(2) 19(1) N(7) 1886(2) 2631(2) 2476(1) 17(1) C(1) 5051(3) 3924(2) 2342(2) 22(1) C(2) 6278(3) 4094(3) 3006(2) 36(1) C(3) 7156(2) 1822(2) 2447(2) 25(1) C(4) 5477(3) 613(2) 2368(2) 26(1) C(5) 3959(3) 1639(2) -290(2) 25(1) C(6) 6254(3) 1685(2) 257(2) 26(1) C(7) 1842(3) 4347(2) 1238(2) 22(1) C(8) 1169(3) 3337(2) -83(2) 29(1) C(9) 2710(3) 2214(2) 3269(2) 25(1) C(10) 699(3) 3031(2) 2648(2) 25(1) C(11) -282(3) 1609(3) 873(3) 40(1) C(12) 1511(3) 476(2) 1031(2) 33(1) ______

136

Table C-3. Bond lengths [Å] and angles [°] for [ZnCl2(P2Et)]2. ______Zn(1)-N(1) 1.941(2) Zn(1)-Cl(2) 2.2280(7) Zn(1)-Cl(1) 2.3467(7) Zn(1)-Cl(1)#1 2.3944(7) Cl(1)-Zn(1)#1 2.3944(7) P(1)-N(2) 1.574(2) P(1)-N(1) 1.602(2) P(1)-N(3) 1.651(2) P(1)-N(4) 1.660(2) P(2)-N(2) 1.555(2) P(2)-N(5) 1.636(2) P(2)-N(7) 1.646(2) P(2)-N(6) 1.653(2) N(1)-C(1) 1.479(3) N(3)-C(6) 1.449(3) N(3)-C(5) 1.451(3) N(4)-C(4) 1.457(4) N(4)-C(3) 1.461(3) N(5)-C(8) 1.464(3) N(5)-C(7) 1.467(3) N(6)-C(12) 1.449(4) N(6)-C(11) 1.466(3) N(7)-C(10) 1.460(3) N(7)-C(9) 1.461(3) C(1)-C(2) 1.503(4) C(1)-H(1A) 0.9900 C(1)-H(1B) 0.9900 C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 137

C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 C(12)-H(12A) 0.9800 C(12)-H(12B) 0.9800 C(12)-H(12C) 0.9800

N(1)-Zn(1)-Cl(2) 117.19(7) N(1)-Zn(1)-Cl(1) 118.27(7) Cl(2)-Zn(1)-Cl(1) 109.79(3) N(1)-Zn(1)-Cl(1)#1 106.52(7) Cl(2)-Zn(1)-Cl(1)#1 110.61(3) Cl(1)-Zn(1)-Cl(1)#1 91.09(2) Zn(1)-Cl(1)-Zn(1)#1 88.91(2) N(2)-P(1)-N(1) 118.00(12) N(2)-P(1)-N(3) 107.45(12) 138 N(1)-P(1)-N(3) 108.74(12) N(2)-P(1)-N(4) 104.60(11) N(1)-P(1)-N(4) 108.61(12) N(3)-P(1)-N(4) 109.16(12) N(2)-P(2)-N(5) 122.37(12) N(2)-P(2)-N(7) 108.85(11) N(5)-P(2)-N(7) 103.55(12) N(2)-P(2)-N(6) 105.55(12) N(5)-P(2)-N(6) 102.68(11) N(7)-P(2)-N(6) 114.09(12) C(1)-N(1)-P(1) 117.80(18) C(1)-N(1)-Zn(1) 117.53(18) P(1)-N(1)-Zn(1) 124.67(13) P(2)-N(2)-P(1) 143.57(16) C(6)-N(3)-C(5) 113.7(2) C(6)-N(3)-P(1) 122.41(18) C(5)-N(3)-P(1) 123.86(19) C(4)-N(4)-C(3) 112.1(2) C(4)-N(4)-P(1) 118.56(18) C(3)-N(4)-P(1) 121.69(19) C(8)-N(5)-C(7) 112.0(2) C(8)-N(5)-P(2) 121.86(19) C(7)-N(5)-P(2) 121.88(17) C(12)-N(6)-C(11) 113.3(2) C(12)-N(6)-P(2) 119.92(18) C(11)-N(6)-P(2) 119.4(2) C(10)-N(7)-C(9) 112.9(2) C(10)-N(7)-P(2) 122.27(18) C(9)-N(7)-P(2) 122.24(18) N(1)-C(1)-C(2) 114.2(2) N(1)-C(1)-H(1A) 108.7 C(2)-C(1)-H(1A) 108.7 N(1)-C(1)-H(1B) 108.7 C(2)-C(1)-H(1B) 108.7 H(1A)-C(1)-H(1B) 107.6 C(1)-C(2)-H(2A) 109.5 139

C(1)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 N(4)-C(3)-H(3A) 109.5 N(4)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(4)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 N(4)-C(4)-H(4A) 109.5 N(4)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(4)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(3)-C(5)-H(5A) 109.5 N(3)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(3)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(3)-C(6)-H(6A) 109.5 N(3)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(3)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(5)-C(7)-H(7A) 109.5 N(5)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(5)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(5)-C(8)-H(8A) 109.5 140 N(5)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(5)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(7)-C(9)-H(9A) 109.5 N(7)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(7)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(7)-C(10)-H(10A) 109.5 N(7)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(7)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(6)-C(11)-H(11A) 109.5 N(6)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(6)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(6)-C(12)-H(12A) 109.5 N(6)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(6)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 ______Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

141

2 3 Table C-4. Anisotropic displacement parameters (Å x 10 ) for [ZnCl2(P2Et)]2. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Zn(1) 11(1) 13(1) 15(1) 1(1) 0(1) 1(1) Cl(1) 22(1) 14(1) 17(1) -2(1) -4(1) 2(1) Cl(2) 12(1) 22(1) 22(1) 3(1) 3(1) 0(1) P(1) 9(1) 16(1) 11(1) 3(1) 2(1) 2(1) P(2) 10(1) 15(1) 13(1) 2(1) 3(1) 1(1) N(1) 15(1) 18(1) 15(1) -1(1) 5(1) -1(1) N(2) 10(1) 15(1) 19(1) 3(1) 6(1) 3(1) N(3) 13(1) 30(1) 13(1) -2(1) 3(1) 4(1) N(4) 12(1) 20(1) 18(1) 4(1) 0(1) 4(1) N(5) 16(1) 16(1) 12(1) 3(1) 2(1) 3(1) N(6) 11(1) 17(1) 27(1) -2(1) 3(1) 2(1) N(7) 15(1) 26(1) 12(1) 5(1) 6(1) 8(1) C(1) 24(2) 23(2) 22(2) -5(1) 10(1) -7(1) C(2) 37(2) 35(2) 30(2) -16(2) -5(1) 7(2) C(3) 13(1) 33(2) 26(2) 1(1) -4(1) 6(1) C(4) 26(2) 24(2) 29(2) 13(1) 8(1) 8(1) C(5) 22(2) 35(2) 17(2) -3(1) 3(1) -3(1) C(6) 22(2) 34(2) 24(2) -5(1) 12(1) 3(1) C(7) 26(2) 15(2) 23(2) 4(1) 2(1) 2(1) C(8) 40(2) 29(2) 14(2) 4(1) 0(1) 12(1) C(9) 26(2) 34(2) 15(1) 6(1) 5(1) 8(1) C(10) 24(2) 31(2) 22(2) 5(1) 13(1) 12(1) C(11) 12(2) 30(2) 74(3) -18(2) 0(2) 1(1) C(12) 21(2) 21(2) 55(2) -8(2) 2(2) -1(1) ______

142 Table C-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [ZnCl2(P2Et)]2. ______x y z U(eq) ______

H(1A) 4472 3533 2631 27 H(1B) 4638 4568 2173 27 H(2A) 6620 3462 3257 54 H(2B) 6119 4522 3484 54 H(2C) 6896 4411 2709 54 H(3A) 7462 1776 3093 38 H(3B) 7331 2483 2245 38 H(3C) 7595 1331 2153 38 H(4A) 5742 196 1919 39 H(4B) 4555 546 2320 39 H(4C) 5927 407 2963 39 H(5A) 3986 2079 -790 37 H(5B) 3149 1727 -102 37 H(5C) 4034 954 -474 37 H(6A) 6339 981 139 38 H(6B) 6916 1880 771 38 H(6C) 6349 2067 -265 38 H(7A) 2538 4615 988 33 H(7B) 2108 4321 1888 33 H(7C) 1090 4771 1071 33 H(8A) 422 3758 -282 43 H(8B) 966 2661 -288 43 H(8C) 1880 3583 -330 43 H(9A) 2965 2734 3714 37 H(9B) 3471 1929 3110 37 H(9C) 2247 1698 3516 37 H(10A) 237 2512 2892 37 H(10B) 170 3277 2092 37 H(10C) 892 3572 3078 37 H(11A) -729 1248 346 60 143 H(11B) -506 2309 807 60 H(11C) -535 1347 1404 60 H(12A) 1401 201 1600 50 H(12B) 2412 440 999 50 H(12C) 998 97 541 50 ______

144

Table C-6. Torsion angles [°] for [ZnCl2(P2Et)]2. ______N(1)-Zn(1)-Cl(1)-Zn(1)#1 109.46(8) Cl(2)-Zn(1)-Cl(1)-Zn(1)#1 -112.39(3) Cl(1)#1-Zn(1)-Cl(1)-Zn(1)#1 0.0 N(2)-P(1)-N(1)-C(1) 54.7(2) N(3)-P(1)-N(1)-C(1) 177.30(19) N(4)-P(1)-N(1)-C(1) -64.0(2) N(2)-P(1)-N(1)-Zn(1) -125.50(15) N(3)-P(1)-N(1)-Zn(1) -2.88(18) N(4)-P(1)-N(1)-Zn(1) 115.80(15) Cl(2)-Zn(1)-N(1)-C(1) 97.61(18) Cl(1)-Zn(1)-N(1)-C(1) -127.28(17) Cl(1)#1-Zn(1)-N(1)-C(1) -26.80(19) Cl(2)-Zn(1)-N(1)-P(1) -82.21(15) Cl(1)-Zn(1)-N(1)-P(1) 52.90(16) Cl(1)#1-Zn(1)-N(1)-P(1) 153.38(12) N(5)-P(2)-N(2)-P(1) 23.4(3) N(7)-P(2)-N(2)-P(1) -97.3(3) N(6)-P(2)-N(2)-P(1) 139.9(2) N(1)-P(1)-N(2)-P(2) 21.0(3) N(3)-P(1)-N(2)-P(2) -102.2(3) N(4)-P(1)-N(2)-P(2) 141.8(2) N(2)-P(1)-N(3)-C(6) -156.8(2) N(1)-P(1)-N(3)-C(6) 74.4(3) N(4)-P(1)-N(3)-C(6) -43.9(3) N(2)-P(1)-N(3)-C(5) 20.6(3) N(1)-P(1)-N(3)-C(5) -108.2(2) N(4)-P(1)-N(3)-C(5) 133.4(2) N(2)-P(1)-N(4)-C(4) 42.3(2) N(1)-P(1)-N(4)-C(4) 169.1(2) N(3)-P(1)-N(4)-C(4) -72.4(2) N(2)-P(1)-N(4)-C(3) -170.6(2) N(1)-P(1)-N(4)-C(3) -43.8(2) N(3)-P(1)-N(4)-C(3) 74.6(2) N(2)-P(2)-N(5)-C(8) 74.7(3) 145 N(7)-P(2)-N(5)-C(8) -162.2(2) N(6)-P(2)-N(5)-C(8) -43.2(2) N(2)-P(2)-N(5)-C(7) -80.3(2) N(7)-P(2)-N(5)-C(7) 42.8(2) N(6)-P(2)-N(5)-C(7) 161.8(2) N(2)-P(2)-N(6)-C(12) 27.1(3) N(5)-P(2)-N(6)-C(12) 156.3(2) N(7)-P(2)-N(6)-C(12) -92.3(2) N(2)-P(2)-N(6)-C(11) 175.0(2) N(5)-P(2)-N(6)-C(11) -55.8(3) N(7)-P(2)-N(6)-C(11) 55.6(3) N(2)-P(2)-N(7)-C(10) 179.6(2) N(5)-P(2)-N(7)-C(10) 48.0(3) N(6)-P(2)-N(7)-C(10) -62.8(3) N(2)-P(2)-N(7)-C(9) -20.0(3) N(5)-P(2)-N(7)-C(9) -151.6(2) N(6)-P(2)-N(7)-C(9) 97.6(2) P(1)-N(1)-C(1)-C(2) 103.8(3) Zn(1)-N(1)-C(1)-C(2) -76.0(3) ______Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

146 APPENDIX D

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[LiCl(P2tBu)]2

Table D-1. Crystal data and structure refinement for [LiCl(P2Bu)]2.

Empirical formula C28H78Cl2Li2N14P4 Formula weight 819.70 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 8.9389(4) Å α = 102.085(2)° b = 13.1547(6) Å β = 95.537(2)° c = 20.4250(9) Å γ = 97.842(2)° Volume 2307.09(18) Å3 Z 2 Density (calculated) 1.180 Mg/m3 Absorption coefficient 0.316 mm-1 F(000) 888 Crystal size 0.12 x 0.08 x 0.05 mm3 Theta range for data collection 1.60 to 26.30° Index ranges -11<=h<=11, -16<=k<=15, - 24<=l<=25 Reflections collected 44221 Independent reflections 9341 [R(int) = 0.0467] Completeness to theta = 26.30° 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9844 and 0.9631 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 9341 / 0 / 477 Goodness-of-fit on F2 1.042

147 Final R indices [I>2sigma(I)] R1 = 0.0365, wR2 = 0.0773 R indices (all data) R1 = 0.0569, wR2 = 0.0858 Largest diff. peak and hole 0.323 and -0.302 e.Å-3

Table D-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [LiCl(P2Bu)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Cl(1) 2783(1) 6284(1) 3415(1) 22(1) Cl(2) 168(1) 4638(1) 2042(1) 29(1) P(1) 3131(1) 7655(1) 1628(1) 12(1) P(2) 2829(1) 7815(1) 146(1) 14(1) P(3) 1179(1) 2774(1) 3546(1) 11(1) P(4) 2489(1) 2117(1) 4814(1) 12(1) N(1) 1579(2) 7437(1) 1905(1) 14(1) N(2) 3240(2) 7930(1) 909(1) 17(1) N(3) 3813(2) 6523(1) 1669(1) 15(1) N(4) 4364(2) 8623(1) 2142(1) 14(1) N(5) 3940(2) 7107(1) -281(1) 22(1) N(6) 3100(2) 9014(1) -2(1) 22(1) N(7) 1109(2) 7256(1) -202(1) 20(1) N(8) 2386(2) 3230(1) 3137(1) 13(1) N(9) 1585(2) 2286(1) 4176(1) 15(1) N(10) 392(2) 3882(1) 3812(1) 14(1) N(11) -219(2) 1868(1) 3079(1) 13(1) N(12) 4335(2) 2472(1) 4883(1) 17(1) N(13) 1951(2) 2764(1) 5508(1) 15(1) N(14) 2144(2) 851(1) 4810(1) 17(1) C(1) 351(2) 8080(2) 1952(1) 17(1) C(2) -509(2) 7815(2) 2520(1) 25(1) C(3) -726(2) 7783(2) 1292(1) 32(1) C(4) 934(3) 9264(2) 2122(1) 31(1) C(5) 3187(2) 5603(2) 1126(1) 21(1) 148 C(6) 5447(2) 6559(2) 1848(1) 26(1) C(7) 4464(2) 8756(2) 2871(1) 23(1) C(8) 5616(2) 9244(2) 1931(1) 21(1) C(9) 3544(3) 6478(2) -972(1) 36(1) C(10) 5546(2) 7184(2) -22(1) 30(1) C(11) 2696(3) 9908(2) 454(1) 36(1) C(12) 3222(3) 9179(2) -682(1) 40(1) C(13) 574(3) 6157(2) -194(1) 29(1) C(14) -33(2) 7753(2) -510(1) 31(1) C(15) 3578(2) 2768(2) 2788(1) 15(1) C(16) 2984(2) 2320(2) 2040(1) 25(1) C(17) 4900(2) 3665(2) 2848(1) 24(1) C(18) 4147(2) 1891(2) 3083(1) 23(1) C(19) 1310(2) 4605(1) 4411(1) 16(1) C(20) -1222(2) 3732(2) 3903(1) 21(1) C(21) -1207(2) 1132(2) 3352(1) 21(1) C(22) -859(2) 1982(2) 2418(1) 19(1) C(23) 4966(2) 3555(2) 4880(1) 27(1) C(24) 5472(2) 1827(2) 5016(1) 30(1) C(25) 332(2) 2695(2) 5578(1) 20(1) C(26) 2939(2) 3156(2) 6153(1) 23(1) C(27) 2187(3) 448(2) 5421(1) 30(1) C(28) 2166(3) 56(2) 4196(1) 26(1) Li(2) 1522(4) 4538(3) 3041(2) 20(1) Li(1) 1804(4) 6242(3) 2324(2) 23(1) ______

Table D-3. Bond lengths [Å] and angles [°] for [LiCl(P2Bu)]2. ______Cl(1)-Li(1) 2.301(3) Cl(1)-Li(2) 2.350(3) Cl(2)-Li(2) 2.308(3) Cl(2)-Li(1) 2.326(3) P(1)-N(1) 1.5617(16) P(1)-N(2) 1.5926(17) P(1)-N(4) 1.6655(15) 149

P(1)-N(3) 1.6987(16) P(2)-N(2) 1.5364(16) P(2)-N(7) 1.6348(16) P(2)-N(5) 1.6405(17) P(2)-N(6) 1.6577(18) P(3)-N(8) 1.5594(16) P(3)-N(9) 1.5877(16) P(3)-N(11) 1.6674(15) P(3)-N(10) 1.7131(15) P(4)-N(9) 1.5378(16) P(4)-N(12) 1.6371(16) P(4)-N(13) 1.6430(16) P(4)-N(14) 1.6511(16) N(1)-C(1) 1.473(2) N(1)-Li(1) 1.965(4) N(3)-C(6) 1.463(2) N(3)-C(5) 1.463(2) N(3)-Li(1) 2.375(4) N(4)-C(8) 1.448(2) N(4)-C(7) 1.454(2) N(5)-C(9) 1.462(3) N(5)-C(10) 1.464(3) N(6)-C(11) 1.450(3) N(6)-C(12) 1.461(3) N(7)-C(14) 1.447(3) N(7)-C(13) 1.464(3) N(8)-C(15) 1.468(2) N(8)-Li(2) 2.017(4) N(10)-C(20) 1.465(2) N(10)-C(19) 1.476(2) N(10)-Li(2) 2.209(4) N(11)-C(21) 1.454(2) N(11)-C(22) 1.459(2) N(12)-C(24) 1.451(2) N(12)-C(23) 1.460(3) N(13)-C(25) 1.460(2) 150 N(13)-C(26) 1.466(2) N(14)-C(27) 1.453(3) N(14)-C(28) 1.460(2) C(1)-C(3) 1.524(3) C(1)-C(2) 1.526(3) C(1)-C(4) 1.527(3) C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 151 C(12)-H(12A) 0.9800 C(12)-H(12B) 0.9800 C(12)-H(12C) 0.9800 C(13)-H(13A) 0.9800 C(13)-H(13B) 0.9800 C(13)-H(13C) 0.9800 C(14)-H(14A) 0.9800 C(14)-H(14B) 0.9800 C(14)-H(14C) 0.9800 C(15)-C(17) 1.528(3) C(15)-C(16) 1.530(3) C(15)-C(18) 1.532(3) C(16)-H(16A) 0.9800 C(16)-H(16B) 0.9800 C(16)-H(16C) 0.9800 C(17)-H(17A) 0.9800 C(17)-H(17B) 0.9800 C(17)-H(17C) 0.9800 C(18)-H(18A) 0.9800 C(18)-H(18B) 0.9800 C(18)-H(18C) 0.9800 C(19)-H(19A) 0.9800 C(19)-H(19B) 0.9800 C(19)-H(19C) 0.9800 C(20)-H(20A) 0.9800 C(20)-H(20B) 0.9800 C(20)-H(20C) 0.9800 C(21)-H(21A) 0.9800 C(21)-H(21B) 0.9800 C(21)-H(21C) 0.9800 C(22)-H(22A) 0.9800 C(22)-H(22B) 0.9800 C(22)-H(22C) 0.9800 C(23)-H(23A) 0.9800 C(23)-H(23B) 0.9800 C(23)-H(23C) 0.9800 152 C(24)-H(24A) 0.9800 C(24)-H(24B) 0.9800 C(24)-H(24C) 0.9800 C(25)-H(25A) 0.9800 C(25)-H(25B) 0.9800 C(25)-H(25C) 0.9800 C(26)-H(26A) 0.9800 C(26)-H(26B) 0.9800 C(26)-H(26C) 0.9800 C(27)-H(27A) 0.9800 C(27)-H(27B) 0.9800 C(27)-H(27C) 0.9800 C(28)-H(28A) 0.9800 C(28)-H(28B) 0.9800 C(28)-H(28C) 0.9800

Li(1)-Cl(1)-Li(2) 77.77(12) Li(2)-Cl(2)-Li(1) 78.11(12) N(1)-P(1)-N(2) 122.36(9) N(1)-P(1)-N(4) 113.13(8) N(2)-P(1)-N(4) 102.78(8) N(1)-P(1)-N(3) 100.24(8) N(2)-P(1)-N(3) 111.49(8) N(4)-P(1)-N(3) 106.08(8) N(2)-P(2)-N(7) 118.47(9) N(2)-P(2)-N(5) 110.79(9) N(7)-P(2)-N(5) 104.07(9) N(2)-P(2)-N(6) 107.35(9) N(7)-P(2)-N(6) 107.16(9) N(5)-P(2)-N(6) 108.65(9) N(8)-P(3)-N(9) 123.98(8) N(8)-P(3)-N(11) 114.53(8) N(9)-P(3)-N(11) 102.78(8) N(8)-P(3)-N(10) 99.10(8) N(9)-P(3)-N(10) 108.81(8) N(11)-P(3)-N(10) 106.56(8) 153 N(9)-P(4)-N(12) 115.22(9) N(9)-P(4)-N(13) 111.92(8) N(12)-P(4)-N(13) 105.96(8) N(9)-P(4)-N(14) 107.88(8) N(12)-P(4)-N(14) 108.03(8) N(13)-P(4)-N(14) 107.53(8) C(1)-N(1)-P(1) 128.46(13) C(1)-N(1)-Li(1) 127.45(17) P(1)-N(1)-Li(1) 103.30(13) P(2)-N(2)-P(1) 156.92(12) C(6)-N(3)-C(5) 110.71(15) C(6)-N(3)-P(1) 119.51(13) C(5)-N(3)-P(1) 116.26(13) C(6)-N(3)-Li(1) 128.73(16) C(5)-N(3)-Li(1) 93.65(14) P(1)-N(3)-Li(1) 84.21(11) C(8)-N(4)-C(7) 113.22(15) C(8)-N(4)-P(1) 124.69(13) C(7)-N(4)-P(1) 120.80(13) C(9)-N(5)-C(10) 113.02(17) C(9)-N(5)-P(2) 125.57(15) C(10)-N(5)-P(2) 120.82(14) C(11)-N(6)-C(12) 113.49(18) C(11)-N(6)-P(2) 121.54(15) C(12)-N(6)-P(2) 121.54(15) C(14)-N(7)-C(13) 113.51(17) C(14)-N(7)-P(2) 126.56(15) C(13)-N(7)-P(2) 119.87(14) C(15)-N(8)-P(3) 131.84(13) C(15)-N(8)-Li(2) 128.55(16) P(3)-N(8)-Li(2) 98.32(12) P(4)-N(9)-P(3) 159.26(11) C(20)-N(10)-C(19) 110.72(15) C(20)-N(10)-P(3) 117.32(13) C(19)-N(10)-P(3) 112.32(12) C(20)-N(10)-Li(2) 129.52(15) 154

C(19)-N(10)-Li(2) 97.13(14) P(3)-N(10)-Li(2) 86.92(11) C(21)-N(11)-C(22) 112.84(15) C(21)-N(11)-P(3) 123.83(12) C(22)-N(11)-P(3) 120.48(13) C(24)-N(12)-C(23) 114.14(16) C(24)-N(12)-P(4) 125.75(14) C(23)-N(12)-P(4) 119.83(13) C(25)-N(13)-C(26) 113.14(15) C(25)-N(13)-P(4) 119.72(13) C(26)-N(13)-P(4) 124.53(13) C(27)-N(14)-C(28) 114.15(16) C(27)-N(14)-P(4) 123.37(13) C(28)-N(14)-P(4) 120.69(14) N(1)-C(1)-C(3) 109.89(16) N(1)-C(1)-C(2) 106.21(16) C(3)-C(1)-C(2) 109.34(17) N(1)-C(1)-C(4) 113.29(16) C(3)-C(1)-C(4) 109.54(18) C(2)-C(1)-C(4) 108.47(17) C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 C(1)-C(3)-H(3A) 109.5 C(1)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 C(1)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 C(1)-C(4)-H(4A) 109.5 C(1)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 C(1)-C(4)-H(4C) 109.5 155 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(3)-C(5)-H(5A) 109.5 N(3)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(3)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(3)-C(6)-H(6A) 109.5 N(3)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(3)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(4)-C(7)-H(7A) 109.5 N(4)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(4)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(4)-C(8)-H(8A) 109.5 N(4)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(4)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(5)-C(9)-H(9A) 109.5 N(5)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(5)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(5)-C(10)-H(10A) 109.5 N(5)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(5)-C(10)-H(10C) 109.5 156

H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(6)-C(11)-H(11A) 109.5 N(6)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(6)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(6)-C(12)-H(12A) 109.5 N(6)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(6)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 N(7)-C(13)-H(13A) 109.5 N(7)-C(13)-H(13B) 109.5 H(13A)-C(13)-H(13B) 109.5 N(7)-C(13)-H(13C) 109.5 H(13A)-C(13)-H(13C) 109.5 H(13B)-C(13)-H(13C) 109.5 N(7)-C(14)-H(14A) 109.5 N(7)-C(14)-H(14B) 109.5 H(14A)-C(14)-H(14B) 109.5 N(7)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(14B)-C(14)-H(14C) 109.5 N(8)-C(15)-C(17) 106.61(15) N(8)-C(15)-C(16) 109.80(15) C(17)-C(15)-C(16) 108.92(17) N(8)-C(15)-C(18) 113.63(16) C(17)-C(15)-C(18) 109.37(16) C(16)-C(15)-C(18) 108.42(16) C(15)-C(16)-H(16A) 109.5 C(15)-C(16)-H(16B) 109.5 H(16A)-C(16)-H(16B) 109.5 C(15)-C(16)-H(16C) 109.5 157 H(16A)-C(16)-H(16C) 109.5 H(16B)-C(16)-H(16C) 109.5 C(15)-C(17)-H(17A) 109.5 C(15)-C(17)-H(17B) 109.5 H(17A)-C(17)-H(17B) 109.5 C(15)-C(17)-H(17C) 109.5 H(17A)-C(17)-H(17C) 109.5 H(17B)-C(17)-H(17C) 109.5 C(15)-C(18)-H(18A) 109.5 C(15)-C(18)-H(18B) 109.5 H(18A)-C(18)-H(18B) 109.5 C(15)-C(18)-H(18C) 109.5 H(18A)-C(18)-H(18C) 109.5 H(18B)-C(18)-H(18C) 109.5 N(10)-C(19)-H(19A) 109.5 N(10)-C(19)-H(19B) 109.5 H(19A)-C(19)-H(19B) 109.5 N(10)-C(19)-H(19C) 109.5 H(19A)-C(19)-H(19C) 109.5 H(19B)-C(19)-H(19C) 109.5 N(10)-C(20)-H(20A) 109.5 N(10)-C(20)-H(20B) 109.5 H(20A)-C(20)-H(20B) 109.5 N(10)-C(20)-H(20C) 109.5 H(20A)-C(20)-H(20C) 109.5 H(20B)-C(20)-H(20C) 109.5 N(11)-C(21)-H(21A) 109.5 N(11)-C(21)-H(21B) 109.5 H(21A)-C(21)-H(21B) 109.5 N(11)-C(21)-H(21C) 109.5 H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5 N(11)-C(22)-H(22A) 109.5 N(11)-C(22)-H(22B) 109.5 H(22A)-C(22)-H(22B) 109.5 N(11)-C(22)-H(22C) 109.5 158 H(22A)-C(22)-H(22C) 109.5 H(22B)-C(22)-H(22C) 109.5 N(12)-C(23)-H(23A) 109.5 N(12)-C(23)-H(23B) 109.5 H(23A)-C(23)-H(23B) 109.5 N(12)-C(23)-H(23C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(23B)-C(23)-H(23C) 109.5 N(12)-C(24)-H(24A) 109.5 N(12)-C(24)-H(24B) 109.5 H(24A)-C(24)-H(24B) 109.5 N(12)-C(24)-H(24C) 109.5 H(24A)-C(24)-H(24C) 109.5 H(24B)-C(24)-H(24C) 109.5 N(13)-C(25)-H(25A) 109.5 N(13)-C(25)-H(25B) 109.5 H(25A)-C(25)-H(25B) 109.5 N(13)-C(25)-H(25C) 109.5 H(25A)-C(25)-H(25C) 109.5 H(25B)-C(25)-H(25C) 109.5 N(13)-C(26)-H(26A) 109.5 N(13)-C(26)-H(26B) 109.5 H(26A)-C(26)-H(26B) 109.5 N(13)-C(26)-H(26C) 109.5 H(26A)-C(26)-H(26C) 109.5 H(26B)-C(26)-H(26C) 109.5 N(14)-C(27)-H(27A) 109.5 N(14)-C(27)-H(27B) 109.5 H(27A)-C(27)-H(27B) 109.5 N(14)-C(27)-H(27C) 109.5 H(27A)-C(27)-H(27C) 109.5 H(27B)-C(27)-H(27C) 109.5 N(14)-C(28)-H(28A) 109.5 N(14)-C(28)-H(28B) 109.5 H(28A)-C(28)-H(28B) 109.5 N(14)-C(28)-H(28C) 109.5 159 H(28A)-C(28)-H(28C) 109.5 H(28B)-C(28)-H(28C) 109.5 N(8)-Li(2)-N(10) 72.11(12) N(8)-Li(2)-Cl(2) 121.36(16) N(10)-Li(2)-Cl(2) 121.38(15) N(8)-Li(2)-Cl(1) 126.31(16) N(10)-Li(2)-Cl(1) 114.88(14) Cl(2)-Li(2)-Cl(1) 100.52(13) N(1)-Li(1)-Cl(1) 128.10(17) N(1)-Li(1)-Cl(2) 124.59(17) Cl(1)-Li(1)-Cl(2) 101.46(13) N(1)-Li(1)-N(3) 69.71(12) Cl(1)-Li(1)-N(3) 110.12(15) Cl(2)-Li(1)-N(3) 119.02(15) ______

2 3 Table D- 4. Anisotropic displacement parameters (Å x 10 ) for [LiCl(P2Bu)]2. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Cl(1) 26(1) 20(1) 16(1) 7(1) -5(1) -4(1) Cl(2) 38(1) 22(1) 21(1) 11(1) -12(1) -9(1) P(1) 12(1) 13(1) 10(1) 3(1) 0(1) 1(1) P(2) 13(1) 18(1) 11(1) 4(1) 1(1) -1(1) P(3) 12(1) 12(1) 10(1) 3(1) 0(1) 2(1) P(4) 13(1) 13(1) 11(1) 4(1) 0(1) 2(1) N(1) 13(1) 15(1) 16(1) 5(1) 2(1) 3(1) N(2) 18(1) 19(1) 13(1) 4(1) 1(1) -1(1) N(3) 15(1) 15(1) 16(1) 3(1) -1(1) 3(1) N(4) 16(1) 16(1) 10(1) 4(1) 0(1) -2(1) N(5) 15(1) 30(1) 18(1) -2(1) 2(1) 0(1) N(6) 26(1) 24(1) 17(1) 12(1) 1(1) -2(1) N(7) 18(1) 25(1) 16(1) 8(1) -2(1) -3(1) 160 N(8) 13(1) 14(1) 13(1) 5(1) 3(1) 2(1) N(9) 15(1) 16(1) 14(1) 4(1) 0(1) 1(1) N(10) 12(1) 15(1) 14(1) 2(1) 1(1) 4(1) N(11) 14(1) 15(1) 10(1) 5(1) -1(1) 0(1) N(12) 13(1) 20(1) 19(1) 8(1) 0(1) 3(1) N(13) 15(1) 18(1) 10(1) 4(1) 1(1) 3(1) N(14) 28(1) 13(1) 12(1) 6(1) 2(1) 4(1) C(1) 16(1) 23(1) 16(1) 8(1) 4(1) 7(1) C(2) 23(1) 34(1) 21(1) 10(1) 9(1) 10(1) C(3) 23(1) 58(2) 20(1) 10(1) 4(1) 21(1) C(4) 35(1) 24(1) 43(2) 13(1) 20(1) 14(1) C(5) 24(1) 17(1) 21(1) 2(1) 2(1) 3(1) C(6) 20(1) 27(1) 33(1) 7(1) -2(1) 8(1) C(7) 26(1) 26(1) 14(1) 3(1) -1(1) -3(1) C(8) 18(1) 20(1) 21(1) 1(1) 2(1) -2(1) C(9) 36(1) 48(2) 20(1) -4(1) 9(1) 2(1) C(10) 18(1) 36(1) 34(1) 4(1) 6(1) 7(1) C(11) 45(2) 22(1) 42(2) 11(1) 2(1) 6(1) C(12) 49(2) 46(2) 31(1) 26(1) 2(1) -2(1) C(13) 27(1) 29(1) 25(1) 6(1) -4(1) -12(1) C(14) 19(1) 41(1) 32(1) 11(1) -6(1) 5(1) C(15) 15(1) 18(1) 13(1) 5(1) 4(1) 3(1) C(16) 24(1) 34(1) 15(1) -1(1) 5(1) 6(1) C(17) 19(1) 28(1) 27(1) 8(1) 8(1) 4(1) C(18) 26(1) 26(1) 23(1) 9(1) 10(1) 14(1) C(19) 21(1) 13(1) 14(1) 1(1) 1(1) 3(1) C(20) 16(1) 22(1) 23(1) 1(1) 2(1) 6(1) C(21) 18(1) 23(1) 20(1) 7(1) 0(1) -3(1) C(22) 21(1) 21(1) 14(1) 4(1) -4(1) 1(1) C(23) 16(1) 28(1) 38(1) 16(1) 0(1) -3(1) C(24) 21(1) 28(1) 41(1) 1(1) -5(1) 12(1) C(25) 20(1) 25(1) 20(1) 8(1) 8(1) 8(1) C(26) 28(1) 27(1) 13(1) 0(1) -1(1) 3(1) C(27) 54(2) 22(1) 20(1) 12(1) 10(1) 14(1) C(28) 39(1) 16(1) 21(1) 2(1) 4(1) 4(1) Li(2) 22(2) 18(2) 18(2) 5(1) 0(1) 2(1) 161 Li(1) 28(2) 19(2) 20(2) 6(1) -1(2) -2(2) ______

Table D-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [LiCl(P2Bu)]2. ______x y z U(eq) ______

H(2A) -933 7063 2408 37 H(2B) -1338 8230 2575 37 H(2C) 191 7982 2942 37 H(3A) -181 7964 928 48 H(3B) -1587 8170 1339 48 H(3C) -1104 7025 1185 48 H(4A) 1635 9453 2544 47 H(4B) 73 9648 2175 47 H(4C) 1470 9449 1756 47 H(5A) 3654 5661 718 32 H(5B) 2083 5568 1033 32 H(5C) 3404 4962 1264 32 H(6A) 5625 5900 1971 40 H(6B) 5831 7151 2233 40 H(6C) 5980 6650 1462 40 H(7A) 5413 8548 3041 34 H(7B) 3595 8314 2982 34 H(7C) 4452 9496 3081 34 H(8A) 5633 9992 2128 31 H(8B) 5486 9123 1438 31 H(8C) 6578 9036 2085 31 H(9A) 4207 6767 -1266 55 H(9B) 2480 6497 -1130 55 H(9C) 3679 5748 -982 55 H(10A) 5783 6477 -25 45 H(10B) 5746 7612 442 45 H(10C) 6186 7515 -308 45 162 H(11A) 3385 10548 442 53 H(11B) 2786 9793 914 53 H(11C) 1645 9985 315 53 H(12A) 2240 9304 -880 61 H(12B) 3508 8553 -963 61 H(12C) 4002 9791 -658 61 H(13A) -227 6126 99 43 H(13B) 1425 5846 -24 43 H(13C) 166 5763 -654 43 H(14A) -281 7412 -990 47 H(14B) 361 8501 -460 47 H(14C) -952 7681 -287 47 H(16A) 2140 1740 1997 38 H(16B) 3805 2058 1803 38 H(16C) 2625 2874 1842 38 H(17A) 4547 4215 2643 36 H(17B) 5719 3394 2613 36 H(17C) 5282 3962 3325 36 H(18A) 4507 2160 3565 35 H(18B) 4985 1651 2848 35 H(18C) 3313 1300 3024 35 H(19A) 932 5280 4492 24 H(19B) 2377 4720 4332 24 H(19C) 1228 4296 4805 24 H(20A) -1364 3382 4276 31 H(20B) -1821 3296 3487 31 H(20C) -1562 4419 4006 31 H(21A) -2185 1378 3401 31 H(21B) -726 1086 3794 31 H(21C) -1376 435 3044 31 H(22A) -931 1314 2088 29 H(22B) -200 2535 2279 29 H(22C) -1877 2173 2445 29 H(23A) 5407 3931 5340 40 H(23B) 4155 3909 4719 40 H(23C) 5759 3553 4581 40 163

H(24A) 6143 1780 4662 46 H(24B) 4966 1119 5019 46 H(24C) 6076 2145 5455 46 H(25A) 38 2147 5821 31 H(25B) -264 2518 5129 31 H(25C) 137 3374 5830 31 H(26A) 2809 3881 6346 35 H(26B) 4003 3141 6078 35 H(26C) 2665 2709 6465 35 H(27A) 1366 -151 5363 45 H(27B) 2054 1004 5803 45 H(27C) 3171 219 5509 45 H(28A) 3127 -223 4222 39 H(28B) 2073 375 3804 39 H(28C) 1313 -519 4149 39 ______

164 APPENDIX E

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[LiBr(P2tBu)]2

Table E-1. Crystal data and structure refinement for [LiBr(P2tBu)]2.

Empirical formula C28H78Br2Li2N14P4 Formula weight 908.62 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 13.448(7) Å α= 90° b = 10.935(6) Å β = 91.317(7)° c = 16.192(9) Å γ = 90° Volume 2380(2) Å3 Z 2 Density (calculated) 1.268 Mg/m3 Absorption coefficient 1.873 mm-1 F(000) 960 Crystal size 0.17 x 0.11 x 0.03 mm3 Theta range for data collection 1.51 to 26.30° Index ranges -16<=h<=16, -13<=k<=13, - 20<=l<=20 Reflections collected 17880 Independent reflections 4831 [R(int) = 0.0784] Completeness to theta = 26.30° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9460 and 0.7401 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4831 / 0 / 239

165 Goodness-of-fit on F2 0.980 Final R indices [I>2sigma(I)] R1 = 0.0530, wR2 = 0.1143 R indices (all data) R1 = 0.0962, wR2 = 0.1309 Largest diff. peak and hole 1.191 and -0.403 e.Å-3

Table E-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [LiBr(P2tBu)]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Br(1) 5086(1) 5886(1) 1010(1) 31(1) P(1) 2960(1) 2638(1) 1306(1) 25(1) P(2) 1882(1) 139(1) 1326(1) 26(1) N(1) 2795(3) 3668(3) 642(2) 25(1) N(2) 2269(3) 1460(3) 1285(2) 29(1) N(3) 4160(3) 2271(3) 1109(2) 28(1) N(4) 2933(3) 3126(3) 2273(2) 30(1) N(5) 2604(3) -982(4) 1648(2) 33(1) N(6) 968(3) 59(3) 1988(2) 31(1) N(7) 1480(3) -257(3) 395(2) 32(1) C(1) 1873(3) 4337(4) 441(3) 29(1) C(2) 2123(4) 5210(5) -264(3) 39(1) C(3) 1526(4) 5089(5) 1181(3) 42(1) C(4) 1034(4) 3495(5) 145(4) 44(1) C(5) 4769(4) 1783(5) 1801(3) 42(1) C(6) 4296(4) 1525(4) 366(3) 33(1) C(7) 3418(4) 4266(5) 2516(3) 40(1) C(8) 2618(4) 2421(4) 2982(3) 32(1) C(9) 3258(4) -1637(5) 1092(3) 42(1) C(10) 2972(4) -1024(5) 2507(3) 46(1) C(11) 586(4) -1061(4) 2342(3) 43(1) C(12) 318(4) 1100(4) 2129(3) 35(1) C(13) 926(4) -1385(5) 248(3) 45(1) C(14) 1816(4) 305(5) -363(3) 38(1) 166 Li(1) 4178(6) 4116(7) 395(5) 30(2) ______

Table E- 3. Bond lengths [Å] and angles [°] for [LiBr(P2Bu)]2. ______Br(1)-Li(1) 2.483(7) Br(1)-Li(1)#1 2.501(7) P(1)-N(1) 1.569(4) P(1)-N(2) 1.589(4) P(1)-N(4) 1.656(4) P(1)-N(3) 1.700(4) P(2)-N(2) 1.537(4) P(2)-N(6) 1.651(4) P(2)-N(5) 1.641(4) P(2)-N(7) 1.649(4) N(1)-C(1) 1.470(6) N(1)-Li(1) 1.974(8) N(3)-C(5) 1.472(6) N(3)-C(6) 1.469(6) N(3)-Li(1) 2.326(9) N(4)-C(8) 1.454(6) N(4)-C(7) 1.457(6) N(5)-C(9) 1.461(6) N(5)-C(10) 1.466(6) N(6)-C(12) 1.456(6) N(6)-C(11) 1.452(6) N(7)-C(14) 1.453(6) N(7)-C(13) 1.457(6) C(1)-C(4) 1.525(7) C(1)-C(2) 1.531(6) C(1)-C(3) 1.535(6) C(2)-H(2A) 0.9600 C(2)-H(2B) 0.9600 C(2)-H(2C) 0.9600 C(3)-H(3A) 0.9600 C(3)-H(3B) 0.9600 167 C(3)-H(3C) 0.9600 C(4)-H(4A) 0.9600 C(4)-H(4B) 0.9600 C(4)-H(4C) 0.9600 C(5)-H(5A) 0.9600 C(5)-H(5B) 0.9600 C(5)-H(5C) 0.9600 C(6)-H(6A) 0.9600 C(6)-H(6B) 0.9600 C(6)-H(6C) 0.9600 C(7)-H(7A) 0.9600 C(7)-H(7B) 0.9600 C(7)-H(7C) 0.9600 C(8)-H(8A) 0.9600 C(8)-H(8B) 0.9600 C(8)-H(8C) 0.9600 C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600 C(9)-H(9C) 0.9600 C(10)-H(10A) 0.9600 C(10)-H(10B) 0.9600 C(10)-H(10C) 0.9600 C(11)-H(11A) 0.9600 C(11)-H(11B) 0.9600 C(11)-H(11C) 0.9600 C(12)-H(12A) 0.9600 C(12)-H(12B) 0.9600 C(12)-H(12C) 0.9600 C(13)-H(13A) 0.9600 C(13)-H(13B) 0.9600 C(13)-H(13C) 0.9600 C(14)-H(14A) 0.9600 C(14)-H(14B) 0.9600 C(14)-H(14C) 0.9600 Li(1)-Br(1)#1 2.501(7) Li(1)-Li(1)#1 3.222(15) 168 Li(1)-Br(1)-Li(1)#1 80.6(3) N(1)-P(1)-N(2) 119.6(2) N(1)-P(1)-N(4) 114.2(2) N(2)-P(1)-N(4) 104.81(19) N(1)-P(1)-N(3) 99.31(19) N(2)-P(1)-N(3) 111.3(2) N(4)-P(1)-N(3) 107.2(2) N(2)-P(2)-N(6) 109.6(2) N(2)-P(2)-N(5) 121.1(2) N(6)-P(2)-N(5) 101.5(2) N(2)-P(2)-N(7) 108.1(2) N(6)-P(2)-N(7) 110.3(2) N(5)-P(2)-N(7) 105.9(2) C(1)-N(1)-P(1) 128.0(3) C(1)-N(1)-Li(1) 128.7(4) P(1)-N(1)-Li(1) 101.4(3) P(2)-N(2)-P(1) 163.6(3) C(5)-N(3)-C(6) 110.2(4) C(5)-N(3)-P(1) 117.2(3) C(6)-N(3)-P(1) 114.9(3) C(5)-N(3)-Li(1) 132.9(4) C(6)-N(3)-Li(1) 94.1(3) P(1)-N(3)-Li(1) 84.8(2) C(8)-N(4)-C(7) 112.2(4) C(8)-N(4)-P(1) 126.1(3) C(7)-N(4)-P(1) 120.8(3) C(9)-N(5)-C(10) 112.0(4) C(9)-N(5)-P(2) 122.1(3) C(10)-N(5)-P(2) 120.6(3) C(12)-N(6)-C(11) 112.2(4) C(12)-N(6)-P(2) 121.3(3) C(11)-N(6)-P(2) 125.2(3) C(14)-N(7)-C(13) 112.9(4) C(14)-N(7)-P(2) 124.0(3) C(13)-N(7)-P(2) 121.8(3) 169 N(1)-C(1)-C(4) 112.5(4) N(1)-C(1)-C(2) 106.1(4) C(4)-C(1)-C(2) 108.4(4) N(1)-C(1)-C(3) 111.3(4) C(4)-C(1)-C(3) 109.4(4) C(2)-C(1)-C(3) 108.9(4) C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 C(1)-C(3)-H(3A) 109.5 C(1)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 C(1)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 C(1)-C(4)-H(4A) 109.5 C(1)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 C(1)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(3)-C(5)-H(5A) 109.5 N(3)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(3)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(3)-C(6)-H(6A) 109.5 N(3)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(3)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 170 N(4)-C(7)-H(7A) 109.5 N(4)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(4)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(4)-C(8)-H(8A) 109.5 N(4)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(4)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(5)-C(9)-H(9A) 109.5 N(5)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(5)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(5)-C(10)-H(10A) 109.5 N(5)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(5)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(6)-C(11)-H(11A) 109.5 N(6)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(6)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(6)-C(12)-H(12A) 109.5 N(6)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(6)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 171 N(7)-C(13)-H(13A) 109.5 N(7)-C(13)-H(13B) 109.5 H(13A)-C(13)-H(13B) 109.5 N(7)-C(13)-H(13C) 109.5 H(13A)-C(13)-H(13C) 109.5 H(13B)-C(13)-H(13C) 109.5 N(7)-C(14)-H(14A) 109.5 N(7)-C(14)-H(14B) 109.5 H(14A)-C(14)-H(14B) 109.5 N(7)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(14B)-C(14)-H(14C) 109.5 N(1)-Li(1)-N(3) 70.3(3) N(1)-Li(1)-Br(1) 124.7(4) N(3)-Li(1)-Br(1) 119.2(3) N(1)-Li(1)-Br(1)#1 125.4(4) N(3)-Li(1)-Br(1)#1 117.4(3) Br(1)-Li(1)-Br(1)#1 99.4(3) N(1)-Li(1)-Li(1)#1 152.6(5) N(3)-Li(1)-Li(1)#1 137.1(5) Br(1)-Li(1)-Li(1)#1 50.0(2) Br(1)#1-Li(1)-Li(1)#1 49.5(2) ______Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

2 3 Table E-4. Anisotropic displacement parameters (Å x 10 ) for [LiBr(P2Bu)]2. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Br(1) 41(1) 26(1) 26(1) -4(1) 7(1) -6(1) P(1) 31(1) 20(1) 23(1) -1(1) 4(1) -3(1) P(2) 34(1) 17(1) 27(1) 0(1) 6(1) -1(1) 172 N(1) 31(2) 21(2) 23(2) 0(2) 4(2) -3(2) N(2) 38(2) 22(2) 27(2) -2(2) 4(2) -5(2) N(3) 31(2) 28(2) 24(2) 3(2) 1(2) 1(2) N(4) 42(2) 24(2) 23(2) -2(2) 7(2) -7(2) N(5) 41(2) 27(2) 30(2) 1(2) 4(2) 7(2) N(6) 39(2) 18(2) 37(2) 2(2) 12(2) 2(2) N(7) 48(3) 20(2) 27(2) -1(2) -1(2) -6(2) C(1) 32(3) 26(3) 29(2) 2(2) 5(2) 0(2) C(2) 52(3) 31(3) 34(3) 7(2) 10(2) 6(2) C(3) 46(3) 44(3) 36(3) -4(2) 8(2) 10(3) C(4) 39(3) 29(3) 65(4) 5(3) -13(3) 5(2) C(5) 37(3) 50(3) 41(3) 5(3) 1(2) 5(3) C(6) 42(3) 26(3) 32(3) 1(2) 14(2) 4(2) C(7) 56(3) 37(3) 29(3) -6(2) 7(2) -14(3) C(8) 44(3) 29(3) 23(2) 2(2) 7(2) -2(2) C(9) 51(3) 23(3) 52(3) 0(2) 12(3) 7(2) C(10) 62(4) 34(3) 41(3) 5(3) -5(3) 8(3) C(11) 54(3) 23(3) 54(3) 9(2) 21(3) -5(2) C(12) 41(3) 21(3) 43(3) -1(2) 11(2) 1(2) C(13) 68(4) 30(3) 39(3) -6(2) -3(3) -15(3) C(14) 58(4) 30(3) 27(3) 0(2) 3(2) -5(3) Li(1) 37(4) 19(4) 33(4) -5(3) 6(3) -9(4)

Table E-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [LiBr(P2Bu)]2. ______x y z U(eq) ______

H(2A) 2621 5781 -76 58 H(2B) 1535 5646 -437 58 H(2C) 2371 4749 -720 58 H(3A) 1371 4549 1628 63 H(3B) 944 5549 1023 63

173 H(3C) 2046 5639 1356 63 H(4A) 1237 3060 -338 67 H(4B) 453 3974 13 67 H(4C) 884 2922 574 67 H(5A) 4548 972 1931 64 H(5B) 4701 2301 2275 64 H(5C) 5454 1758 1647 64 H(6A) 4976 1571 202 50 H(6B) 3871 1826 -73 50 H(6C) 4129 690 482 50 H(7A) 2951 4782 2789 61 H(7B) 3654 4675 2034 61 H(7C) 3969 4092 2885 61 H(8A) 3183 2251 3336 48 H(8B) 2326 1665 2796 48 H(8C) 2136 2880 3281 48 H(9A) 3922 -1322 1152 63 H(9B) 3026 -1527 532 63 H(9C) 3256 -2492 1226 63 H(10A) 3000 -1859 2690 69 H(10B) 2531 -571 2850 69 H(10C) 3625 -671 2543 69 H(11A) 554 -975 2931 65 H(11B) 1018 -1729 2212 65 H(11C) -68 -1221 2118 65 H(12A) -308 971 1846 52 H(12B) 623 1830 1924 52 H(12C) 211 1185 2710 52 H(13A) 360 -1220 -107 68 H(13B) 705 -1705 765 68 H(13C) 1348 -1973 -11 68 H(14A) 2285 -224 -621 57 H(14B) 2128 1074 -236 57 H(14C) 1257 437 -731 57 ______

174 APPENDIX F

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[ZnCl2(P2Bu)]

Table F-1. Crystal data and structure refinement for [ZnCl2(P2Bu)].

Empirical formula C14H39Cl2N7P2Zn Formula weight 503.73 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group Pbca Unit cell dimensions a = 15.2556(3) Å α = 90° b = 15.7485(3) Å β = 90° c = 20.1467(5) Å γ = 90° Volume 4840.30(18) Å3 Z 8 Density (calculated) 1.383 Mg/m3 Absorption coefficient 1.381 mm-1 F(000) 2128 Crystal size 0.19 x 0.10 x 0.02 mm3 Theta range for data collection 2.02 to 26.30° Index ranges -19<=h<=19, -19<=k<=19, - 25<=l<=23 Reflections collected 31465 Independent reflections 4906 [R(int) = 0.0602] Completeness to theta = 26.30° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9676 and 0.7754 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4906 / 0 / 248 Goodness-of-fit on F2 1.153

175 Final R indices [I>2sigma(I)] R1 = 0.0533, wR2 = 0.1234 R indices (all data) R1 = 0.0802, wR2 = 0.1429 Largest diff. peak and hole 0.829 and -0.683 e.Å-3

Table F-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [ZnCl2(P2Bu)]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Zn(1) 3910(1) 1909(1) 7191(1) 20(1) Cl(1) 3805(1) 1655(1) 8274(1) 37(1) Cl(2) 4822(1) 2938(1) 6907(1) 35(1) P(1) 2671(1) 1122(1) 6389(1) 14(1) P(2) 2045(1) 1218(1) 4934(1) 14(1) N(1) 3678(2) 973(2) 6559(2) 13(1) N(2) 2341(2) 1135(2) 5655(2) 21(1) N(3) 2589(2) 2127(2) 6737(2) 20(1) N(4) 2013(2) 461(2) 6782(2) 21(1) N(5) 2911(2) 1267(2) 4455(2) 19(1) N(6) 1428(2) 2044(2) 4776(2) 24(1) N(7) 1438(2) 401(2) 4727(2) 21(1) C(1) 4258(3) 257(3) 6361(2) 18(1) C(2) 3900(3) -263(3) 5793(3) 26(1) C(3) 4417(3) -319(3) 6956(3) 29(1) C(4) 5132(3) 662(3) 6143(3) 26(1) C(5) 2694(3) 2821(3) 6254(3) 27(1) C(6) 1804(3) 2276(3) 7158(3) 34(1) C(7) 2201(3) 157(3) 7451(3) 29(1) C(8) 1105(3) 324(3) 6589(3) 35(1) C(9) 2840(3) 1125(4) 3741(2) 34(1) C(10) 3711(3) 1709(3) 4652(2) 22(1) C(11) 1665(3) 2751(3) 4367(3) 35(1) C(12) 582(3) 2136(3) 5113(3) 36(1) C(13) 773(3) 416(3) 4204(3) 35(1) C(14) 1705(3) -455(3) 4916(3) 36(1) 176

______

Table G-3. Bond lengths [Å] and angles [°] for [ZnCl2(P2Bu)]. ______Zn(1)-N(1) 1.979(3) Zn(1)-Cl(2) 2.2107(13) Zn(1)-Cl(1) 2.2243(14) Zn(1)-N(3) 2.240(4) P(1)-N(2) 1.562(4) P(1)-N(1) 1.592(3) P(1)-N(4) 1.649(4) P(1)-N(3) 1.734(4) P(2)-N(2) 1.528(4) P(2)-N(6) 1.636(4) P(2)-N(5) 1.638(4) P(2)-N(7) 1.639(3) N(1)-C(1) 1.487(5) N(3)-C(5) 1.473(6) N(3)-C(6) 1.487(6) N(4)-C(8) 1.456(5) N(4)-C(7) 1.459(6) N(5)-C(10) 1.459(5) N(5)-C(9) 1.459(6) N(6)-C(11) 1.432(6) N(6)-C(12) 1.465(6) N(7)-C(14) 1.459(6) N(7)-C(13) 1.463(6) C(1)-C(2) 1.509(6) C(1)-C(3) 1.522(6) C(1)-C(4) 1.541(6) C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 177 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 C(12)-H(12A) 0.9800 C(12)-H(12B) 0.9800 C(12)-H(12C) 0.9800 C(13)-H(13A) 0.9800 C(13)-H(13B) 0.9800 C(13)-H(13C) 0.9800 C(14)-H(14A) 0.9800 C(14)-H(14B) 0.9800 C(14)-H(14C) 0.9800

N(1)-Zn(1)-Cl(2) 119.47(11) N(1)-Zn(1)-Cl(1) 118.96(11) Cl(2)-Zn(1)-Cl(1) 115.51(6) 178

N(1)-Zn(1)-N(3) 71.97(13) Cl(2)-Zn(1)-N(3) 110.37(10) Cl(1)-Zn(1)-N(3) 111.32(10) N(2)-P(1)-N(1) 121.06(19) N(2)-P(1)-N(4) 105.47(19) N(1)-P(1)-N(4) 113.01(18) N(2)-P(1)-N(3) 110.32(19) N(1)-P(1)-N(3) 96.76(18) N(4)-P(1)-N(3) 109.79(19) N(2)-P(2)-N(6) 115.0(2) N(2)-P(2)-N(5) 108.98(19) N(6)-P(2)-N(5) 108.2(2) N(2)-P(2)-N(7) 110.0(2) N(6)-P(2)-N(7) 104.45(19) N(5)-P(2)-N(7) 110.07(19) C(1)-N(1)-P(1) 128.9(3) C(1)-N(1)-Zn(1) 129.1(2) P(1)-N(1)-Zn(1) 101.57(17) P(2)-N(2)-P(1) 175.6(3) C(5)-N(3)-C(6) 110.3(4) C(5)-N(3)-P(1) 113.8(3) C(6)-N(3)-P(1) 115.6(3) C(5)-N(3)-Zn(1) 106.6(3) C(6)-N(3)-Zn(1) 121.1(3) P(1)-N(3)-Zn(1) 87.73(15) C(8)-N(4)-C(7) 112.7(4) C(8)-N(4)-P(1) 123.0(3) C(7)-N(4)-P(1) 122.1(3) C(10)-N(5)-C(9) 113.8(4) C(10)-N(5)-P(2) 122.5(3) C(9)-N(5)-P(2) 120.9(3) C(11)-N(6)-C(12) 114.3(4) C(11)-N(6)-P(2) 125.7(3) C(12)-N(6)-P(2) 119.7(3) C(14)-N(7)-C(13) 113.3(4) C(14)-N(7)-P(2) 120.1(3) 179

C(13)-N(7)-P(2) 124.2(3) N(1)-C(1)-C(2) 113.6(3) N(1)-C(1)-C(3) 109.6(4) C(2)-C(1)-C(3) 109.3(4) N(1)-C(1)-C(4) 106.1(3) C(2)-C(1)-C(4) 108.7(4) C(3)-C(1)-C(4) 109.4(4) C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 C(1)-C(3)-H(3A) 109.5 C(1)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 C(1)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 C(1)-C(4)-H(4A) 109.5 C(1)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 C(1)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(3)-C(5)-H(5A) 109.5 N(3)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(3)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(3)-C(6)-H(6A) 109.5 N(3)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(3)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 180 H(6B)-C(6)-H(6C) 109.5 N(4)-C(7)-H(7A) 109.5 N(4)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(4)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(4)-C(8)-H(8A) 109.5 N(4)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(4)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(5)-C(9)-H(9A) 109.5 N(5)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(5)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(5)-C(10)-H(10A) 109.5 N(5)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(5)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(6)-C(11)-H(11A) 109.5 N(6)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(6)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(6)-C(12)-H(12A) 109.5 N(6)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(6)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 181

H(12B)-C(12)-H(12C) 109.5 N(7)-C(13)-H(13A) 109.5 N(7)-C(13)-H(13B) 109.5 H(13A)-C(13)-H(13B) 109.5 N(7)-C(13)-H(13C) 109.5 H(13A)-C(13)-H(13C) 109.5 H(13B)-C(13)-H(13C) 109.5 N(7)-C(14)-H(14A) 109.5 N(7)-C(14)-H(14B) 109.5 H(14A)-C(14)-H(14B) 109.5 N(7)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(14B)-C(14)-H(14C) 109.5 ______

2 3 Table G-4. Anisotropic displacement parameters (Å x 10 ) for [ZnCl2(P2Bu)]. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Zn(1) 21(1) 18(1) 22(1) -3(1) -5(1) 1(1) Cl(1) 55(1) 37(1) 20(1) -3(1) -4(1) 11(1) Cl(2) 34(1) 24(1) 47(1) -1(1) -8(1) -11(1) P(1) 10(1) 14(1) 18(1) 1(1) 0(1) -2(1) P(2) 7(1) 12(1) 23(1) -3(1) -4(1) 1(1) N(1) 10(2) 9(2) 20(2) 1(1) -2(1) 0(1) N(2) 17(2) 25(2) 22(2) 0(2) -1(2) -5(2) N(3) 19(2) 16(2) 25(2) -2(2) 0(2) 4(1) N(4) 13(2) 25(2) 26(2) 8(2) 2(2) -5(2) N(5) 15(2) 23(2) 18(2) -2(2) -2(1) 1(1) N(6) 15(2) 18(2) 39(2) -1(2) -2(2) 5(2) N(7) 14(2) 13(2) 36(2) -5(2) -12(2) -1(1) C(1) 10(2) 13(2) 32(3) -1(2) -2(2) 0(2) C(2) 18(2) 17(2) 41(3) -7(2) -2(2) 5(2) 182

C(3) 29(3) 20(2) 37(3) 7(2) -3(2) 5(2) C(4) 12(2) 20(2) 46(3) -2(2) 3(2) 2(2) C(5) 31(3) 15(2) 36(3) -2(2) -7(2) 5(2) C(6) 22(2) 37(3) 42(3) -14(2) 6(2) 5(2) C(7) 27(2) 32(3) 28(3) 5(2) 8(2) -2(2) C(8) 14(2) 44(3) 47(3) 8(3) 3(2) -10(2) C(9) 30(3) 48(3) 23(3) -11(2) -1(2) 1(2) C(10) 11(2) 28(3) 28(3) 5(2) -2(2) -3(2) C(11) 22(2) 23(3) 61(4) 7(3) -2(2) 2(2) C(12) 17(2) 28(3) 61(4) -2(3) 2(2) 7(2) C(13) 24(2) 30(3) 50(3) -9(2) -19(2) -4(2) C(14) 28(2) 17(2) 62(4) -5(2) -18(3) -1(2) ______

Table F- 5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [ZnCl2(P2Bu)]. ______x y z U(eq) ______

H(2A) 3329 -499 5918 38 H(2B) 4307 -728 5693 38 H(2C) 3833 99 5401 38 H(3A) 4641 19 7327 43 H(3B) 4848 -755 6837 43 H(3C) 3866 -591 7085 43 H(4A) 5024 1061 5779 39 H(4B) 5533 216 5992 39 H(4C) 5393 965 6518 39 H(5A) 2182 2838 5960 41 H(5B) 3224 2725 5989 41 H(5C) 2745 3363 6490 41 H(6A) 1860 2826 7382 50 H(6B) 1758 1824 7490 50 H(6C) 1278 2277 6879 50 H(7A) 1817 447 7769 43 183 H(7B) 2814 277 7562 43 H(7C) 2097 -457 7473 43 H(8A) 945 -270 6670 52 H(8B) 1034 454 6116 52 H(8C) 723 696 6851 52 H(9A) 2784 1672 3513 51 H(9B) 2323 776 3649 51 H(9C) 3367 831 3583 51 H(10A) 4221 1409 4472 33 H(10B) 3749 1723 5138 33 H(10C) 3699 2290 4480 33 H(11A) 1285 2766 3975 53 H(11B) 2277 2692 4226 53 H(11C) 1596 3278 4619 53 H(12A) 589 2651 5386 53 H(12B) 478 1640 5396 53 H(12C) 114 2178 4782 53 H(13A) 966 60 3832 52 H(13B) 690 1000 4049 52 H(13C) 218 197 4379 52 H(14A) 1184 -793 5025 54 H(14B) 2091 -427 5304 54 H(14C) 2018 -722 4546 54 ______

Table F-6. Torsion angles [°] for [ZnCl2(P2Bu)]. ______N(2)-P(1)-N(1)-C(1) -55.5(4) N(4)-P(1)-N(1)-C(1) 70.9(4) N(3)-P(1)-N(1)-C(1) -174.2(4) N(2)-P(1)-N(1)-Zn(1) 131.26(19) N(4)-P(1)-N(1)-Zn(1) -102.3(2) N(3)-P(1)-N(1)-Zn(1) 12.60(19) Cl(2)-Zn(1)-N(1)-C(1) 73.0(4) Cl(1)-Zn(1)-N(1)-C(1) -78.5(3) N(3)-Zn(1)-N(1)-C(1) 176.7(4) 184

Cl(2)-Zn(1)-N(1)-P(1) -113.84(14) Cl(1)-Zn(1)-N(1)-P(1) 94.73(16) N(3)-Zn(1)-N(1)-P(1) -10.16(16) N(2)-P(1)-N(3)-C(5) -30.4(4) N(1)-P(1)-N(3)-C(5) 96.3(3) N(4)-P(1)-N(3)-C(5) -146.3(3) N(2)-P(1)-N(3)-C(6) 98.8(4) N(1)-P(1)-N(3)-C(6) -134.5(3) N(4)-P(1)-N(3)-C(6) -17.1(4) N(2)-P(1)-N(3)-Zn(1) -137.62(16) N(1)-P(1)-N(3)-Zn(1) -10.90(17) N(4)-P(1)-N(3)-Zn(1) 106.56(17) N(1)-Zn(1)-N(3)-C(5) -105.0(3) Cl(2)-Zn(1)-N(3)-C(5) 10.5(3) Cl(1)-Zn(1)-N(3)-C(5) 140.2(2) N(1)-Zn(1)-N(3)-C(6) 127.9(4) Cl(2)-Zn(1)-N(3)-C(6) -116.5(3) Cl(1)-Zn(1)-N(3)-C(6) 13.1(4) N(1)-Zn(1)-N(3)-P(1) 9.14(14) Cl(2)-Zn(1)-N(3)-P(1) 124.67(12) Cl(1)-Zn(1)-N(3)-P(1) -105.67(13) N(2)-P(1)-N(4)-C(8) -29.5(4) N(1)-P(1)-N(4)-C(8) -163.9(4) N(3)-P(1)-N(4)-C(8) 89.3(4) N(2)-P(1)-N(4)-C(7) 168.6(4) N(1)-P(1)-N(4)-C(7) 34.3(4) N(3)-P(1)-N(4)-C(7) -72.5(4) N(2)-P(2)-N(5)-C(10) -36.6(4) N(6)-P(2)-N(5)-C(10) 89.1(4) N(7)-P(2)-N(5)-C(10) -157.3(3) N(2)-P(2)-N(5)-C(9) 163.8(4) N(6)-P(2)-N(5)-C(9) -70.5(4) N(7)-P(2)-N(5)-C(9) 43.1(4) N(2)-P(2)-N(6)-C(11) 113.4(4) N(5)-P(2)-N(6)-C(11) -8.7(5) N(7)-P(2)-N(6)-C(11) -126.0(4) 185 N(2)-P(2)-N(6)-C(12) -61.0(4) N(5)-P(2)-N(6)-C(12) 176.9(4) N(7)-P(2)-N(6)-C(12) 59.6(4) N(2)-P(2)-N(7)-C(14) -44.3(4) N(6)-P(2)-N(7)-C(14) -168.3(4) N(5)-P(2)-N(7)-C(14) 75.8(4) N(2)-P(2)-N(7)-C(13) 154.2(4) N(6)-P(2)-N(7)-C(13) 30.2(4) N(5)-P(2)-N(7)-C(13) -85.7(4) P(1)-N(1)-C(1)-C(2) 16.7(6) Zn(1)-N(1)-C(1)-C(2) -171.9(3) P(1)-N(1)-C(1)-C(3) -105.9(4) Zn(1)-N(1)-C(1)-C(3) 65.5(4) P(1)-N(1)-C(1)-C(4) 136.1(4) Zn(1)-N(1)-C(1)-C(4) -52.5(5) ______

186 APPENDIX G

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[(P2Et)HBr]

Table G-1. Crystal data and structure refinement for [(P2Et)HBr].

Empirical formula C12H36BrN7P2 Formula weight 420.34 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 8.083(6) Å α = 103.432(8)° b = 11.382(8) Å β = 94.526(9)° c = 12.770(9) Å γ = 110.465(8)° Volume 1053.9(13) Å3 Z 2 Density (calculated) 1.328 Mg/m3 Absorption coefficient 2.110 mm-1 F(000) 446 Crystal size 0.09 x 0.09 x 0.03 mm3 Theta range for data collection 1.67 to 26.30° Index ranges -10<=h<=10, -14<=k<=14, - 15<=l<=15 Reflections collected 8312 Independent reflections 4225 [R(int) = 0.0317] Completeness to theta = 26.30° 98.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9491 and 0.8279 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4225 / 0 / 210

187 Goodness-of-fit on F2 1.022 Final R indices [I>2sigma(I)] R1 = 0.0401, wR2 = 0.0954 R indices (all data) R1 = 0.0564, wR2 = 0.1020 Largest diff. peak and hole 0.728 and -0.609 e.Å-3

Table G- 2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [(P2Et)HBr]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Br(1) 2703(1) 2382(1) 2542(1) 26(1) P(1) 5073(1) 6615(1) 3105(1) 17(1) P(2) 5646(1) 8846(1) 2051(1) 17(1) N(1) 3563(3) 5351(2) 2212(2) 20(1) N(2) 5737(3) 7887(2) 2730(2) 21(1) N(3) 3622(3) 8808(2) 1750(2) 19(1) N(4) 6670(3) 6063(2) 3331(2) 20(1) N(5) 4320(3) 6945(2) 4243(2) 22(1) N(6) 7011(3) 10304(2) 2785(2) 20(1) N(7) 6253(3) 8546(2) 838(2) 19(1) C(1) 813(5) 4182(3) 850(3) 36(1) C(2) 1843(4) 5383(3) 1799(3) 25(1) C(3) 2970(4) 9177(3) 818(2) 24(1) C(4) 8108(4) 6855(3) 4266(3) 27(1) C(5) 7349(4) 5488(3) 2398(3) 31(1) C(6) 4917(5) 8254(3) 5004(3) 28(1) C(7) 3402(5) 5888(3) 4718(3) 28(1) C(8) 7096(4) 11447(3) 2417(3) 28(1) C(9) 8582(4) 10528(3) 3571(3) 29(1) C(10) 8192(4) 8907(3) 836(3) 26(1) C(11) 5202(4) 7257(3) 74(2) 26(1) C(12) 2512(4) 8824(3) 2610(3) 25(1) ______

188 Table G-3. Bond lengths [Å] and angles [°] for [(P2Et)HBr]. ______P(1)-N(2) 1.560(3) P(1)-N(1) 1.628(3) P(1)-N(5) 1.634(3) P(1)-N(4) 1.654(3) P(2)-N(2) 1.559(3) P(2)-N(3) 1.634(3) P(2)-N(6) 1.638(3) P(2)-N(7) 1.658(3) N(1)-C(2) 1.462(4) N(1)-H(1) 0.8600 N(3)-C(3) 1.471(4) N(3)-C(12) 1.473(4) N(4)-C(4) 1.462(4) N(4)-C(5) 1.462(4) N(5)-C(6) 1.466(4) N(5)-C(7) 1.466(4) N(6)-C(9) 1.462(4) N(6)-C(8) 1.464(4) N(7)-C(11) 1.469(4) N(7)-C(10) 1.475(4) C(1)-C(2) 1.519(4) C(1)-H(1A) 0.9600 C(1)-H(1B) 0.9600 C(1)-H(1C) 0.9600 C(2)-H(2A) 0.9700 C(2)-H(2B) 0.9700 C(3)-H(3A) 0.9600 C(3)-H(3B) 0.9600 C(3)-H(3C) 0.9600 C(4)-H(4A) 0.9600 C(4)-H(4B) 0.9600 C(4)-H(4C) 0.9600 C(5)-H(5A) 0.9600 C(5)-H(5B) 0.9600 189 C(5)-H(5C) 0.9600 C(6)-H(6A) 0.9600 C(6)-H(6B) 0.9600 C(6)-H(6C) 0.9600 C(7)-H(7A) 0.9600 C(7)-H(7B) 0.9600 C(7)-H(7C) 0.9600 C(8)-H(8A) 0.9600 C(8)-H(8B) 0.9600 C(8)-H(8C) 0.9600 C(9)-H(9A) 0.9600 C(9)-H(9B) 0.9600 C(9)-H(9C) 0.9600 C(10)-H(10A) 0.9600 C(10)-H(10B) 0.9600 C(10)-H(10C) 0.9600 C(11)-H(11A) 0.9600 C(11)-H(11B) 0.9600 C(11)-H(11C) 0.9600 C(12)-H(12A) 0.9600 C(12)-H(12B) 0.9600 C(12)-H(12C) 0.9600

N(2)-P(1)-N(1) 115.10(14) N(2)-P(1)-N(5) 107.63(13) N(1)-P(1)-N(5) 110.49(14) N(2)-P(1)-N(4) 113.31(14) N(1)-P(1)-N(4) 101.72(13) N(5)-P(1)-N(4) 108.40(13) N(2)-P(2)-N(3) 113.18(13) N(2)-P(2)-N(6) 106.29(14) N(3)-P(2)-N(6) 111.00(13) N(2)-P(2)-N(7) 114.87(14) N(3)-P(2)-N(7) 103.05(13) N(6)-P(2)-N(7) 108.46(13) C(2)-N(1)-P(1) 120.8(2) 190 C(2)-N(1)-H(1) 119.6 P(1)-N(1)-H(1) 119.6 P(2)-N(2)-P(1) 156.72(18) C(3)-N(3)-C(12) 112.6(2) C(3)-N(3)-P(2) 125.4(2) C(12)-N(3)-P(2) 119.1(2) C(4)-N(4)-C(5) 111.8(2) C(4)-N(4)-P(1) 116.8(2) C(5)-N(4)-P(1) 118.9(2) C(6)-N(5)-C(7) 114.0(2) C(6)-N(5)-P(1) 123.9(2) C(7)-N(5)-P(1) 119.8(2) C(9)-N(6)-C(8) 114.0(2) C(9)-N(6)-P(2) 123.0(2) C(8)-N(6)-P(2) 119.6(2) C(11)-N(7)-C(10) 111.4(2) C(11)-N(7)-P(2) 116.19(19) C(10)-N(7)-P(2) 116.4(2) C(2)-C(1)-H(1A) 109.5 C(2)-C(1)-H(1B) 109.5 H(1A)-C(1)-H(1B) 109.5 C(2)-C(1)-H(1C) 109.5 H(1A)-C(1)-H(1C) 109.5 H(1B)-C(1)-H(1C) 109.5 N(1)-C(2)-C(1) 110.3(3) N(1)-C(2)-H(2A) 109.6 C(1)-C(2)-H(2A) 109.6 N(1)-C(2)-H(2B) 109.6 C(1)-C(2)-H(2B) 109.6 H(2A)-C(2)-H(2B) 108.1 N(3)-C(3)-H(3A) 109.5 N(3)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(3)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 191 N(4)-C(4)-H(4A) 109.5 N(4)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(4)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(4)-C(5)-H(5A) 109.5 N(4)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(4)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(5)-C(6)-H(6A) 109.5 N(5)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(5)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(5)-C(7)-H(7A) 109.5 N(5)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(5)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(6)-C(8)-H(8A) 109.5 N(6)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(6)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(6)-C(9)-H(9A) 109.5 N(6)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(6)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 192 N(7)-C(10)-H(10A) 109.5 N(7)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(7)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(7)-C(11)-H(11A) 109.5 N(7)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(7)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(3)-C(12)-H(12A) 109.5 N(3)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(3)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 ______2 3 Table G-4. Anisotropic displacement parameters (Å x 10 ) for [(P2Et)HBr]. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Br(1) 33(1) 20(1) 28(1) 9(1) 6(1) 11(1) P(1) 17(1) 15(1) 19(1) 5(1) 2(1) 7(1) P(2) 17(1) 15(1) 19(1) 5(1) 2(1) 6(1) N(1) 18(1) 16(1) 23(1) 1(1) 0(1) 8(1) N(2) 21(1) 18(1) 23(1) 6(1) 0(1) 7(1) N(3) 16(1) 22(1) 21(1) 7(1) 3(1) 9(1) N(4) 17(1) 18(1) 24(1) 4(1) 0(1) 8(1) N(5) 28(1) 18(1) 20(1) 6(1) 8(1) 10(1) N(6) 20(1) 15(1) 22(1) 6(1) 1(1) 5(1) N(7) 18(1) 17(1) 18(1) 4(1) 4(1) 4(1) C(1) 36(2) 21(2) 43(2) 8(2) -14(2) 8(2) 193 C(2) 16(2) 24(2) 33(2) 6(1) 1(1) 7(1) C(3) 24(2) 24(2) 28(2) 10(1) 4(1) 11(1) C(4) 25(2) 29(2) 26(2) 10(1) -3(1) 10(1) C(5) 24(2) 33(2) 36(2) 4(2) 4(2) 15(2) C(6) 39(2) 26(2) 22(2) 4(1) 4(2) 17(2) C(7) 33(2) 27(2) 28(2) 12(1) 11(2) 11(2) C(8) 30(2) 16(2) 36(2) 8(1) 6(2) 6(1) C(9) 25(2) 25(2) 32(2) 7(2) -2(1) 5(1) C(10) 24(2) 30(2) 27(2) 9(1) 7(1) 13(1) C(11) 29(2) 23(2) 22(2) 0(1) 5(1) 8(1) C(12) 23(2) 27(2) 29(2) 9(1) 8(1) 11(1) ______

Table G-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [(P2Et)HBr]. ______x y z U(eq) ______

H(1) 3779 4656 1979 23 H(1A) 1470 4189 255 54 H(1B) -341 4188 614 54 H(1C) 659 3411 1079 54 H(2A) 2049 6163 1560 30 H(2B) 1143 5411 2381 30 H(3A) 1832 8516 440 37 H(3B) 3817 9263 326 37 H(3C) 2834 9995 1077 37 H(4A) 8743 6339 4450 40 H(4B) 7603 7155 4880 40 H(4C) 8921 7593 4082 40 H(5A) 8348 6155 2256 46 H(5B) 6416 5101 1766 46 H(5C) 7727 4829 2562 46 H(6A) 3890 8452 5172 42 H(6B) 5646 8883 4675 42 194 H(6C) 5605 8284 5665 42 H(7A) 4142 5976 5380 42 H(7B) 3182 5062 4207 42 H(7C) 2282 5935 4877 42 H(8A) 7306 12174 3041 42 H(8B) 5981 11256 1960 42 H(8C) 8056 11659 2010 42 H(9A) 9644 10827 3260 43 H(9B) 8471 9728 3740 43 H(9C) 8663 11177 4227 43 H(10A) 8614 8374 1180 38 H(10B) 8822 9809 1231 38 H(10C) 8402 8771 96 38 H(11A) 5463 7255 -647 40 H(11B) 3947 7070 65 40 H(11C) 5511 6604 304 40 H(12A) 2452 9671 2845 38 H(12B) 3034 8634 3220 38 H(12C) 1324 8177 2326 38

195 APPENDIX H

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[(P2tBu)HBr]

Table I-1. Crystal data and structure refinement for [(P2tBu)HBr].

Empirical formula C14H40BrN7P2 Formula weight 448.39 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 8.4512(10) Å α = 106.871(6)° b = 10.9639(11) Å β = 92.383(7)° c = 12.9679(13) Å γ = 94.124(6)° Volume 1144.4(2) Å3 Z 2 Density (calculated) 1.304 Mg/m3 Absorption coefficient 1.947 mm-1 F(000) 478 Crystal size ? x ? x ? mm3 Theta range for data collection 1.64 to 26.29° Index ranges -9<=h<=10, -13<=k<=13, -16<=l<=16 Reflections collected 17795 Independent reflections 4544 [R(int) = 0.0978] Completeness to theta = 26.29° 97.8 % Absorption correction Semi-empirical from equivalents Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4544 / 0 / 230 Goodness-of-fit on F2 1.009 Final R indices [I>2sigma(I)] R1 = 0.0594, wR2 = 0.1113

196 R indices (all data) R1 = 0.1231, wR2 = 0.1316 Largest diff. peak and hole 0.711 and -0.535 e.Å-3

Table H- 2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [(P2tBu)HBr]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Br(1) 614(1) 7391(1) 2421(1) 32(1) P(1) 7177(2) 1443(1) 2758(1) 20(1) P(2) 7970(2) 3730(1) 2059(1) 20(1) N(1) 8287(5) 1715(4) 3871(3) 26(1) N(2) 8018(5) 284(4) 1928(3) 25(1) N(3) 5372(5) 863(4) 2876(4) 34(1) N(4) 6978(5) 2698(4) 2442(3) 22(1) N(5) 9903(5) 3651(4) 2102(3) 24(1) N(6) 7350(5) 3573(4) 815(3) 26(1) N(7) 7782(5) 5164(4) 2842(3) 23(1) C(1) 9065(8) 739(5) 4240(4) 45(2) C(2) 8077(8) 2864(5) 4783(4) 42(2) C(3) 9693(7) 429(5) 1727(5) 38(2) C(4) 7125(8) -735(5) 1081(4) 48(2) C(5) 5112(8) -142(6) 3401(6) 60(2) C(6) 3920(7) 1228(5) 2460(5) 41(2) C(7) 10834(7) 4084(5) 3135(4) 38(2) C(8) 10856(7) 3378(5) 1169(5) 40(2) C(9) 7813(7) 4574(5) 306(4) 33(1) C(10) 6524(9) 2437(6) 83(4) 56(2) C(11) 6327(6) 5807(5) 3182(4) 25(1) C(12) 5092(8) 4926(6) 3502(7) 73(3) C(13) 6835(7) 6934(6) 4166(5) 47(2) C(14) 5640(9) 6291(7) 2307(5) 66(2) ______

197 Table H- 3. Bond lengths [Å] and angles [°] for [(P2tBu)HBr]. ______P(1)-N(4) 1.564(4) P(1)-N(1) 1.628(4) P(1)-N(2) 1.635(4) P(1)-N(3) 1.641(4) P(2)-N(4) 1.567(4) P(2)-N(7) 1.628(4) P(2)-N(6) 1.631(4) P(2)-N(5) 1.642(4) N(1)-C(1) 1.476(6) N(1)-C(2) 1.484(6) N(2)-C(3) 1.456(7) N(2)-C(4) 1.457(6) N(3)-C(6) 1.449(7) N(3)-C(5) 1.462(6) N(5)-C(8) 1.451(6) N(5)-C(7) 1.459(6) N(6)-C(10) 1.440(6) N(6)-C(9) 1.474(6) N(7)-C(11) 1.481(6) C(11)-C(14) 1.499(8) C(11)-C(13) 1.517(7) C(11)-C(12) 1.522(7)

N(4)-P(1)-N(1) 111.7(2) N(4)-P(1)-N(2) 118.7(2) N(1)-P(1)-N(2) 102.4(2) N(4)-P(1)-N(3) 105.9(2) N(1)-P(1)-N(3) 111.6(2) N(2)-P(1)-N(3) 106.5(2) N(4)-P(2)-N(7) 111.0(2) N(4)-P(2)-N(6) 107.5(2) N(7)-P(2)-N(6) 111.5(2) N(4)-P(2)-N(5) 115.7(2) N(7)-P(2)-N(5) 102.8(2) 198

N(6)-P(2)-N(5) 108.3(2) C(1)-N(1)-C(2) 111.7(4) C(1)-N(1)-P(1) 125.5(4) C(2)-N(1)-P(1) 119.0(3) C(3)-N(2)-C(4) 112.6(4) C(3)-N(2)-P(1) 121.1(3) C(4)-N(2)-P(1) 123.0(4) C(6)-N(3)-C(5) 113.7(4) C(6)-N(3)-P(1) 125.4(3) C(5)-N(3)-P(1) 120.9(4) P(1)-N(4)-P(2) 140.7(3) C(8)-N(5)-C(7) 114.0(4) C(8)-N(5)-P(2) 125.1(4) C(7)-N(5)-P(2) 120.1(3) C(10)-N(6)-C(9) 114.0(4) C(10)-N(6)-P(2) 125.3(3) C(9)-N(6)-P(2) 120.2(3) C(11)-N(7)-P(2) 129.8(3) N(7)-C(11)-C(14) 110.6(4) N(7)-C(11)-C(13) 106.3(4) C(14)-C(11)-C(13) 109.1(5) N(7)-C(11)-C(12) 111.7(4) C(14)-C(11)-C(12) 110.5(6) C(13)-C(11)-C(12) 108.5(5) ______

Table H-4. Anisotropic displacement parameters (Å2x 103) for pow. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Br(1) 43(1) 20(1) 32(1) 8(1) 3(1) 0(1) P(1) 24(1) 15(1) 21(1) 5(1) 2(1) 3(1) P(2) 24(1) 15(1) 23(1) 7(1) -1(1) 1(1) N(1) 40(3) 18(2) 20(2) 4(2) 1(2) 15(2) 199 N(2) 30(3) 15(2) 25(2) -1(2) 2(2) 4(2) N(3) 27(3) 25(3) 57(3) 24(2) 4(2) 4(2) N(4) 28(3) 18(2) 23(2) 9(2) 5(2) 5(2) N(5) 21(3) 24(2) 26(2) 5(2) 4(2) 5(2) N(6) 31(3) 21(2) 26(2) 12(2) -3(2) -6(2) N(7) 21(2) 14(2) 32(2) 3(2) -5(2) 2(2) C(1) 65(5) 30(3) 41(4) 11(3) -8(3) 22(3) C(2) 67(5) 33(4) 24(3) 1(3) -4(3) 17(3) C(3) 41(4) 25(3) 48(4) 9(3) 18(3) 8(3) C(4) 58(5) 34(4) 39(4) -9(3) -4(3) 2(3) C(5) 43(4) 55(5) 107(6) 61(4) 11(4) 2(3) C(6) 28(4) 36(4) 68(4) 30(3) -4(3) -6(3) C(7) 30(4) 28(3) 51(4) 4(3) -11(3) 5(3) C(8) 37(4) 42(4) 55(4) 31(3) 17(3) 14(3) C(9) 45(4) 24(3) 35(3) 15(3) 1(3) -2(3) C(10) 88(6) 40(4) 34(3) 13(3) -12(4) -36(4) C(11) 22(3) 18(3) 36(3) 7(2) 5(3) 10(2) C(12) 40(4) 30(4) 147(7) 17(4) 45(5) 13(3) C(13) 36(4) 45(4) 47(4) -10(3) 3(3) 9(3) C(14) 67(5) 83(6) 54(4) 16(4) 5(4) 60(4)

Table H-5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 10 3) for pow. ______x y z U(eq) ______

H(7) 8682 5627 3103 28 H(1A) 10169 1054 4494 67 H(1B) 9047 -50 3639 67 H(1C) 8495 563 4831 67 H(2A) 7295 2642 5252 64 H(2B) 7701 3537 4501 64 H(2C) 9096 3171 5200 64

200 H(3A) 10203 -328 1779 57 H(3B) 10211 1192 2265 57 H(3C) 9792 521 1002 57 H(4A) 7159 -529 395 72 H(4B) 6019 -817 1267 72 H(4C) 7598 -1543 1011 72 H(5A) 4493 170 4034 91 H(5B) 6139 -373 3630 91 H(5C) 4527 -896 2892 91 H(6A) 3358 480 1930 62 H(6B) 4180 1894 2113 62 H(6C) 3241 1556 3055 62 H(7A) 11554 3438 3184 58 H(7B) 10117 4212 3725 58 H(7C) 11455 4893 3191 58 H(8A) 11454 4168 1146 60 H(8B) 10158 3033 510 60 H(8C) 11598 2750 1223 60 H(9A) 8426 4212 -319 50 H(9B) 8464 5275 829 50 H(9C) 6856 4900 69 50 H(10A) 5503 2645 -179 84 H(10B) 6337 1789 460 84 H(10C) 7170 2103 -530 84 H(12A) 4694 4227 2862 109 H(12B) 4208 5412 3810 109 H(12C) 5579 4573 4039 109 H(13A) 7218 6620 4758 71 H(13B) 5927 7434 4388 71 H(13C) 7690 7476 3988 71 H(14A) 6450 6854 2109 99 H(14B) 4728 6770 2565 99 H(14C) 5294 5566 1673 99 ______

201 APPENDIX I

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[GaCl(P2Et)]

Table I-1. Crystal data and structure refinement for [GaCl(P2Et)].

Empirical formula C12H35Cl3GaN7P2 Formula weight 515.48 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group P2(1)2(1)2(1) Unit cell dimensions a = 10.6449(8) Å α = 90° b = 13.6949(10) Å β = 90° c = 16.2410(12) Å γ = 90° Volume 2367.6(3) Å3 Z 4 Density (calculated) 1.446 Mg/m3 Absorption coefficient 1.647 mm-1 F(000) 1072 Crystal size 0.21 x 0.15 x 0.07 mm3 Theta range for data collection 1.95 to 26.29° Index ranges -12<=h<=8, -17<=k<=15, -18<=l<=20 Reflections collected 22775 Independent reflections 4752 [R(int) = 0.0270] Completeness to theta = 26.29° 98.6 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.8892 and 0.7257 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4752 / 0 / 237 Goodness-of-fit on F2 1.233

202 Final R indices [I>2sigma(I)] R1 = 0.0710, wR2 = 0.1634 R indices (all data) R1 = 0.0729, wR2 = 0.1643 Absolute structure parameter 0.52(3) Largest diff. peak and hole 1.152 and -0.938 e.Å-3

Table I-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [GaCl(P2Et)]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Ga(1) 6354(1) 5237(1) 10257(1) 22(1) Cl(1) 7732(3) 4087(2) 10097(2) 59(1) Cl(2) 7408(4) 6537(2) 10574(3) 108(2) Cl(3) 5216(3) 4901(5) 11322(2) 116(2) P(1) 4879(2) 4830(2) 8612(1) 17(1) P(2) 2074(2) 4932(1) 8594(1) 16(1) N(1) 5298(6) 5527(4) 9360(4) 18(1) N(2) 3480(5) 4960(4) 8329(3) 20(1) N(3) 5246(8) 3711(5) 8938(5) 32(2) N(4) 5719(6) 5050(6) 7789(4) 30(2) N(5) 1456(8) 3935(5) 8219(5) 33(2) N(6) 1475(7) 5960(5) 8284(4) 24(1) N(7) 1672(5) 4888(5) 9569(4) 24(1) C(1) 4801(8) 6553(5) 9330(5) 23(2) C(2) 5530(10) 7210(7) 8759(6) 39(2) C(3) 4568(9) 3296(7) 9597(7) 46(3) C(4) 5906(17) 2997(9) 8435(8) 89(6) C(5) 7083(9) 5179(16) 7851(6) 78(5) C(6) 5288(8) 5034(7) 6958(5) 32(2) C(7) 107(9) 3694(9) 8308(7) 47(3) C(8) 2063(10) 3312(7) 7601(8) 47(3) C(9) 2004(9) 6574(7) 7644(6) 36(2) C(10) 152(9) 6234(8) 8454(7) 42(2) C(11) 1517(10) 4006(6) 10049(6) 35(2) C(12) 1679(10) 5769(6) 10093(6) 37(2)

203 ______

Table I-3. Bond lengths [Å] and angles [°] for [GaCl(P2Et)]. ______Ga(1)-N(1) 1.883(6) Ga(1)-Cl(3) 2.160(3) Ga(1)-Cl(2) 2.167(3) Ga(1)-Cl(1) 2.168(2) P(1)-N(2) 1.569(6) P(1)-N(1) 1.608(6) P(1)-N(4) 1.635(7) P(1)-N(3) 1.668(7) P(2)-N(2) 1.558(6) P(2)-N(6) 1.625(7) P(2)-N(5) 1.633(7) P(2)-N(7) 1.641(6) N(1)-C(1) 1.503(9) N(3)-C(3) 1.411(13) N(3)-C(4) 1.454(12) N(4)-C(6) 1.426(10) N(4)-C(5) 1.466(11) N(5)-C(8) 1.467(11) N(5)-C(7) 1.480(11) N(6)-C(9) 1.452(10) N(6)-C(10) 1.483(11) N(7)-C(11) 1.448(10) N(7)-C(12) 1.477(10) C(1)-C(2) 1.507(12) C(1)-H(1A) 0.9900 C(1)-H(1B) 0.9900 C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 204 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 C(12)-H(12A) 0.9800 C(12)-H(12B) 0.9800 C(12)-H(12C) 0.9800

N(1)-Ga(1)-Cl(3) 109.3(2) N(1)-Ga(1)-Cl(2) 108.6(2) Cl(3)-Ga(1)-Cl(2) 106.0(2) N(1)-Ga(1)-Cl(1) 117.7(2) Cl(3)-Ga(1)-Cl(1) 108.71(19) Cl(2)-Ga(1)-Cl(1) 105.97(15) N(2)-P(1)-N(1) 114.6(3) N(2)-P(1)-N(4) 105.0(3) N(1)-P(1)-N(4) 110.9(4) 205 N(2)-P(1)-N(3) 114.8(4) N(1)-P(1)-N(3) 103.9(3) N(4)-P(1)-N(3) 107.5(4) N(2)-P(2)-N(6) 105.6(4) N(2)-P(2)-N(5) 107.8(4) N(6)-P(2)-N(5) 116.8(4) N(2)-P(2)-N(7) 121.1(3) N(6)-P(2)-N(7) 103.2(3) N(5)-P(2)-N(7) 103.0(4) C(1)-N(1)-P(1) 115.7(5) C(1)-N(1)-Ga(1) 115.6(5) P(1)-N(1)-Ga(1) 128.7(4) P(2)-N(2)-P(1) 146.0(4) C(3)-N(3)-C(4) 113.8(9) C(3)-N(3)-P(1) 119.5(6) C(4)-N(3)-P(1) 123.5(7) C(6)-N(4)-C(5) 112.7(7) C(6)-N(4)-P(1) 126.4(6) C(5)-N(4)-P(1) 120.5(6) C(8)-N(5)-C(7) 111.4(7) C(8)-N(5)-P(2) 124.3(6) C(7)-N(5)-P(2) 122.7(6) C(9)-N(6)-C(10) 110.8(7) C(9)-N(6)-P(2) 124.9(6) C(10)-N(6)-P(2) 122.3(6) C(11)-N(7)-C(12) 111.8(6) C(11)-N(7)-P(2) 125.5(6) C(12)-N(7)-P(2) 121.7(5) N(1)-C(1)-C(2) 113.4(7) N(1)-C(1)-H(1A) 108.9 C(2)-C(1)-H(1A) 108.9 N(1)-C(1)-H(1B) 108.9 C(2)-C(1)-H(1B) 108.9 H(1A)-C(1)-H(1B) 107.7 C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 206

H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 N(3)-C(3)-H(3A) 109.5 N(3)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(3)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 N(3)-C(4)-H(4A) 109.5 N(3)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(3)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(4)-C(5)-H(5A) 109.5 N(4)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(4)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(4)-C(6)-H(6A) 109.5 N(4)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(4)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(5)-C(7)-H(7A) 109.5 N(5)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(5)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(5)-C(8)-H(8A) 109.5 N(5)-C(8)-H(8B) 109.5 207 H(8A)-C(8)-H(8B) 109.5 N(5)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(6)-C(9)-H(9A) 109.5 N(6)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(6)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(6)-C(10)-H(10A) 109.5 N(6)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(6)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(7)-C(11)-H(11A) 109.5 N(7)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(7)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(7)-C(12)-H(12A) 109.5 N(7)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(7)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 ______

208 2 3 Table I-4. Anisotropic displacement parameters (Å x 10 ) for [GaCl(P2Et)]. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Ga(1) 17(1) 26(1) 24(1) -3(1) -7(1) 5(1) Cl(1) 47(2) 74(2) 57(2) -22(1) -27(1) 41(1) Cl(2) 136(4) 27(1) 162(4) 7(2) -127(3) -15(2) Cl(3) 41(2) 277(7) 30(1) 38(3) 3(1) 7(3) P(1) 12(1) 18(1) 20(1) 1(1) 1(1) 3(1) P(2) 8(1) 15(1) 25(1) -1(1) 0(1) -2(1) N(1) 19(3) 10(3) 25(3) 2(2) -1(3) -1(2) N(2) 5(3) 29(3) 25(3) 0(2) -3(2) -3(3) N(3) 43(5) 20(3) 32(4) -7(3) -5(3) 12(3) N(4) 17(3) 55(5) 18(3) 2(3) -1(2) 4(3) N(5) 22(4) 31(4) 47(4) -18(3) 8(4) -17(3) N(6) 13(3) 28(3) 32(4) 9(3) 3(3) 4(3) N(7) 19(3) 26(3) 27(3) 2(3) 5(2) -6(3) C(1) 25(4) 15(4) 29(4) -2(3) -10(3) 1(3) C(2) 39(6) 29(5) 49(6) 9(4) -4(5) -2(4) C(3) 38(5) 26(5) 73(8) 14(5) -12(5) -10(4) C(4) 164(16) 50(7) 52(7) -7(6) -12(8) 86(9) C(5) 20(5) 187(17) 28(5) -3(8) 3(4) 14(8) C(6) 23(4) 43(5) 29(4) 0(4) -1(3) 5(4) C(7) 15(5) 65(7) 61(7) -22(6) 7(4) -20(4) C(8) 38(6) 29(5) 74(8) -31(5) 15(5) -13(4) C(9) 30(5) 35(5) 44(6) 22(4) -3(4) 0(4) C(10) 16(5) 51(6) 59(7) 11(5) -2(4) 8(4) C(11) 40(5) 19(4) 47(5) 9(3) 15(4) 1(4) C(12) 50(6) 29(4) 32(5) 3(4) 15(4) -3(4) ______

209

Table I-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [GaCl(P2Et)]. ______x y z U(eq) ______

H(1A) 4824 6833 9892 27 H(1B) 3913 6536 9150 27 H(2A) 6425 7182 8899 59 H(2B) 5228 7882 8816 59 H(2C) 5411 6992 8189 59 H(3A) 3924 2854 9381 68 H(3B) 4166 3816 9917 68 H(3C) 5144 2929 9953 68 H(4A) 6768 2924 8637 133 H(4B) 5922 3219 7862 133 H(4C) 5472 2367 8468 133 H(5A) 7506 4681 7518 117 H(5B) 7343 5113 8427 117 H(5C) 7313 5829 7649 117 H(6A) 5512 5649 6687 48 H(6B) 4373 4954 6951 48 H(6C) 5681 4488 6665 48 H(7A) -316 3783 7777 71 H(7B) -274 4126 8718 71 H(7C) 19 3014 8486 71 H(8A) 1911 2625 7736 71 H(8B) 2969 3439 7599 71 H(8C) 1714 3457 7056 71 H(9A) 1518 6495 7136 54 H(9B) 2879 6385 7544 54 H(9C) 1974 7259 7819 54 H(10A) 115 6919 8625 63 H(10B) -182 5819 8894 63 H(10C) -351 6144 7954 63 H(11A) 2153 3986 10485 53 210 H(11B) 1614 3435 9691 53 H(11C) 678 3999 10297 53 H(12A) 915 5784 10429 56 H(12B) 1710 6353 9744 56 H(12C) 2418 5756 10453 56 ______

Table I-6. Torsion angles [°] for [GaCl(P2Et)]. ______N(2)-P(1)-N(1)-C(1) -39.7(7) N(4)-P(1)-N(1)-C(1) 79.0(6) N(3)-P(1)-N(1)-C(1) -165.7(6) N(2)-P(1)-N(1)-Ga(1) 141.7(4) N(4)-P(1)-N(1)-Ga(1) -99.7(5) N(3)-P(1)-N(1)-Ga(1) 15.6(6) Cl(3)-Ga(1)-N(1)-C(1) 82.2(6) Cl(2)-Ga(1)-N(1)-C(1) -33.0(6) Cl(1)-Ga(1)-N(1)-C(1) -153.3(5) Cl(3)-Ga(1)-N(1)-P(1) -99.1(5) Cl(2)-Ga(1)-N(1)-P(1) 145.7(4) Cl(1)-Ga(1)-N(1)-P(1) 25.4(6) N(6)-P(2)-N(2)-P(1) 128.9(8) N(5)-P(2)-N(2)-P(1) -105.6(8) N(7)-P(2)-N(2)-P(1) 12.4(9) N(1)-P(1)-N(2)-P(2) -57.6(9) N(4)-P(1)-N(2)-P(2) -179.5(7) N(3)-P(1)-N(2)-P(2) 62.6(9) N(2)-P(1)-N(3)-C(3) -57.6(8) N(1)-P(1)-N(3)-C(3) 68.4(8) N(4)-P(1)-N(3)-C(3) -174.0(7) N(2)-P(1)-N(3)-C(4) 100.6(11) N(1)-P(1)-N(3)-C(4) -133.4(11) N(4)-P(1)-N(3)-C(4) -15.8(11) N(2)-P(1)-N(4)-C(6) -18.9(9) N(1)-P(1)-N(4)-C(6) -143.2(8) N(3)-P(1)-N(4)-C(6) 103.8(8) N(2)-P(1)-N(4)-C(5) 168.4(12) 211 N(1)-P(1)-N(4)-C(5) 44.0(13) N(3)-P(1)-N(4)-C(5) -68.9(13) N(2)-P(2)-N(5)-C(8) -12.1(10) N(6)-P(2)-N(5)-C(8) 106.6(9) N(7)-P(2)-N(5)-C(8) -141.2(9) N(2)-P(2)-N(5)-C(7) -176.3(8) N(6)-P(2)-N(5)-C(7) -57.7(9) N(7)-P(2)-N(5)-C(7) 54.5(9) N(2)-P(2)-N(6)-C(9) 20.6(8) N(5)-P(2)-N(6)-C(9) -99.1(8) N(7)-P(2)-N(6)-C(9) 148.7(7) N(2)-P(2)-N(6)-C(10) -177.2(7) N(5)-P(2)-N(6)-C(10) 63.1(8) N(7)-P(2)-N(6)-C(10) -49.1(8) N(2)-P(2)-N(7)-C(11) -88.3(8) N(6)-P(2)-N(7)-C(11) 154.0(7) N(5)-P(2)-N(7)-C(11) 32.0(8) N(2)-P(2)-N(7)-C(12) 79.1(7) N(6)-P(2)-N(7)-C(12) -38.6(7) N(5)-P(2)-N(7)-C(12) -160.6(7) P(1)-N(1)-C(1)-C(2) -80.2(8) Ga(1)-N(1)-C(1)-C(2) 98.6(7) ______

212 APPENDIX J

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[InCl(P2Et)]

Table J-1. Crystal data and structure refinement for [InCl(P2Et)].

Empirical formula C12H35Cl3InN7P2 Formula weight 560.58 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 12.5936(3) Å α= 90°. b = 11.8433(3) Å β = 93.7114(8)° c = 15.8826(3) Å γ = 90°. Volume 2363.92(9) Å3 Z 4 Density (calculated) 1.575 Mg/m3 Absorption coefficient 1.486 mm-1 F(000) 1144 Crystal size 0.25 x 0.25 x 0.10 mm3 Theta range for data collection 1.62 to 26.29° Index ranges -14<=h<=15, -14<=k<=14, - 19<=l<=19 Reflections collected 24277 Independent reflections 4799 [R(int) = 0.0275] Completeness to theta = 26.29° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.8717 and 0.7068 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4799 / 0 / 237 Goodness-of-fit on F2 1.047

213 Final R indices [I>2sigma(I)] R1 = 0.0170, wR2 = 0.0414 R indices (all data) R1 = 0.0200, wR2 = 0.0433 Largest diff. peak and hole 0.353 and -0.286 e.Å-3

Table J-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [InCl(P2Et)]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______In(1) 7360(1) -2470(1) 1633(1) 12(1) P(1) 7455(1) -695(1) 3101(1) 10(1) P(2) 7758(1) 1081(1) 1860(1) 12(1) Cl(1) 5629(1) -2229(1) 974(1) 18(1) Cl(2) 8715(1) -1922(1) 756(1) 25(1) Cl(3) 7606(1) -4486(1) 1666(1) 23(1) C(1) 7322(1) -2866(1) 3577(1) 16(1) C(2) 6206(2) -3354(2) 3543(1) 23(1) N(2) 7430(1) -126(1) 2187(1) 12(1) N(1) 7473(1) -2035(1) 2900(1) 12(1) N(3) 8467(1) -430(1) 3780(1) 14(1) N(4) 6425(1) -235(1) 3596(1) 14(1) C(5) 6311(2) -438(2) 4497(1) 20(1) C(6) 5393(1) -152(2) 3121(1) 19(1) C(4) 8583(2) 613(2) 4272(1) 20(1) C(3) 9398(1) -1163(2) 3884(1) 19(1) N(6) 6902(1) 1446(1) 1088(1) 15(1) N(7) 7744(1) 2089(1) 2572(1) 15(1) N(5) 8967(1) 1102(1) 1526(1) 20(1) C(9) 6445(2) 634(2) 474(1) 24(1) C(10) 6818(2) 2617(1) 794(1) 21(1) C(11) 8602(2) 2894(2) 2776(1) 22(1) C(7) 9821(1) 553(2) 2047(1) 29(1) C(12) 6739(2) 2417(1) 2910(1) 20(1) C(8) 9166(2) 1157(2) 636(1) 26(1) ______214 Table J-3. Bond lengths [Å] and angles [°] for [InCl(P2Et)]. ______In(1)-N(1) 2.0732(13) In(1)-Cl(2) 2.3626(4) In(1)-Cl(1) 2.3730(4) In(1)-Cl(3) 2.4068(4) P(1)-N(2) 1.5981(13) P(1)-N(1) 1.6197(14) P(1)-N(3) 1.6456(14) P(1)-N(4) 1.6525(14) P(2)-N(2) 1.5853(13) P(2)-N(6) 1.6387(14) P(2)-N(5) 1.6446(15) P(2)-N(7) 1.6449(14) C(1)-N(1) 1.479(2) C(1)-C(2) 1.517(2) C(1)-H(1A) 0.9900 C(1)-H(1B) 0.9900 C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 N(3)-C(3) 1.460(2) N(3)-C(4) 1.464(2) N(4)-C(6) 1.464(2) N(4)-C(5) 1.467(2) C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 215 C(3)-H(3C) 0.9800 N(6)-C(9) 1.460(2) N(6)-C(10) 1.465(2) N(7)-C(12) 1.460(2) N(7)-C(11) 1.461(2) N(5)-C(8) 1.453(2) N(5)-C(7) 1.465(2) C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800 C(11)-H(11A) 0.9800 C(11)-H(11B) 0.9800 C(11)-H(11C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(12)-H(12A) 0.9800 C(12)-H(12B) 0.9800 C(12)-H(12C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800

N(1)-In(1)-Cl(2) 119.80(4) N(1)-In(1)-Cl(1) 113.66(4) Cl(2)-In(1)-Cl(1) 112.631(17) N(1)-In(1)-Cl(3) 102.98(4) Cl(2)-In(1)-Cl(3) 100.878(17) Cl(1)-In(1)-Cl(3) 104.034(15) N(2)-P(1)-N(1) 103.50(7) N(2)-P(1)-N(3) 118.97(7) N(1)-P(1)-N(3) 107.19(7) N(2)-P(1)-N(4) 108.86(7) 216

N(1)-P(1)-N(4) 116.02(7) N(3)-P(1)-N(4) 102.91(7) N(2)-P(2)-N(6) 108.04(7) N(2)-P(2)-N(5) 112.73(8) N(6)-P(2)-N(5) 109.43(8) N(2)-P(2)-N(7) 114.56(7) N(6)-P(2)-N(7) 106.68(7) N(5)-P(2)-N(7) 105.17(8) N(1)-C(1)-C(2) 112.96(14) N(1)-C(1)-H(1A) 109.0 C(2)-C(1)-H(1A) 109.0 N(1)-C(1)-H(1B) 109.0 C(2)-C(1)-H(1B) 109.0 H(1A)-C(1)-H(1B) 107.8 C(1)-C(2)-H(2A) 109.5 C(1)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 C(1)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 P(2)-N(2)-P(1) 133.37(9) C(1)-N(1)-P(1) 120.28(11) C(1)-N(1)-In(1) 122.45(10) P(1)-N(1)-In(1) 115.73(7) C(3)-N(3)-C(4) 112.97(13) C(3)-N(3)-P(1) 122.91(11) C(4)-N(3)-P(1) 123.80(12) C(6)-N(4)-C(5) 111.96(14) C(6)-N(4)-P(1) 118.34(11) C(5)-N(4)-P(1) 122.66(12) N(4)-C(5)-H(5A) 109.5 N(4)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(4)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 217 N(4)-C(6)-H(6A) 109.5 N(4)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(4)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(3)-C(4)-H(4A) 109.5 N(3)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(3)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 N(3)-C(3)-H(3A) 109.5 N(3)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(3)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 C(9)-N(6)-C(10) 113.17(13) C(9)-N(6)-P(2) 122.53(11) C(10)-N(6)-P(2) 121.26(12) C(12)-N(7)-C(11) 113.03(14) C(12)-N(7)-P(2) 119.62(11) C(11)-N(7)-P(2) 125.83(12) C(8)-N(5)-C(7) 113.75(15) C(8)-N(5)-P(2) 122.37(13) C(7)-N(5)-P(2) 118.18(12) N(6)-C(9)-H(9A) 109.5 N(6)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(6)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(6)-C(10)-H(10A) 109.5 N(6)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 218

N(6)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(7)-C(11)-H(11A) 109.5 N(7)-C(11)-H(11B) 109.5 H(11A)-C(11)-H(11B) 109.5 N(7)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 H(11B)-C(11)-H(11C) 109.5 N(5)-C(7)-H(7A) 109.5 N(5)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(5)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(7)-C(12)-H(12A) 109.5 N(7)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B) 109.5 N(7)-C(12)-H(12C) 109.5 H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 N(5)-C(8)-H(8A) 109.5 N(5)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(5)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 ______

219 2 3 Table J-4. Anisotropic displacement parameters (Å x 10 ) for [InCl(P2Et)]. The anisotropic displacement factor exponent takes the form: -2 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______In(1) 13(1) 13(1) 10(1) -1(1) 0(1) 0(1) P(1) 10(1) 10(1) 8(1) 0(1) 0(1) 0(1) P(2) 11(1) 12(1) 12(1) 2(1) 2(1) 0(1) Cl(1) 16(1) 18(1) 20(1) 1(1) -4(1) -1(1) Cl(2) 24(1) 31(1) 20(1) -6(1) 11(1) -6(1) Cl(3) 31(1) 14(1) 24(1) -4(1) -5(1) 5(1) C(1) 19(1) 15(1) 13(1) 4(1) 1(1) 1(1) C(2) 26(1) 22(1) 21(1) 6(1) 4(1) -6(1) N(2) 13(1) 12(1) 10(1) 1(1) 1(1) -1(1) N(1) 17(1) 11(1) 9(1) 1(1) 1(1) 0(1) N(3) 15(1) 15(1) 12(1) -2(1) -3(1) 0(1) N(4) 12(1) 17(1) 11(1) -1(1) 3(1) 1(1) C(5) 24(1) 25(1) 13(1) 0(1) 9(1) 0(1) C(6) 12(1) 21(1) 23(1) 1(1) 2(1) 2(1) C(4) 24(1) 20(1) 17(1) -4(1) -5(1) -5(1) C(3) 14(1) 22(1) 21(1) 2(1) -4(1) 1(1) N(6) 18(1) 12(1) 14(1) 4(1) -2(1) 0(1) N(7) 13(1) 14(1) 18(1) -3(1) 1(1) -3(1) N(5) 14(1) 25(1) 20(1) 8(1) 6(1) 2(1) C(9) 32(1) 18(1) 20(1) 3(1) -10(1) -3(1) C(10) 31(1) 15(1) 18(1) 6(1) -1(1) 1(1) C(11) 21(1) 18(1) 28(1) 1(1) -3(1) -6(1) C(7) 12(1) 35(1) 39(1) 12(1) 3(1) 2(1) C(12) 20(1) 18(1) 23(1) -3(1) 2(1) 2(1) C(8) 24(1) 31(1) 22(1) -3(1) 12(1) -4(1) ______

220

Table J-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [InCl(P2Et)]. ______x y z U(eq) ______

H(1A) 7474 -2496 4131 19 H(1B) 7838 -3489 3531 19 H(2A) 5689 -2741 3588 34 H(2B) 6145 -3883 4012 34 H(2C) 6061 -3752 3007 34 H(5A) 5997 229 4749 31 H(5B) 7012 -587 4779 31 H(5C) 5847 -1092 4564 31 H(6A) 4999 -858 3178 28 H(6B) 5503 -17 2524 28 H(6C) 4985 474 3342 28 H(4A) 8653 429 4875 31 H(4B) 7954 1089 4155 31 H(4C) 9219 1019 4115 31 H(3A) 10035 -738 3753 29 H(3B) 9308 -1809 3500 29 H(3C) 9478 -1435 4467 29 H(9A) 5711 851 305 36 H(9B) 6451 -120 728 36 H(9C) 6867 626 -23 36 H(10A) 7175 2694 266 32 H(10B) 7157 3119 1222 32 H(10C) 6066 2821 696 32 H(11A) 8397 3640 2553 33 H(11B) 9251 2642 2522 33 H(11C) 8735 2941 3390 33 H(7A) 9877 -239 1877 43 H(7B) 9661 592 2642 43 H(7C) 10496 939 1969 43 H(12A) 6805 2369 3527 30 221 H(12B) 6173 1909 2690 30 H(12C) 6564 3194 2740 30 H(8A) 9875 1473 572 38 H(8B) 8629 1640 342 38 H(8C) 9127 396 394 38 ______

Table J-6. Torsion angles [°] for [InCl(P2Et)]. ______N(6)-P(2)-N(2)-P(1) -143.01(12) N(5)-P(2)-N(2)-P(1) 95.94(13) N(7)-P(2)-N(2)-P(1) -24.28(15) N(1)-P(1)-N(2)-P(2) -157.25(12) N(3)-P(1)-N(2)-P(2) -38.55(15) N(4)-P(1)-N(2)-P(2) 78.78(13) C(2)-C(1)-N(1)-P(1) 101.51(16) C(2)-C(1)-N(1)-In(1) -63.72(18) N(2)-P(1)-N(1)-C(1) -169.96(12) N(3)-P(1)-N(1)-C(1) 63.48(14) N(4)-P(1)-N(1)-C(1) -50.81(14) N(2)-P(1)-N(1)-In(1) -3.77(10) N(3)-P(1)-N(1)-In(1) -130.34(8) N(4)-P(1)-N(1)-In(1) 115.38(8) Cl(2)-In(1)-N(1)-C(1) -130.66(11) Cl(1)-In(1)-N(1)-C(1) 92.02(12) Cl(3)-In(1)-N(1)-C(1) -19.86(13) Cl(2)-In(1)-N(1)-P(1) 63.48(9) Cl(1)-In(1)-N(1)-P(1) -73.84(8) Cl(3)-In(1)-N(1)-P(1) 174.28(7) N(2)-P(1)-N(3)-C(3) -94.55(14) N(1)-P(1)-N(3)-C(3) 22.24(15) N(4)-P(1)-N(3)-C(3) 145.06(13) N(2)-P(1)-N(3)-C(4) 78.50(15) N(1)-P(1)-N(3)-C(4) -164.72(13) N(4)-P(1)-N(3)-C(4) -41.90(15) N(2)-P(1)-N(4)-C(6) 42.42(14) N(1)-P(1)-N(4)-C(6) -73.77(14) 222

N(3)-P(1)-N(4)-C(6) 169.53(12) N(2)-P(1)-N(4)-C(5) -169.31(13) N(1)-P(1)-N(4)-C(5) 74.50(15) N(3)-P(1)-N(4)-C(5) -42.20(15) N(2)-P(2)-N(6)-C(9) -36.76(16) N(5)-P(2)-N(6)-C(9) 86.31(15) N(7)-P(2)-N(6)-C(9) -160.40(14) N(2)-P(2)-N(6)-C(10) 164.30(13) N(5)-P(2)-N(6)-C(10) -72.63(15) N(7)-P(2)-N(6)-C(10) 40.66(16) N(2)-P(2)-N(7)-C(12) -64.75(15) N(6)-P(2)-N(7)-C(12) 54.75(14) N(5)-P(2)-N(7)-C(12) 170.92(13) N(2)-P(2)-N(7)-C(11) 130.34(14) N(6)-P(2)-N(7)-C(11) -110.16(15) N(5)-P(2)-N(7)-C(11) 6.01(16) N(2)-P(2)-N(5)-C(8) 106.19(15) N(6)-P(2)-N(5)-C(8) -14.07(17) N(7)-P(2)-N(5)-C(8) -128.33(15) N(2)-P(2)-N(5)-C(7) -45.53(16) N(6)-P(2)-N(5)-C(7) -165.79(14) N(7)-P(2)-N(5)-C(7) 79.95(15) ______

223 APPENDIX K

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[AlCl(P2tBu)]

Table K-1. Crystal data and structure refinement for [AlCl(P2tBu)].

Empirical formula C14H39AlCl3N7P2 Formula weight 500.79 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 10.6194(4) Å α = 91.412(2)° b = 14.7707(5) Å β = 91.682(2)° c = 16.5310(6) Å γ = 105.049(2)° Volume 2501.58(16) Å3 Z 4 Density (calculated) 1.330 Mg/m3 Absorption coefficient 0.545 mm-1 F(000) 1064 Crystal size 0.28 x 0.16 x 0.04 mm3 Theta range for data collection 1.43 to 26.30° Index ranges -13<=h<=13, -18<=k<=18, 0<=l<=20 Reflections collected 16699 Independent reflections 16699 [R(int) = 0.0000] Completeness to theta = 26.30° 99.3 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9785 and 0.8638 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 16699 / 0 / 514 Goodness-of-fit on F2 1.118 Final R indices [I>2sigma(I)] R1 = 0.0439, wR2 = 0.1091

224 R indices (all data) R1 = 0.0510, wR2 = 0.1124 Largest diff. peak and hole 0.686 and -0.373 e.Å-3

Table K-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [AlCl(P2tBu)]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Cl(1) 2447(1) 4379(1) 4589(1) 20(1) Cl(2) -88(1) 2569(1) 4316(1) 25(1) Cl(3) 1238(1) 3261(1) 2617(1) 24(1) Cl(4) 6559(1) 8254(1) 2456(1) 26(1) Cl(5) 4736(1) 7238(1) 877(1) 29(1) Cl(6) 7024(1) 9075(1) 395(1) 26(1) P(1) 4332(1) 2589(1) 3815(1) 12(1) P(2) 5675(1) 1637(1) 2543(1) 15(1) P(3) 9333(1) 7505(1) 1158(1) 13(1) P(4) 10853(1) 6769(1) 2507(1) 14(1) Al(1) 1888(1) 3095(1) 3845(1) 15(1) Al(2) 6806(1) 7914(1) 1200(1) 19(1) N(1) 2818(2) 2182(1) 4036(1) 14(1) N(2) 4972(2) 2001(2) 3244(1) 16(1) N(3) 4178(2) 3591(2) 3369(1) 17(1) N(4) 5263(2) 2851(2) 4643(1) 18(1) N(5) 6451(2) 2408(2) 1915(1) 20(1) N(6) 6840(2) 1211(2) 2916(1) 20(1) N(7) 4575(2) 838(2) 2021(1) 20(1) N(8) 7782(2) 7037(2) 1002(1) 15(1) N(9) 10121(2) 7075(2) 1774(1) 17(1) N(10) 9261(2) 8597(2) 1480(1) 17(1) N(11) 10076(2) 7573(2) 298(1) 22(1) N(12) 11862(2) 6188(2) 2178(1) 18(1) N(13) 11827(2) 7617(2) 3067(1) 18(1) N(14) 9774(2) 6139(2) 3093(1) 20(1) C(1) 2294(3) 1229(2) 4392(2) 18(1) 225 C(2) 1893(3) 1339(2) 5264(2) 26(1) C(3) 1128(3) 678(2) 3864(2) 24(1) C(4) 3303(3) 646(2) 4413(2) 26(1) C(5) 5105(3) 4466(2) 3687(2) 22(1) C(6) 4222(3) 3570(2) 2478(2) 21(1) C(7) 4835(3) 3164(2) 5402(2) 24(1) C(8) 6685(3) 3017(2) 4620(2) 30(1) C(9) 5893(3) 2541(2) 1118(2) 26(1) C(10) 7597(3) 3146(2) 2184(2) 27(1) C(11) 7938(3) 1076(2) 2452(2) 27(1) C(12) 6679(3) 693(2) 3664(2) 25(1) C(13) 4970(3) 218(2) 1427(2) 29(1) C(14) 3219(3) 876(2) 1913(2) 26(1) C(15) 7235(3) 6016(2) 735(2) 20(1) C(16) 6263(3) 5530(2) 1357(2) 26(1) C(17) 6581(3) 5951(2) -100(2) 26(1) C(18) 8285(3) 5467(2) 692(2) 29(1) C(19) 9637(3) 8842(2) 2338(2) 22(1) C(20) 9967(3) 9375(2) 978(2) 28(1) C(21) 11475(3) 7655(3) 256(2) 38(1) C(22) 9476(3) 7712(2) -479(2) 32(1) C(23) 12958(3) 6037(2) 2669(2) 24(1) C(24) 11568(3) 5577(2) 1450(2) 24(1) C(25) 12974(3) 8238(2) 2719(2) 28(1) C(26) 11409(3) 7997(2) 3806(2) 25(1) C(27) 10157(3) 5552(2) 3712(2) 34(1) C(28) 8513(3) 6334(2) 3241(2) 27(1) ______

226 Table K-3. Bond lengths [Å] and angles [°] for [AlCl(P2tBu)]. ______Cl(1)-Al(1) 2.1726(10) Cl(2)-Al(1) 2.2119(10) Cl(3)-Al(1) 2.1648(10) Cl(4)-Al(2) 2.1636(11) Cl(5)-Al(2) 2.2098(11) Cl(6)-Al(2) 2.1656(11) P(1)-N(2) 1.553(2) P(1)-N(1) 1.620(2) P(1)-N(4) 1.642(2) P(1)-N(3) 1.713(2) P(2)-N(2) 1.555(2) P(2)-N(5) 1.636(2) P(2)-N(7) 1.637(2) P(2)-N(6) 1.638(2) P(3)-N(9) 1.549(2) P(3)-N(8) 1.622(2) P(3)-N(11) 1.640(2) P(3)-N(10) 1.707(2) P(4)-N(9) 1.559(2) P(4)-N(12) 1.635(2) P(4)-N(14) 1.636(2) P(4)-N(13) 1.646(2) Al(1)-N(1) 1.893(2) Al(1)-N(3) 2.507(2) Al(2)-N(8) 1.887(2) Al(2)-N(10) 2.563(2) N(1)-C(1) 1.513(3) N(3)-C(6) 1.474(3) N(3)-C(5) 1.480(3) N(4)-C(7) 1.451(4) N(4)-C(8) 1.468(3) N(5)-C(10) 1.457(4) N(5)-C(9) 1.467(4) N(6)-C(12) 1.460(4) 227 N(6)-C(11) 1.468(3) N(7)-C(14) 1.462(3) N(7)-C(13) 1.469(4) N(8)-C(15) 1.518(3) N(10)-C(19) 1.472(3) N(10)-C(20) 1.485(4) N(11)-C(22) 1.459(4) N(11)-C(21) 1.463(4) N(12)-C(24) 1.462(3) N(12)-C(23) 1.466(3) N(13)-C(26) 1.460(3) N(13)-C(25) 1.465(4) N(14)-C(28) 1.468(4) N(14)-C(27) 1.472(4) C(1)-C(3) 1.529(4) C(1)-C(2) 1.532(4) C(1)-C(4) 1.540(4) C(15)-C(17) 1.516(4) C(15)-C(16) 1.532(4) C(15)-C(18) 1.542(4)

N(2)-P(1)-N(1) 119.26(12) N(2)-P(1)-N(4) 107.46(12) N(1)-P(1)-N(4) 110.53(12) N(2)-P(1)-N(3) 111.42(12) N(1)-P(1)-N(3) 97.47(11) N(4)-P(1)-N(3) 110.32(11) N(2)-P(2)-N(5) 117.39(12) N(2)-P(2)-N(7) 107.41(12) N(5)-P(2)-N(7) 108.13(13) N(2)-P(2)-N(6) 109.79(12) N(5)-P(2)-N(6) 102.47(12) N(7)-P(2)-N(6) 111.67(12) N(9)-P(3)-N(8) 120.00(12) N(9)-P(3)-N(11) 107.32(12) N(8)-P(3)-N(11) 109.82(12) 228 N(9)-P(3)-N(10) 111.11(12) N(8)-P(3)-N(10) 98.46(11) N(11)-P(3)-N(10) 109.71(12) N(9)-P(4)-N(12) 109.61(12) N(9)-P(4)-N(14) 108.68(12) N(12)-P(4)-N(14) 111.79(12) N(9)-P(4)-N(13) 116.43(12) N(12)-P(4)-N(13) 102.11(12) N(14)-P(4)-N(13) 108.14(13) N(1)-Al(1)-Cl(3) 118.64(8) N(1)-Al(1)-Cl(1) 117.11(8) Cl(3)-Al(1)-Cl(1) 115.02(4) N(1)-Al(1)-Cl(2) 107.89(8) Cl(3)-Al(1)-Cl(2) 95.74(4) Cl(1)-Al(1)-Cl(2) 96.67(4) N(1)-Al(1)-N(3) 67.80(8) Cl(3)-Al(1)-N(3) 87.41(6) Cl(1)-Al(1)-N(3) 84.77(6) Cl(2)-Al(1)-N(3) 175.57(6) N(8)-Al(2)-Cl(4) 116.51(8) N(8)-Al(2)-Cl(6) 117.96(8) Cl(4)-Al(2)-Cl(6) 114.93(5) N(8)-Al(2)-Cl(5) 108.28(8) Cl(4)-Al(2)-Cl(5) 97.55(4) Cl(6)-Al(2)-Cl(5) 96.79(4) N(8)-Al(2)-N(10) 67.08(8) Cl(4)-Al(2)-N(10) 86.92(6) Cl(6)-Al(2)-N(10) 83.72(6) Cl(5)-Al(2)-N(10) 174.77(7) C(1)-N(1)-P(1) 123.03(17) C(1)-N(1)-Al(1) 126.87(16) P(1)-N(1)-Al(1) 109.99(12) P(1)-N(2)-P(2) 165.53(16) C(6)-N(3)-C(5) 108.4(2) C(6)-N(3)-P(1) 114.79(17) C(5)-N(3)-P(1) 114.88(17) 229 C(6)-N(3)-Al(1) 112.14(16) C(5)-N(3)-Al(1) 121.26(17) P(1)-N(3)-Al(1) 83.92(9) C(7)-N(4)-C(8) 113.2(2) C(7)-N(4)-P(1) 123.89(18) C(8)-N(4)-P(1) 121.3(2) C(10)-N(5)-C(9) 114.9(2) C(10)-N(5)-P(2) 121.1(2) C(9)-N(5)-P(2) 122.6(2) C(12)-N(6)-C(11) 112.7(2) C(12)-N(6)-P(2) 121.14(19) C(11)-N(6)-P(2) 124.1(2) C(14)-N(7)-C(13) 113.9(2) C(14)-N(7)-P(2) 122.91(19) C(13)-N(7)-P(2) 120.42(19) C(15)-N(8)-P(3) 122.48(18) C(15)-N(8)-Al(2) 126.16(17) P(3)-N(8)-Al(2) 111.36(12) P(3)-N(9)-P(4) 169.60(16) C(19)-N(10)-C(20) 108.8(2) C(19)-N(10)-P(3) 115.53(17) C(20)-N(10)-P(3) 114.89(19) C(19)-N(10)-Al(2) 114.42(17) C(20)-N(10)-Al(2) 118.51(17) P(3)-N(10)-Al(2) 83.03(9) C(22)-N(11)-C(21) 113.0(2) C(22)-N(11)-P(3) 123.9(2) C(21)-N(11)-P(3) 122.4(2) C(24)-N(12)-C(23) 112.6(2) C(24)-N(12)-P(4) 122.13(18) C(23)-N(12)-P(4) 123.62(19) C(26)-N(13)-C(25) 114.1(2) C(26)-N(13)-P(4) 122.55(19) C(25)-N(13)-P(4) 120.3(2) C(28)-N(14)-C(27) 113.0(2) C(28)-N(14)-P(4) 123.06(19) 230 C(27)-N(14)-P(4) 120.99(19) N(1)-C(1)-C(3) 108.7(2) N(1)-C(1)-C(2) 110.2(2) C(3)-C(1)-C(2) 110.7(2) N(1)-C(1)-C(4) 112.7(2) C(3)-C(1)-C(4) 107.2(2) C(2)-C(1)-C(4) 107.3(2) C(17)-C(15)-N(8) 109.9(2) C(17)-C(15)-C(16) 111.0(2) N(8)-C(15)-C(16) 108.8(2) C(17)-C(15)-C(18) 107.4(2) N(8)-C(15)-C(18) 113.2(2) C(16)-C(15)-C(18) 106.5(2) ______

2 3 Table K-4. Anisotropic displacement parameters (Å x 10 ) for [AlCl(P2tBu)] The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Cl(1) 23(1) 18(1) 21(1) -4(1) 1(1) 9(1) Cl(2) 17(1) 30(1) 27(1) 0(1) 5(1) 6(1) Cl(3) 19(1) 36(1) 18(1) 3(1) -4(1) 6(1) Cl(4) 25(1) 38(1) 16(1) -3(1) 2(1) 12(1) Cl(5) 16(1) 47(1) 26(1) -2(1) -2(1) 12(1) Cl(6) 30(1) 31(1) 23(1) 7(1) -2(1) 17(1) P(1) 12(1) 12(1) 13(1) 0(1) 0(1) 4(1) P(2) 15(1) 17(1) 16(1) 1(1) 1(1) 9(1) P(3) 12(1) 15(1) 13(1) 1(1) 1(1) 5(1) P(4) 14(1) 15(1) 15(1) 0(1) 0(1) 7(1) Al(1) 16(1) 17(1) 14(1) -1(1) -1(1) 7(1) Al(2) 19(1) 26(1) 15(1) 0(1) 1(1) 13(1) N(1) 13(1) 11(1) 16(1) 2(1) 0(1) 3(1) N(2) 19(1) 17(1) 16(1) 1(1) 3(1) 9(1) 231 N(3) 17(1) 14(1) 20(1) 2(1) 1(1) 5(1) N(4) 16(1) 19(1) 20(1) -2(1) -7(1) 6(1) N(5) 17(1) 25(1) 21(1) 5(1) 2(1) 9(1) N(6) 20(1) 26(1) 19(1) 2(1) 1(1) 16(1) N(7) 17(1) 24(1) 21(1) -4(1) -3(1) 9(1) N(8) 14(1) 16(1) 16(1) 0(1) -4(1) 5(1) N(9) 15(1) 19(1) 19(1) 0(1) -1(1) 8(1) N(10) 21(1) 13(1) 17(1) 3(1) -3(1) 5(1) N(11) 20(1) 31(1) 16(1) 4(1) 5(1) 7(1) N(12) 19(1) 23(1) 16(1) -2(1) -2(1) 12(1) N(13) 17(1) 19(1) 19(1) -3(1) -1(1) 5(1) N(14) 19(1) 21(1) 22(1) 7(1) 5(1) 8(1) C(1) 20(1) 12(1) 21(1) 3(1) 4(1) 2(1) C(2) 27(2) 27(2) 23(2) 8(1) 6(1) 6(1) C(3) 22(2) 17(1) 30(2) -4(1) 5(1) -1(1) C(4) 28(2) 17(1) 34(2) 10(1) 9(1) 8(1) C(5) 17(1) 14(1) 36(2) 2(1) 3(1) 2(1) C(6) 23(1) 23(2) 22(2) 8(1) 8(1) 14(1) C(7) 31(2) 24(2) 17(1) -4(1) -8(1) 7(1) C(8) 20(2) 29(2) 40(2) -8(1) -13(1) 9(1) C(9) 24(2) 39(2) 20(2) 7(1) 7(1) 14(1) C(10) 20(2) 29(2) 33(2) 12(1) 5(1) 6(1) C(11) 23(2) 36(2) 29(2) -1(1) 4(1) 21(1) C(12) 26(2) 25(2) 28(2) 8(1) 0(1) 12(1) C(13) 35(2) 26(2) 28(2) -10(1) -3(1) 13(1) C(14) 20(2) 32(2) 25(2) 0(1) -4(1) 5(1) C(15) 18(1) 18(1) 24(2) -3(1) -3(1) 3(1) C(16) 24(2) 22(2) 28(2) 3(1) -4(1) -2(1) C(17) 21(2) 28(2) 26(2) -9(1) -3(1) 3(1) C(18) 26(2) 17(1) 43(2) -9(1) -8(1) 6(1) C(19) 24(2) 19(1) 25(2) -5(1) -9(1) 9(1) C(20) 29(2) 18(2) 36(2) 7(1) -3(1) 3(1) C(21) 24(2) 52(2) 39(2) 5(2) 15(2) 9(2) C(22) 34(2) 44(2) 14(1) 4(1) 4(1) 5(2) C(23) 21(2) 29(2) 25(2) 1(1) -2(1) 14(1) C(24) 26(2) 27(2) 24(2) -4(1) -2(1) 16(1) 232

C(25) 20(2) 25(2) 37(2) 0(1) 1(1) 0(1) C(26) 33(2) 26(2) 17(1) -4(1) -6(1) 13(1) C(27) 39(2) 32(2) 36(2) 19(2) 10(2) 16(2) C(28) 19(2) 37(2) 25(2) 5(1) 5(1) 6(1) ______

Table K-5. Hydrogen coordinates ( x 104) and isotropic displacement 2 3 parameters (Å x 10 ) for [AlCl(P2tBu)]. ______x y z U(eq) ______

H(2A) 2671 1620 5608 38 H(2B) 1454 722 5464 38 H(2C) 1297 1746 5279 38 H(3A) 437 1007 3868 37 H(3B) 797 50 4078 37 H(3C) 1401 621 3308 37 H(4A) 3531 520 3859 39 H(4B) 2932 51 4672 39 H(4C) 4089 995 4721 39 H(5A) 5992 4465 3540 33 H(5B) 5063 4503 4278 33 H(5C) 4874 5007 3454 33 H(6A) 3962 4111 2267 31 H(6B) 3622 2990 2257 31 H(6C) 5111 3594 2318 31 H(7A) 4963 2749 5832 36 H(7B) 3908 3149 5347 36 H(7C) 5345 3807 5539 36 H(8A) 7095 3693 4656 45 H(8B) 6910 2753 4111 45 H(8C) 6998 2714 5077 45 H(9A) 5742 3167 1105 39 H(9B) 5063 2066 1019 39 233 H(9C) 6500 2478 699 39 H(10A) 8290 3184 1798 41 H(10B) 7903 3003 2719 41 H(10C) 7369 3747 2217 41 H(11A) 8759 1358 2755 40 H(11B) 7943 1377 1929 40 H(11C) 7847 404 2360 40 H(12A) 6453 18 3532 37 H(12B) 5979 844 3970 37 H(12C) 7495 870 3990 37 H(13A) 4382 -414 1442 44 H(13B) 5866 191 1559 44 H(13C) 4928 462 884 44 H(14A) 3089 1119 1379 39 H(14B) 3019 1290 2335 39 H(14C) 2639 244 1952 39 H(16A) 6713 5563 1887 39 H(16B) 5894 4872 1186 39 H(16C) 5560 5846 1395 39 H(17A) 5929 6314 -98 38 H(17B) 6154 5293 -245 38 H(17C) 7239 6204 -496 38 H(18A) 8935 5755 301 43 H(18B) 7876 4815 519 43 H(18C) 8714 5483 1227 43 H(19A) 10584 8951 2416 34 H(19B) 9194 8326 2674 34 H(19C) 9383 9412 2496 34 H(20A) 9823 9967 1181 42 H(20B) 9642 9256 415 42 H(20C) 10903 9413 1009 42 H(21A) 11619 7186 -134 57 H(21B) 11823 7551 792 57 H(21C) 11920 8284 84 57 H(22A) 9975 8299 -704 48 H(22B) 8577 7744 -401 48 234 H(22C) 9474 7187 -854 48 H(23A) 12789 5371 2792 36 H(23B) 13058 6412 3175 36 H(23C) 13761 6226 2368 36 H(24A) 12375 5605 1168 37 H(24B) 10955 5785 1092 37 H(24C) 11177 4930 1603 37 H(25A) 12798 8844 2610 43 H(25B) 13170 7953 2213 43 H(25C) 13723 8334 3102 43 H(26A) 12154 8198 4192 37 H(26B) 10723 7512 4046 37 H(26C) 11070 8535 3676 37 H(27A) 10220 5870 4245 50 H(27B) 11006 5448 3586 50 H(27C) 9502 4947 3718 50 H(28A) 7842 5742 3283 41 H(28B) 8276 6685 2791 41 H(28C) 8578 6706 3747 41

235

APPENDIX L

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[GaCl(P2tBu)]

Table M-1. Crystal data and structure refinement for [GaCl(P2tBu)].

Empirical formula C14H39Cl3GaN7P2 Formula weight 543.53 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 10.6819(3) Å α = 91.7300(10)° b = 14.6848(4) Å β = 92.035(2)° c = 16.6312(5) Å γ = 104.7660(10)° Volume 2518.97(12) Å3 Z 4 Density (calculated) 1.433 Mg/m3 Absorption coefficient 1.552 mm-1 F(000) 1136 Crystal size 0.175 x 0.100 x 0.071 mm3 Theta range for data collection 1.435 to 27.535° Index ranges -13<=h<=13, -19<=k<=19, 0<=l<=21 Reflections collected 19417 Independent reflections 19417 [R(int) = ?] Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.745554 and 0.665539 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 19417 / 0 / 514 Goodness-of-fit on F2 1.087

236 Final R indices [I>2sigma(I)] R1 = 0.0452, wR2 = 0.1055 R indices (all data) R1 = 0.0671, wR2 = 0.1144 Extinction coefficient n/a Largest diff. peak and hole 0.563 and -0.537 e.Å-3

Table L-2. Atomic coordinates ( x 104) and equivalent isotropic displacement 2 3 parameters (Å x 10 ) for [GaCl(P2tBu)]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Ga(1) 6671(1) 2816(1) 1167(1) 14(1) Ga(2) 1744(1) 8037(1) 3878(1) 13(1) Cl(1) 6539(1) 3182(1) 2446(1) 23(1) Cl(2) 4593(1) 2146(1) 840(1) 25(1) Cl(3) 6964(1) 4034(1) 398(1) 23(1) Cl(4) -234(1) 7540(1) 4343(1) 23(1) Cl(5) 1179(1) 8205(1) 2621(1) 23(1) Cl(6) 2419(1) 9379(1) 4576(1) 19(1) P(1) 9333(1) 2483(1) 1139(1) 11(1) P(2) 10829(1) 1743(1) 2490(1) 12(1) P(3) 4326(1) 7589(1) 3811(1) 11(1) P(4) 5614(1) 6585(1) 2562(1) 13(1) N(1) 7791(3) 2002(2) 984(2) 12(1) N(2) 10091(3) 2023(2) 1752(2) 16(1) N(3) 9367(3) 3590(2) 1441(2) 16(1) N(4) 10044(3) 2500(2) 276(2) 20(1) N(5) 11807(3) 2610(2) 3035(2) 16(1) N(6) 9767(3) 1133(2) 3085(2) 18(1) N(7) 11823(3) 1140(2) 2177(2) 15(1) N(8) 2818(3) 7179(2) 4028(2) 10(1) N(9) 4920(3) 6937(2) 3267(2) 15(1) N(10) 4282(3) 8589(2) 3361(2) 16(1) N(11) 5229(3) 7831(2) 4643(2) 16(1) N(12) 6397(3) 7366(2) 1951(2) 18(1) N(13) 6756(3) 6138(2) 2925(2) 17(1) 237 N(14) 4520(3) 5800(2) 2020(2) 18(1) C(1) 7241(4) 968(3) 730(3) 18(1) C(2) 8271(4) 412(3) 687(3) 26(1) C(3) 6572(4) 901(3) -102(3) 21(1) C(4) 6289(4) 511(3) 1354(3) 24(1) C(5) 9698(4) 3864(3) 2291(2) 19(1) C(6) 10000(4) 4353(3) 921(3) 25(1) C(7) 11424(4) 2576(4) 235(3) 34(1) C(8) 9437(5) 2636(3) -496(3) 30(1) C(9) 12946(4) 3204(3) 2685(3) 26(1) C(10) 11426(4) 3003(3) 3770(2) 23(1) C(11) 10150(5) 555(3) 3703(3) 29(1) C(12) 8532(4) 1360(3) 3231(3) 25(1) C(13) 12916(4) 996(3) 2673(3) 22(1) C(14) 11511(4) 503(3) 1466(3) 22(1) C(15) 2297(4) 6224(3) 4383(2) 16(1) C(16) 1128(4) 5685(3) 3856(3) 24(1) C(17) 1895(4) 6352(3) 5245(3) 22(1) C(18) 3280(4) 5633(3) 4411(3) 23(1) C(19) 4237(4) 8567(3) 2478(2) 19(1) C(20) 5190(4) 9467(3) 3685(3) 24(1) C(21) 6638(4) 7974(3) 4642(3) 29(1) C(22) 4814(4) 8176(3) 5393(3) 24(1) C(23) 7552(4) 8089(3) 2230(3) 26(1) C(24) 5906(4) 7490(3) 1145(3) 21(1) C(25) 7849(4) 6000(3) 2464(3) 25(1) C(26) 6592(4) 5606(3) 3662(3) 24(1) C(27) 4900(4) 5169(3) 1426(3) 25(1) C(28) 3195(4) 5868(3) 1905(3) 23(1) ______

238 Table L-3. Bond lengths [Å] and angles N(7)-C(14) 1.460(5)

[°] for [GaCl(P2tBu)]. N(7)-C(13) 1.467(5) ______N(8)-C(15) 1.516(5) Ga(1)-N(1) 1.919(3) N(10)-C(19) 1.467(5) Ga(1)-Cl(3) 2.1944(11) N(10)-C(20) 1.475(5) Ga(1)-Cl(1) 2.1963(11) N(11)-C(22) 1.457(5) Ga(1)-Cl(2) 2.2266(11) N(11)-C(21) 1.465(5) Ga(2)-N(8) 1.924(3) N(12)-C(24) 1.456(5) Ga(2)-Cl(5) 2.1936(11) N(12)-C(23) 1.458(5) Ga(2)-Cl(6) 2.1976(11) N(13)-C(26) 1.466(5) Ga(2)-Cl(4) 2.2269(11) N(13)-C(25) 1.472(5) P(1)-N(2) 1.553(3) N(14)-C(28) 1.451(5) P(1)-N(1) 1.626(3) N(14)-C(27) 1.471(5) P(1)-N(4) 1.645(4) C(1)-C(3) 1.523(6) P(1)-N(3) 1.678(3) C(1)-C(4) 1.527(6) P(2)-N(2) 1.557(3) C(1)-C(2) 1.530(6) P(2)-N(7) 1.635(3) C(15)-C(18) 1.525(6) P(2)-N(6) 1.638(3) C(15)-C(16) 1.526(6) P(2)-N(5) 1.650(3) C(15)-C(17) 1.531(6) P(3)-N(9) 1.560(3) P(3)-N(8) 1.627(3) N(1)-Ga(1)-Cl(3) 115.20(10) P(3)-N(11) 1.635(3) N(1)-Ga(1)-Cl(1) 113.41(10) P(3)-N(10) 1.679(3) Cl(3)-Ga(1)-Cl(1) 113.29(4) P(4)-N(9) 1.554(3) N(1)-Ga(1)-Cl(2) 113.78(10) P(4)-N(13) 1.632(3) Cl(3)-Ga(1)-Cl(2) 99.08(4) P(4)-N(14) 1.638(3) Cl(1)-Ga(1)-Cl(2) 100.22(4) P(4)-N(12) 1.641(3) N(8)-Ga(2)-Cl(5) 114.99(10) N(1)-C(1) 1.523(5) N(8)-Ga(2)-Cl(6) 114.21(10) N(3)-C(5) 1.463(5) Cl(5)-Ga(2)-Cl(6) 113.53(4) N(3)-C(6) 1.476(5) N(8)-Ga(2)-Cl(4) 114.18(10) N(4)-C(7) 1.454(5) Cl(5)-Ga(2)-Cl(4) 98.16(4) N(4)-C(8) 1.460(6) Cl(6)-Ga(2)-Cl(4) 99.65(4) N(5)-C(10) 1.451(5) N(2)-P(1)-N(1) 117.71(18) N(5)-C(9) 1.456(5) N(2)-P(1)-N(4) 107.19(19) N(6)-C(11) 1.465(5) N(1)-P(1)-N(4) 108.75(18) N(6)-C(12) 1.467(5) N(2)-P(1)-N(3) 111.18(17) 239 N(1)-P(1)-N(3) 102.57(17) C(14)-N(7)-C(13) 112.9(3) N(4)-P(1)-N(3) 109.21(18) C(14)-N(7)-P(2) 121.8(3) N(2)-P(2)-N(7) 109.39(18) C(13)-N(7)-P(2) 123.6(3) N(2)-P(2)-N(6) 108.69(19) C(15)-N(8)-P(3) 123.4(3) N(7)-P(2)-N(6) 111.65(17) C(15)-N(8)-Ga(2) 121.4(2) N(2)-P(2)-N(5) 116.81(18) P(3)-N(8)-Ga(2) 115.00(17) N(7)-P(2)-N(5) 102.20(17) P(4)-N(9)-P(3) 161.1(2) N(6)-P(2)-N(5) 108.02(19) C(19)-N(10)-C(20) 110.2(3) N(9)-P(3)-N(8) 116.52(17) C(19)-N(10)-P(3) 117.4(3) N(9)-P(3)-N(11) 107.19(18) C(20)-N(10)-P(3) 117.2(3) N(8)-P(3)-N(11) 109.50(17) C(22)-N(11)-C(21) 112.3(3) N(9)-P(3)-N(10) 111.78(18) C(22)-N(11)-P(3) 124.2(3) N(8)-P(3)-N(10) 101.71(16) C(21)-N(11)-P(3) 121.5(3) N(11)-P(3)-N(10) 110.01(17) C(24)-N(12)-C(23) 114.6(3) N(9)-P(4)-N(13) 109.43(18) C(24)-N(12)-P(4) 123.6(3) N(9)-P(4)-N(14) 107.66(18) C(23)-N(12)-P(4) 121.2(3) N(13)-P(4)-N(14) 111.58(18) C(26)-N(13)-C(25) 112.7(3) N(9)-P(4)-N(12) 118.04(18) C(26)-N(13)-P(4) 121.2(3) N(13)-P(4)-N(12) 102.46(18) C(25)-N(13)-P(4) 124.2(3) N(14)-P(4)-N(12) 107.65(19) C(28)-N(14)-C(27) 114.1(3) C(1)-N(1)-P(1) 123.1(3) C(28)-N(14)-P(4) 122.2(3) C(1)-N(1)-Ga(1) 121.0(2) C(27)-N(14)-P(4) 121.0(3) P(1)-N(1)-Ga(1) 115.84(17) C(3)-C(1)-N(1) 109.1(3) P(1)-N(2)-P(2) 167.5(2) C(3)-C(1)-C(4) 111.1(3) C(5)-N(3)-C(6) 110.7(3) N(1)-C(1)-C(4) 108.3(3) C(5)-N(3)-P(1) 117.8(3) C(3)-C(1)-C(2) 107.8(4) C(6)-N(3)-P(1) 117.3(3) N(1)-C(1)-C(2) 113.5(3) C(7)-N(4)-C(8) 113.1(4) C(4)-C(1)-C(2) 107.1(4) C(7)-N(4)-P(1) 122.1(3) N(8)-C(15)-C(18) 113.1(3) C(8)-N(4)-P(1) 123.7(3) N(8)-C(15)-C(16) 108.0(3) C(10)-N(5)-C(9) 114.5(3) C(18)-C(15)-C(16) 107.9(3) C(10)-N(5)-P(2) 123.0(3) N(8)-C(15)-C(17) 109.9(3) C(9)-N(5)-P(2) 120.2(3) C(18)-C(15)-C(17) 107.6(3) C(11)-N(6)-C(12) 113.4(3) C(16)-C(15)-C(17) 110.2(3) C(11)-N(6)-P(2) 121.1(3) C(12)-N(6)-P(2) 122.4(3) 240 ______

2 3 Table L-4. Anisotropic displacement parameters (Å x 10 ) for [GaCl(P2tBu)]. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Ga(1) 13(1) 19(1) 13(1) 0(1) 0(1) 8(1) Ga(2) 11(1) 15(1) 12(1) -1(1) 0(1) 5(1) Cl(1) 22(1) 33(1) 15(1) -4(1) 2(1) 10(1) Cl(2) 13(1) 38(1) 23(1) -1(1) -1(1) 7(1) Cl(3) 27(1) 25(1) 23(1) 7(1) 0(1) 14(1) Cl(4) 14(1) 31(1) 25(1) 1(1) 6(1) 5(1) Cl(5) 19(1) 35(1) 16(1) 4(1) -3(1) 7(1) Cl(6) 21(1) 16(1) 21(1) -4(1) 0(1) 8(1) P(1) 10(1) 12(1) 11(1) 0(1) 0(1) 3(1) P(2) 12(1) 12(1) 14(1) 1(1) 0(1) 5(1) P(3) 10(1) 10(1) 13(1) -1(1) 0(1) 2(1) P(4) 12(1) 13(1) 14(1) 1(1) 1(1) 5(1) N(1) 7(2) 9(2) 19(2) 0(1) -3(1) 0(1) N(2) 16(2) 18(2) 17(2) -1(1) -3(1) 8(1) N(3) 20(2) 11(2) 13(2) 2(1) -4(1) -1(1) N(4) 19(2) 27(2) 15(2) 2(2) 4(2) 5(2) N(5) 14(2) 17(2) 18(2) -1(1) 0(1) 3(1) N(6) 17(2) 16(2) 21(2) 5(2) 5(2) 6(2) N(7) 18(2) 19(2) 12(2) -2(1) -2(1) 11(2) N(8) 9(2) 10(2) 12(2) 2(1) 1(1) 1(1) N(9) 15(2) 14(2) 16(2) 1(1) 6(1) 8(1) N(10) 17(2) 11(2) 18(2) 1(1) 3(1) 1(1) N(11) 15(2) 18(2) 17(2) -3(1) -2(1) 6(1) N(12) 12(2) 21(2) 22(2) 7(2) 3(1) 5(2) N(13) 16(2) 20(2) 18(2) 1(1) 2(1) 11(2) N(14) 16(2) 19(2) 17(2) -4(2) -1(1) 4(2) C(1) 15(2) 14(2) 23(2) -3(2) -4(2) 1(2) C(2) 22(2) 15(2) 40(3) -8(2) -4(2) 4(2) 241 C(3) 16(2) 20(2) 23(2) -8(2) -1(2) 0(2) C(4) 24(2) 18(2) 24(3) 2(2) -2(2) -4(2) C(5) 20(2) 18(2) 22(2) -8(2) -8(2) 8(2) C(6) 25(2) 17(2) 30(3) 8(2) -1(2) 0(2) C(7) 22(3) 44(3) 38(3) 7(2) 14(2) 10(2) C(8) 34(3) 35(3) 17(2) 5(2) 6(2) -2(2) C(9) 21(2) 22(2) 32(3) -2(2) -1(2) 3(2) C(10) 31(3) 24(2) 13(2) -6(2) -7(2) 9(2) C(11) 34(3) 27(3) 30(3) 16(2) 9(2) 13(2) C(12) 14(2) 37(3) 24(3) 4(2) 6(2) 6(2) C(13) 19(2) 28(2) 22(2) 3(2) -3(2) 14(2) C(14) 25(2) 21(2) 20(2) -5(2) -2(2) 11(2) C(15) 17(2) 10(2) 19(2) 3(2) 2(2) 0(2) C(16) 19(2) 21(2) 29(3) -2(2) 7(2) 1(2) C(17) 24(2) 21(2) 19(2) 6(2) 6(2) 2(2) C(18) 24(2) 15(2) 31(3) 8(2) 6(2) 6(2) C(19) 23(2) 21(2) 18(2) 10(2) 8(2) 10(2) C(20) 17(2) 12(2) 40(3) 2(2) 3(2) 1(2) C(21) 17(2) 29(3) 41(3) -8(2) -11(2) 10(2) C(22) 29(3) 23(2) 18(2) -6(2) -6(2) 7(2) C(23) 17(2) 24(2) 35(3) 7(2) 4(2) 0(2) C(24) 22(2) 27(2) 17(2) 6(2) 6(2) 10(2) C(25) 21(2) 33(3) 28(3) 0(2) 2(2) 17(2) C(26) 25(2) 25(2) 24(2) 7(2) -1(2) 13(2) C(27) 28(3) 23(2) 24(3) -7(2) -1(2) 8(2) C(28) 17(2) 28(2) 21(2) 2(2) -2(2) 3(2) ______

242 Table L-5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 3 10 ) for [GaCl(P2tBu)]. ______x y z U(eq) ______

H(2A) 8919 699 304 39 H(2B) 7860 -241 509 39 H(2C) 8695 423 1221 39 H(3A) 5933 1276 -98 31 H(3B) 6134 242 -244 31 H(3C) 7218 1143 -499 31 H(4A) 6749 547 1879 36 H(4B) 5903 -151 1191 36 H(4C) 5605 843 1392 36 H(5A) 10641 4018 2384 29 H(5B) 9292 3341 2625 29 H(5C) 9383 4416 2432 29 H(6A) 9854 4951 1121 37 H(6B) 9632 4213 369 37 H(6C) 10932 4403 926 37 H(7A) 11559 2088 -143 51 H(7B) 11781 2490 771 51 H(7C) 11862 3199 51 51 H(8A) 9925 3226 -718 45 H(8B) 8543 2666 -418 45 H(8C) 9437 2108 -871 45 H(9A) 12789 3818 2572 38 H(9B) 13119 2902 2182 38 H(9C) 13695 3293 3063 38 H(10A) 12182 3209 4145 34 H(10B) 10757 2522 4018 34 H(10C) 11083 3543 3645 34 H(11A) 10243 891 4228 43 H(11B) 10978 428 3572 43 H(11C) 9485 -43 3722 43 243

H(12A) 7860 776 3300 37 H(12B) 8284 1689 2772 37 H(12C) 8626 1765 3720 37 H(13A) 12728 338 2827 33 H(13B) 13046 1411 3158 33 H(13C) 13702 1145 2364 33 H(14A) 12299 533 1172 32 H(14B) 10871 691 1116 32 H(14C) 11152 -143 1632 32 H(16A) 465 6039 3848 35 H(16B) 772 5065 4076 35 H(16C) 1397 5605 3307 35 H(17A) 2668 6622 5593 33 H(17B) 1438 5738 5441 33 H(17C) 1320 6776 5253 33 H(18A) 3515 5506 3862 35 H(18B) 2901 5035 4662 35 H(18C) 4057 5977 4728 35 H(19A) 3892 9083 2287 29 H(19B) 3676 7963 2269 29 H(19C) 5113 8639 2287 29 H(20A) 6072 9474 3538 35 H(20B) 5153 9502 4273 35 H(20C) 4947 10010 3459 35 H(21A) 7061 8650 4684 43 H(21B) 6869 7703 4140 43 H(21C) 6925 7664 5101 43 H(22A) 4915 7759 5826 36 H(22B) 3902 8186 5329 36 H(22C) 5345 8815 5528 36 H(23A) 8239 8115 1850 39 H(23B) 7846 7937 2762 39 H(23C) 7347 8703 2266 39 H(24A) 5771 8124 1114 32 H(24B) 5081 7020 1027 32 H(24C) 6534 7410 751 32 244 H(25A) 8662 6257 2779 38 H(25B) 7873 6326 1956 38 H(25C) 7740 5325 2348 38 H(26A) 6383 4930 3522 35 H(26B) 5886 5748 3961 35 H(26C) 7397 5785 3997 35 H(27A) 4276 4549 1413 38 H(27B) 5766 5101 1577 38 H(27C) 4910 5435 892 38 H(28A) 3089 6142 1384 34 H(28B) 2998 6270 2338 34 H(28C) 2602 5238 1914 34 ______

245 APPENDIX M

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[(P3Cl5N3)(P2N2(NMe2)5]

Table N-1. Crystal data and structure refinement for [(P3Cl5N3)(P2N2(NMe2)5].

Empirical formula C10H30Cl5N10P5 Formula weight 622.54 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group Ibca Unit cell dimensions a = 11.5981(4) Å α = 90° b = 28.8052(10) Å β = 90° c = 32.8157(12) Å γ = 90° Volume 10963.3(7) Å3 Z 16 Density (calculated) 1.509 Mg/m3 Absorption coefficient 0.842 mm-1 F(000) 5120 Crystal size 0.31 x 0.10 x 0.03 mm3 Theta range for data collection 1.88 to 26.30° Index ranges -14<=h<=11, -35<=k<=35, -38<=l<=40 Reflections collected 50488 Independent reflections 5574 [R(int) = 0.0982] Completeness to theta = 26.30° 100.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9793 and 0.7779 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 5574 / 0 / 281 Goodness-of-fit on F2 1.446 Final R indices [I>2sigma(I)] R1 = 0.0423, wR2 = 0.0692

246 R indices (all data) R1 = 0.0697, wR2 = 0.0733 Largest diff. peak and hole 0.436 and -0.389 e.Å-3

Table M- 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(P3Cl5N3)(P2N2(NMe2)5]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Cl(1) 8319(1) 3590(1) 848(1) 44(1) Cl(2) 9130(1) 3030(1) 2056(1) 28(1) Cl(3) 6682(1) 3056(1) 2414(1) 29(1) Cl(4) 8619(1) 4766(1) 1779(1) 50(1) Cl(5) 6150(1) 4642(1) 2106(1) 48(1) P(1) 6870(1) 3637(1) 1212(1) 21(1) P(2) 7622(1) 3365(1) 1978(1) 20(1) P(3) 7376(1) 4284(1) 1814(1) 27(1) P(4) 4912(1) 3782(1) 666(1) 20(1) P(5) 2871(1) 3567(1) 1169(1) 18(1) N(1) 7095(2) 3246(1) 1556(1) 21(1) N(2) 7830(2) 3888(1) 2109(1) 29(1) N(3) 6922(2) 4160(1) 1381(1) 25(1) N(4) 5804(2) 3512(1) 951(1) 23(1) N(5) 5173(2) 4339(1) 581(1) 28(1) N(6) 5054(2) 3543(1) 215(1) 28(1) N(7) 3620(2) 3764(1) 814(1) 21(1) N(8) 2176(2) 3112(1) 994(1) 23(1) N(9) 3485(2) 3418(1) 1601(1) 20(1) N(10) 1966(2) 3972(1) 1316(1) 24(1) C(1) 6246(3) 4475(1) 382(1) 44(1) C(2) 4698(3) 4694(1) 845(1) 38(1) C(3) 5700(3) 3134(1) 130(1) 62(1) C(4) 4283(3) 3699(1) -111(1) 42(1) C(5) 2660(3) 2797(1) 694(1) 40(1) C(6) 1193(2) 2920(1) 1213(1) 43(1) C(7) 4078(2) 3772(1) 1842(1) 27(1) 247

C(8) 3956(2) 2952(1) 1661(1) 28(1) C(9) 1518(2) 4313(1) 1026(1) 29(1) C(10) 1365(3) 3983(1) 1710(1) 39(1) ______N(10)-C(9) 1.460(3) Table M-3. Bond lengths [Å] and N(10)-C(10) 1.469(4) angles [°] for [(P3Cl5N3)(P2N2(NMe2)5]. C(1)-H(1A) 0.9800 ______C(1)-H(1B) 0.9800 Cl(1)-P(1) 2.0668(10) C(1)-H(1C) 0.9800 Cl(2)-P(2) 2.0145(10) C(2)-H(2A) 0.9800 Cl(3)-P(2) 2.0053(11) C(2)-H(2B) 0.9800 Cl(4)-P(3) 2.0051(11) C(2)-H(2C) 0.9800 Cl(5)-P(3) 2.0018(12) C(3)-H(3A) 0.9800 P(1)-N(4) 1.545(2) C(3)-H(3B) 0.9800 P(1)-N(3) 1.606(2) C(3)-H(3C) 0.9800 P(1)-N(1) 1.615(2) C(4)-H(4A) 0.9800 P(2)-N(1) 1.555(2) C(4)-H(4B) 0.9800 P(2)-N(2) 1.584(2) C(4)-H(4C) 0.9800 P(3)-N(3) 1.558(2) C(5)-H(5A) 0.9800 P(3)-N(2) 1.587(2) C(5)-H(5B) 0.9800 P(4)-N(7) 1.576(2) C(5)-H(5C) 0.9800 P(4)-N(4) 1.597(2) C(6)-H(6A) 0.9800 P(4)-N(6) 1.642(3) C(6)-H(6B) 0.9800 P(4)-N(5) 1.656(2) C(6)-H(6C) 0.9800 P(5)-N(7) 1.561(2) C(7)-H(7A) 0.9800 P(5)-N(10) 1.641(2) C(7)-H(7B) 0.9800 P(5)-N(8) 1.642(2) C(7)-H(7C) 0.9800 P(5)-N(9) 1.643(2) C(8)-H(8A) 0.9800 N(5)-C(2) 1.448(4) C(8)-H(8B) 0.9800 N(5)-C(1) 1.459(4) C(8)-H(8C) 0.9800 N(6)-C(3) 1.425(4) C(9)-H(9A) 0.9800 N(6)-C(4) 1.464(4) C(9)-H(9B) 0.9800 N(8)-C(5) 1.451(4) C(9)-H(9C) 0.9800 N(8)-C(6) 1.457(3) C(10)-H(10A) 0.9800 N(9)-C(8) 1.462(3) C(10)-H(10B) 0.9800 N(9)-C(7) 1.463(3) C(10)-H(10C) 0.9800 248 C(2)-N(5)-P(4) 120.9(2) N(4)-P(1)-N(3) 116.02(13) C(1)-N(5)-P(4) 119.4(2) N(4)-P(1)-N(1) 110.70(12) C(3)-N(6)-C(4) 115.6(3) N(3)-P(1)-N(1) 114.02(13) C(3)-N(6)-P(4) 125.1(2) N(4)-P(1)-Cl(1) 108.40(10) C(4)-N(6)-P(4) 118.0(2) N(3)-P(1)-Cl(1) 103.31(9) P(5)-N(7)-P(4) 140.47(16) N(1)-P(1)-Cl(1) 103.12(9) C(5)-N(8)-C(6) 113.5(2) N(1)-P(2)-N(2) 120.74(13) C(5)-N(8)-P(5) 123.12(19) N(1)-P(2)-Cl(3) 108.90(9) C(6)-N(8)-P(5) 121.0(2) N(2)-P(2)-Cl(3) 108.20(11) C(8)-N(9)-C(7) 113.1(2) N(1)-P(2)-Cl(2) 110.40(9) C(8)-N(9)-P(5) 121.2(2) N(2)-P(2)-Cl(2) 106.82(9) C(7)-N(9)-P(5) 119.20(18) Cl(3)-P(2)-Cl(2) 99.71(5) C(9)-N(10)-C(10) 112.9(2) N(3)-P(3)-N(2) 120.20(13) C(9)-N(10)-P(5) 121.0(2) N(3)-P(3)-Cl(5) 108.42(10) C(10)-N(10)-P(5) 125.2(2) N(2)-P(3)-Cl(5) 108.32(11) N(5)-C(1)-H(1A) 109.5 N(3)-P(3)-Cl(4) 110.47(10) N(5)-C(1)-H(1B) 109.5 N(2)-P(3)-Cl(4) 107.15(10) H(1A)-C(1)-H(1B) 109.5 Cl(5)-P(3)-Cl(4) 100.47(5) N(5)-C(1)-H(1C) 109.5 N(7)-P(4)-N(4) 114.80(13) H(1A)-C(1)-H(1C) 109.5 N(7)-P(4)-N(6) 111.03(13) H(1B)-C(1)-H(1C) 109.5 N(4)-P(4)-N(6) 105.03(12) N(5)-C(2)-H(2A) 109.5 N(7)-P(4)-N(5) 104.98(12) N(5)-C(2)-H(2B) 109.5 N(4)-P(4)-N(5) 116.85(12) H(2A)-C(2)-H(2B) 109.5 N(6)-P(4)-N(5) 103.64(13) N(5)-C(2)-H(2C) 109.5 N(7)-P(5)-N(10) 108.45(12) H(2A)-C(2)-H(2C) 109.5 N(7)-P(5)-N(8) 107.53(13) H(2B)-C(2)-H(2C) 109.5 N(10)-P(5)-N(8) 110.83(12) N(6)-C(3)-H(3A) 109.5 N(7)-P(5)-N(9) 119.87(12) N(6)-C(3)-H(3B) 109.5 N(10)-P(5)-N(9) 102.20(13) H(3A)-C(3)-H(3B) 109.5 N(8)-P(5)-N(9) 107.80(12) N(6)-C(3)-H(3C) 109.5 P(2)-N(1)-P(1) 122.19(14) H(3A)-C(3)-H(3C) 109.5 P(2)-N(2)-P(3) 117.95(16) H(3B)-C(3)-H(3C) 109.5 P(3)-N(3)-P(1) 122.92(16) N(6)-C(4)-H(4A) 109.5 P(1)-N(4)-P(4) 136.85(16) N(6)-C(4)-H(4B) 109.5 C(2)-N(5)-C(1) 113.7(2) H(4A)-C(4)-H(4B) 109.5 249 N(6)-C(4)-H(4C) 109.5 N(10)-C(10)-H(10C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(10A)-C(10)-H(10C) 109.5 H(4B)-C(4)-H(4C) 109.5 H(10B)-C(10)-H(10C) 109.5 N(8)-C(5)-H(5A) 109.5 ______N(8)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(8)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(8)-C(6)-H(6A) 109.5 N(8)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(8)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(9)-C(7)-H(7A) 109.5 N(9)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(9)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(9)-C(8)-H(8A) 109.5 N(9)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(9)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(10)-C(9)-H(9A) 109.5 N(10)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(10)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(10)-C(10)-H(10A) 109.5 N(10)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 250 Table M-4. Anisotropic displacement parameters (Å2x 103) for

[(P3Cl5N3)(P2N2(NMe2)5]. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Cl(1) 27(1) 61(1) 46(1) -6(1) 18(1) -5(1) Cl(2) 15(1) 40(1) 28(1) 4(1) -2(1) 4(1) Cl(3) 22(1) 39(1) 25(1) 1(1) 6(1) -1(1) Cl(4) 48(1) 36(1) 66(1) 9(1) -25(1) -20(1) Cl(5) 57(1) 41(1) 46(1) -20(1) -6(1) 15(1) P(1) 15(1) 28(1) 19(1) -2(1) 1(1) -1(1) P(2) 17(1) 24(1) 20(1) -1(1) -3(1) 1(1) P(3) 29(1) 22(1) 30(1) -2(1) -9(1) -2(1) P(4) 18(1) 27(1) 16(1) 3(1) 0(1) -5(1) P(5) 16(1) 19(1) 19(1) 1(1) 1(1) -1(1) N(1) 18(1) 20(1) 24(2) -4(1) -7(1) 2(1) N(2) 38(2) 23(1) 27(2) -2(1) -15(1) -2(1) N(3) 24(1) 26(1) 24(2) 1(1) -5(1) -2(1) N(4) 23(1) 30(1) 16(2) 4(1) -1(1) -6(1) N(5) 24(1) 28(1) 33(2) 6(1) 1(1) -8(1) N(6) 25(1) 44(2) 15(1) -2(1) -4(1) 9(1) N(7) 17(1) 27(1) 18(2) 2(1) 0(1) -3(1) N(8) 18(1) 21(1) 30(2) -1(1) 0(1) -5(1) N(9) 22(1) 20(1) 19(1) 2(1) -1(1) 1(1) N(10) 26(1) 22(1) 24(2) 6(1) 6(1) 5(1) C(1) 35(2) 53(2) 44(3) 20(2) 0(2) -15(2) C(2) 37(2) 23(2) 54(3) 3(2) -9(2) -7(1) C(3) 90(3) 70(3) 27(2) -3(2) -3(2) 39(2) C(4) 30(2) 77(3) 19(2) 1(2) -4(2) 13(2) C(5) 52(2) 31(2) 39(2) -12(2) 1(2) -9(2) C(6) 26(2) 34(2) 69(3) -1(2) 8(2) -12(1) C(7) 30(2) 33(2) 20(2) -2(2) 2(1) 0(1) C(8) 28(2) 27(2) 29(2) 8(2) 1(1) 4(1) C(9) 25(2) 26(2) 36(2) 1(2) -4(2) 4(1) C(10) 38(2) 36(2) 42(2) 1(2) 17(2) 11(2) 251 ______Table M-5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x

10 3) for [(P3Cl5N3)(P2N2(NMe2)5]. ______x y z U(eq) ______

H(1A) 6116 4757 221 66 H(1B) 6506 4224 203 66 H(1C) 6836 4536 589 66 H(2A) 5219 4746 1075 57 H(2B) 3943 4593 946 57 H(2C) 4609 4984 691 57 H(3A) 5171 2878 69 93 H(3B) 6169 3053 369 93 H(3C) 6205 3189 -104 93 H(4A) 4735 3765 -357 63 H(4B) 3880 3981 -25 63 H(4C) 3718 3455 -170 63 H(5A) 2980 2525 833 61 H(5B) 3273 2955 543 61 H(5C) 2054 2698 505 61 H(6A) 559 2865 1022 64 H(6B) 944 3139 1423 64 H(6C) 1417 2626 1341 64 H(7A) 3952 3711 2133 41 H(7B) 3774 4079 1772 41 H(7C) 4906 3761 1783 41 H(8A) 4759 2944 1568 42 H(8B) 3501 2727 1504 42 H(8C) 3923 2871 1951 42 H(9A) 690 4262 987 44 H(9B) 1918 4279 765 44 H(9C) 1646 4626 1133 44 H(10A) 1453 4290 1833 58 H(10B) 1697 3748 1891 58 252

H(10C) 545 3917 1668 58 ______

253 APPENDIX N

SUPPLEMENTARY MATERIALS FOR THE X-RAY CRYSTAL STRUCTURE OF

[(P3Cl5N3)(P2N2(NMe2)5]•HCl

Table N-1. Crystal data and structure refinement for [(P3Cl5N3)(P2N2(NMe2)5]•HCl.

Empirical formula C10H31Cl6N10P5 Formula weight 659.00 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 10.1733(5) Å α = 81.075(2)° b = 10.6498(5) Å β = 70.330(2)° c = 14.9205(6) Å γ = 67.692(2)° Volume 1407.59(11) Å3 Z 2 Density (calculated) 1.555 Mg/m3 Absorption coefficient 0.916 mm-1 F(000) 676 Crystal size 0.17 x 0.15 x 0.04 mm3 Theta range for data collection 2.07 to 26.30° Index ranges -12<=h<=12, -13<=k<=12, -18<=l<=18 Reflections collected 37193 Independent reflections 5705 [R(int) = 0.0334] Completeness to theta = 26.30° 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9608 and 0.8568 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 5705 / 0 / 294 Goodness-of-fit on F2 1.044 Final R indices [I>2sigma(I)] R1 = 0.0265, wR2 = 0.0629 R indices (all data) R1 = 0.0350, wR2 = 0.0672 254 Largest diff. peak and hole 0.388 and -0.340 e.Å-3

Table N- 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(P3Cl5N3)(P2N2(NMe2)5]•HCl. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ______x y z U(eq) ______Cl(1) 2683(1) 1758(1) 3589(1) 26(1) Cl(2) 5806(1) 1298(1) 4831(1) 23(1) Cl(3) 6638(1) 3854(1) 4090(1) 26(1) Cl(4) 6694(1) 235(1) 1520(1) 23(1) Cl(5) 7526(1) 2782(1) 806(1) 27(1) Cl(6) 8731(1) 7233(1) 617(1) 21(1) P(1) 3351(1) 3412(1) 3061(1) 14(1) P(2) 5722(1) 2698(1) 3754(1) 15(1) P(3) 6210(1) 2096(1) 1927(1) 16(1) P(4) 993(1) 5843(1) 2539(1) 12(1) P(5) 2253(1) 7954(1) 2195(1) 13(1) N(1) 4063(2) 3595(2) 3823(1) 16(1) N(2) 6812(2) 1942(2) 2810(1) 23(1) N(3) 4531(2) 2986(2) 2035(1) 20(1) N(4) 1876(2) 4599(2) 3067(1) 19(1) N(5) 694(2) 5171(2) 1630(1) 14(1) N(6) -649(2) 6513(2) 3293(1) 16(1) N(7) 1660(2) 6919(2) 1941(1) 16(1) N(8) 4005(2) 7211(2) 2144(1) 21(1) N(9) 2048(2) 9198(2) 1406(1) 17(1) N(10) 1442(2) 8562(2) 3269(1) 21(1) C(1) 2098(2) 4516(2) 858(1) 18(1) C(2) -167(2) 4235(2) 2004(2) 23(1) C(3) -1697(2) 7838(2) 3103(2) 22(1) C(4) -1253(2) 5836(2) 4176(1) 22(1) C(5) 5028(2) 6295(3) 1373(2) 44(1) C(6) 4756(2) 7625(2) 2667(2) 30(1) C(7) 728(2) 9735(2) 1064(1) 22(1) 255

C(8) 2868(3) 10125(2) 1252(2) 28(1) C(9) 306(2) 9904(2) 3481(2) 27(1) C(10) 1526(3) 7653(2) 4107(2) 29(1) ______

Table N-3. Bond lengths [Å] and angles [°] for [(P3Cl5N3)(P2N2(NMe2)5]•HCl ______Cl(1)-P(1) 2.0749(7 Cl(2)-P(2) 2.0159(7) Cl(3)-P(2) 2.0036(7) Cl(4)-P(3) 1.9926(7) Cl(5)-P(3) 1.9952(7) P(1)-N(4) 1.5506(16) P(1)-N(3) 1.5986(17) P(1)-N(1) 1.6073(15) P(2)-N(1) 1.5690(16) P(2)-N(2) 1.5763(18) P(3)-N(3) 1.5735(16) P(3)-N(2) 1.5919(16) P(4)-N(7) 1.5597(16) P(4)-N(4) 1.5596(16) P(4)-N(6) 1.6260(16) P(4)-N(5) 1.7864(16) P(5)-N(7) 1.5860(16) P(5)-N(9) 1.6299(16) P(5)-N(8) 1.6318(16) P(5)-N(10) 1.6405(17) N(5)-C(2) 1.494(2) N(5)-C(1) 1.495(2) N(5)-H(11) 0.91(2) N(6)-C(4) 1.460(2) N(6)-C(3) 1.465(2) N(8)-C(5) 1.460(3) N(8)-C(6) 1.466(3) N(9)-C(8) 1.466(3) N(9)-C(7) 1.476(2) N(10)-C(9) 1.456(3) 256

N(10)-C(10) 1.464(3) C(1)-H(1A) 0.9800 C(1)-H(1B) 0.9800 C(1)-H(1C) 0.9800 C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(3)-H(3A) 0.9800 C(3)-H(3B) 0.9800 C(3)-H(3C) 0.9800 C(4)-H(4A) 0.9800 C(4)-H(4B) 0.9800 C(4)-H(4C) 0.9800 C(5)-H(5A) 0.9800 C(5)-H(5B) 0.9800 C(5)-H(5C) 0.9800 C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.9800 C(7)-H(7B) 0.9800 C(7)-H(7C) 0.9800 C(8)-H(8A) 0.9800 C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800 C(9)-H(9A) 0.9800 C(9)-H(9B) 0.9800 C(9)-H(9C) 0.9800 C(10)-H(10A) 0.9800 C(10)-H(10B) 0.9800 C(10)-H(10C) 0.9800

N(4)-P(1)-N(3) 115.78(9) N(4)-P(1)-N(1) 112.23(9) N(3)-P(1)-N(1) 113.79(8) N(4)-P(1)-Cl(1) 103.82(7) 257

N(3)-P(1)-Cl(1) 105.33(7) N(1)-P(1)-Cl(1) 104.39(6) N(1)-P(2)-N(2) 120.36(8) N(1)-P(2)-Cl(3) 107.68(7) N(2)-P(2)-Cl(3) 108.82(7) N(1)-P(2)-Cl(2) 110.60(6) N(2)-P(2)-Cl(2) 107.17(7) Cl(3)-P(2)-Cl(2) 100.38(3) N(3)-P(3)-N(2) 118.57(9) N(3)-P(3)-Cl(4) 110.92(7) N(2)-P(3)-Cl(4) 107.61(7) N(3)-P(3)-Cl(5) 109.49(7) N(2)-P(3)-Cl(5) 107.90(7) Cl(4)-P(3)-Cl(5) 100.84(3) N(7)-P(4)-N(4) 123.14(9) N(7)-P(4)-N(6) 113.28(9) N(4)-P(4)-N(6) 106.55(8) N(7)-P(4)-N(5) 100.17(8) N(4)-P(4)-N(5) 106.36(8) N(6)-P(4)-N(5) 105.66(8) N(7)-P(5)-N(9) 106.05(8) N(7)-P(5)-N(8) 110.14(9) N(9)-P(5)-N(8) 110.75(9) N(7)-P(5)-N(10) 116.46(9) N(9)-P(5)-N(10) 109.59(9) N(8)-P(5)-N(10) 103.89(9) P(2)-N(1)-P(1) 119.20(10) P(2)-N(2)-P(3) 119.30(10) P(3)-N(3)-P(1) 120.86(10) P(1)-N(4)-P(4) 148.95(12) C(2)-N(5)-C(1) 110.45(15) C(2)-N(5)-P(4) 113.56(12) C(1)-N(5)-P(4) 113.35(12) C(2)-N(5)-H(11) 106.7(14) C(1)-N(5)-H(11) 105.4(15) P(4)-N(5)-H(11) 106.7(15) 258

C(4)-N(6)-C(3) 113.92(15) C(4)-N(6)-P(4) 124.14(13) C(3)-N(6)-P(4) 121.83(13) P(4)-N(7)-P(5) 133.41(10) C(5)-N(8)-C(6) 113.69(17) C(5)-N(8)-P(5) 119.67(15) C(6)-N(8)-P(5) 124.88(15) C(8)-N(9)-C(7) 114.54(16) C(8)-N(9)-P(5) 120.27(13) C(7)-N(9)-P(5) 122.04(13) C(9)-N(10)-C(10) 113.89(17) C(9)-N(10)-P(5) 123.84(14) C(10)-N(10)-P(5) 120.38(14) N(5)-C(1)-H(1A) 109.5 N(5)-C(1)-H(1B) 109.5 H(1A)-C(1)-H(1B) 109.5 N(5)-C(1)-H(1C) 109.5 H(1A)-C(1)-H(1C) 109.5 H(1B)-C(1)-H(1C) 109.5 N(5)-C(2)-H(2A) 109.5 N(5)-C(2)-H(2B) 109.5 H(2A)-C(2)-H(2B) 109.5 N(5)-C(2)-H(2C) 109.5 H(2A)-C(2)-H(2C) 109.5 H(2B)-C(2)-H(2C) 109.5 N(6)-C(3)-H(3A) 109.5 N(6)-C(3)-H(3B) 109.5 H(3A)-C(3)-H(3B) 109.5 N(6)-C(3)-H(3C) 109.5 H(3A)-C(3)-H(3C) 109.5 H(3B)-C(3)-H(3C) 109.5 N(6)-C(4)-H(4A) 109.5 N(6)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 N(6)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 259

H(4B)-C(4)-H(4C) 109.5 N(8)-C(5)-H(5A) 109.5 N(8)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 N(8)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 N(8)-C(6)-H(6A) 109.5 N(8)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 109.5 N(8)-C(6)-H(6C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(9)-C(7)-H(7A) 109.5 N(9)-C(7)-H(7B) 109.5 H(7A)-C(7)-H(7B) 109.5 N(9)-C(7)-H(7C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(7B)-C(7)-H(7C) 109.5 N(9)-C(8)-H(8A) 109.5 N(9)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5 N(9)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(8B)-C(8)-H(8C) 109.5 N(10)-C(9)-H(9A) 109.5 N(10)-C(9)-H(9B) 109.5 H(9A)-C(9)-H(9B) 109.5 N(10)-C(9)-H(9C) 109.5 H(9A)-C(9)-H(9C) 109.5 H(9B)-C(9)-H(9C) 109.5 N(10)-C(10)-H(10A) 109.5 N(10)-C(10)-H(10B) 109.5 H(10A)-C(10)-H(10B) 109.5 N(10)-C(10)-H(10C) 109.5 H(10A)-C(10)-H(10C) 109.5 260

H(10B)-C(10)-H(10C) 109.5 ______

Table N-4. Anisotropic displacement parameters (Å2x 103) for

[(P3Cl5N3)(P2N2(NMe2)5]•HCl. The anisotropic displacement factor exponent takes the form: - 2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ______U11 U22 U33 U23 U13 U12 ______Cl(1) 28(1) 22(1) 34(1) 2(1) -13(1) -13(1) Cl(2) 24(1) 25(1) 22(1) 7(1) -12(1) -10(1) Cl(3) 27(1) 30(1) 32(1) 3(1) -15(1) -18(1) Cl(4) 21(1) 18(1) 28(1) -3(1) -8(1) -4(1) Cl(5) 25(1) 22(1) 22(1) 1(1) 3(1) -5(1) Cl(6) 22(1) 19(1) 24(1) -2(1) -14(1) -5(1) P(1) 12(1) 16(1) 14(1) -1(1) -6(1) -2(1) P(2) 13(1) 20(1) 15(1) 0(1) -6(1) -6(1) P(3) 13(1) 18(1) 14(1) -1(1) -3(1) -1(1) P(4) 9(1) 16(1) 12(1) -2(1) -4(1) -3(1) P(5) 10(1) 16(1) 15(1) -2(1) -5(1) -4(1) N(1) 13(1) 21(1) 15(1) -4(1) -5(1) -4(1) N(2) 14(1) 32(1) 20(1) -3(1) -8(1) -2(1) N(3) 15(1) 26(1) 15(1) -3(1) -7(1) 1(1) N(4) 16(1) 21(1) 16(1) -2(1) -6(1) 0(1) N(5) 14(1) 15(1) 14(1) 0(1) -6(1) -5(1) N(6) 10(1) 19(1) 14(1) -1(1) -3(1) -2(1) N(7) 13(1) 22(1) 15(1) -3(1) -4(1) -7(1) N(8) 13(1) 21(1) 32(1) -5(1) -9(1) -5(1) N(9) 17(1) 18(1) 18(1) 1(1) -8(1) -8(1) N(10) 24(1) 22(1) 16(1) -3(1) -8(1) -6(1) C(1) 16(1) 23(1) 15(1) -6(1) -5(1) -3(1) C(2) 27(1) 26(1) 23(1) 1(1) -9(1) -18(1) C(3) 12(1) 22(1) 28(1) -4(1) -6(1) -2(1) C(4) 17(1) 31(1) 17(1) -1(1) 0(1) -11(1) C(5) 14(1) 39(1) 75(2) -30(1) 1(1) -6(1) C(6) 26(1) 33(1) 44(1) 5(1) -23(1) -15(1) 261

C(7) 20(1) 25(1) 21(1) 3(1) -12(1) -5(1) C(8) 35(1) 27(1) 31(1) 6(1) -16(1) -19(1) C(9) 21(1) 30(1) 27(1) -14(1) -3(1) -5(1) C(10) 42(1) 35(1) 17(1) 0(1) -13(1) -17(1) ______

262

Table N-5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x

10 3) for [(P3Cl5N3)(P2N2(NMe2)5]•HCl. ______x y z U(eq) ______

H(1A) 2713 3679 1112 28 H(1B) 2651 5140 623 28 H(1C) 1849 4299 335 28 H(2A) -242 3863 1469 34 H(2B) -1169 4737 2406 34 H(2C) 347 3492 2380 34 H(3A) -2571 7722 3038 33 H(3B) -1210 8243 2511 33 H(3C) -2011 8436 3631 33 H(4A) -1377 6326 4721 33 H(4B) -565 4901 4204 33 H(4C) -2222 5826 4197 33 H(5A) 5671 6743 912 66 H(5B) 4456 6059 1055 66 H(5C) 5644 5467 1634 66 H(6A) 5167 6864 3073 45 H(6B) 4037 8395 3063 45 H(6C) 5566 7893 2214 45 H(7A) -73 10427 1496 33 H(7B) 391 8994 1047 33 H(7C) 990 10140 423 33 H(8A) 3031 10488 595 42 H(8B) 3833 9632 1366 42 H(8C) 2289 10874 1692 42 H(9A) -676 9818 3772 40 H(9B) 316 10457 2890 40 H(9C) 514 10341 3923 40 H(10A) 1809 8029 4543 44 H(10B) 2273 6758 3909 44 H(10C) 551 7565 4431 44 263

H(11) 130(30) 5890(20) 1339(16) 29(6)

Table N-6. Hydrogen bonds for [(P3Cl5N3)(P2N2(NMe2)5]•HCl [Å and °]. ______D-H...A d(D-H) d(H...A) d(D...A) <(DHA) ______N(5)-H(11)...Cl(6)#1 0.91(2) 2.06(2) 2.9604(16) 168(2) ______Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z

264