Extracting Uranium from Its Ores
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Situ Leach (ISL) Mining of Uranium
In Situ Leach (ISL) Mining of Uranium (June 2009) l Most uranium mining in the USA and Kazakhstan is now by in situ leach methods, also known as in situ recovery (ISR). l In USA ISL is seen as the most cost effective and environmentally acceptable method of mining, and Australian experience supports this. l Australia's first ISL uranium mine is Beverley, which started operation late in 2000. The proposal for Honeymoon has government approval and it is expected to be operating in 2008. Conventional mining involves removing mineralised rock (ore) from the ground, breaking it up and treating it to remove the minerals being sought. In situ leaching (ISL), also known as solution mining, or in situ recovery (ISR) in North America, involves leaving the ore where it is in the ground, and recovering the minerals from it by dissolving them and pumping the pregnant solution to the surface where the minerals can be recovered. Consequently there is little surface disturbance and no tailings or waste rock generated. However, the orebody needs to be permeable to the liquids used, and located so that they do not contaminate ground water away from the orebody. Uranium ISL uses the native groundwater in the orebody which is fortified with a complexing agent and in most cases an oxidant. It is then pumped through the underground orebody to recover the minerals in it by leaching. Once the pregnant solution is returned to the surface, the uranium is recovered in much the same way as in any other uranium plant (mill). In Australian ISL mines (Beverley and the soon to be opened Honeymoon Mine) the oxidant used is hydrogen peroxide and the complexing agent sulfuric acid. -
Geology of U Rani Urn Deposits in Triassic Rocks of the Colorado Plateau Region
Geology of U rani urn Deposits in Triassic Rocks of the Colorado Plateau Region By W. I. FINCH CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1074-D This report concerns work done on behalf ~1 the U. S. Atomic Energy Commission -Jnd is published with the permission of ~he Commission NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printin~ Office Washin~ton 25, D. C. CONTENTS Page Abstract---------------------------------------------------------- 125 Introduction__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 125 History of mining and production ____ ------------------------------- 127 Geologic setting___________________________________________________ 128 StratigraphY-------------------------------------------------- 129 ~oenkopiformation_______________________________________ ~29 Middle Triassic unconformity_______________________________ 131 Chinle formation__________________________________________ 131 Shinarump Inernber____________________________________ 133 ~udstone member------------------------------------- 136 ~oss Back member____________________________________ 136 Upper part of the Chinle formation______________________ 138 Wingate sandstone_________________________________________ 138 lgneousrocks_________________________________________________ 139 Structure_____________________________________________________ -
Uranium Fact Sheet
Fact Sheet Adopted: December 2018 Health Physics Society Specialists in Radiation Safety 1 Uranium What is uranium? Uranium is a naturally occurring metallic element that has been present in the Earth’s crust since formation of the planet. Like many other minerals, uranium was deposited on land by volcanic action, dissolved by rainfall, and in some places, carried into underground formations. In some cases, geochemical conditions resulted in its concentration into “ore bodies.” Uranium is a common element in Earth’s crust (soil, rock) and in seawater and groundwater. Uranium has 92 protons in its nucleus. The isotope2 238U has 146 neutrons, for a total atomic weight of approximately 238, making it the highest atomic weight of any naturally occurring element. It is not the most dense of elements, but its density is almost twice that of lead. Uranium is radioactive and in nature has three primary isotopes with different numbers of neutrons. Natural uranium, 238U, constitutes over 99% of the total mass or weight, with 0.72% 235U, and a very small amount of 234U. An unstable nucleus that emits some form of radiation is defined as radioactive. The emitted radiation is called radioactivity, which in this case is ionizing radiation—meaning it can interact with other atoms to create charged atoms known as ions. Uranium emits alpha particles, which are ejected from the nucleus of the unstable uranium atom. When an atom emits radiation such as alpha or beta particles or photons such as x rays or gamma rays, the material is said to be undergoing radioactive decay (also called radioactive transformation). -
A Prospector's Guide to URANIUM Deposits in Newfoundland and Labrador
A Prospector's guide to URANIUM deposits In Newfoundland and labrador Matty mitchell prospectors resource room Information circular number 4 First Floor • Natural Resources Building Geological Survey of Newfoundland and Labrador 50 Elizabeth Avenue • PO Box 8700 • A1B 4J6 St. John’s • Newfoundland • Canada pros pec tor s Telephone: 709-729-2120, 709-729-6193 • e-mail: [email protected] resource room Website: http://www.nr.gov.nl.ca/mines&en/geosurvey/matty_mitchell/ September, 2007 INTRODUCTION Why Uranium? • Uranium is an abundant source of concentrated energy. • One pellet of uranium fuel (following enrichment of the U235 component), weighing approximately 7 grams (g), is capable of generating as much energy as 3.5 barrels of oil, 17,000 cubic feet of natural gas or 807 kilograms (kg) of coal. • One kilogram of uranium235 contains 2 to 3 million times the energy equivalent of the same amount of oil or coal. • A one thousand megawatt nuclear power station requiring 27 tonnes of fuel per year, needs an average of about 74 kg per day. An equivalent sized coal-fired station needs 8600 tonnes of coal to be delivered every day. Why PROSPECT FOR IT? • At the time of writing (September, 2007), the price of uranium is US$90 a pound - a “hot” commodity, in more ways than one! Junior exploration companies and major producers are keen to find more of this valuable resource. As is the case with other commodities, the prospector’s role in the search for uranium is always of key importance. What is Uranium? • Uranium is a metal; its chemical symbol is U. -
Regional Geology and Ore-Deposit Styles of the Trans-Border Region, Southwestern North America
Arizona Geological Society Digest 22 2008 Regional geology and ore-deposit styles of the trans-border region, southwestern North America Spencer R. Titley and Lukas Zürcher Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA ABSTRACT Nearly a century of independent geological work in Arizona and adjoining Mexico resulted in a seam in the recognized geological architecture and in the mineralization style and distribution at the border. However, through the latter part of the 20th century, workers, driven in great part by economic-resource considerations, have enhanced the understanding of the geological framework in both directions with synergistic results. The ore deposits of Arizona represent a sampling of resource potential that serves as a basis for defining expectations for enhanced discovery rates in contiguous Mexico. The assessment presented here is premised on the habits of occurrence of the Arizona ores. For the most part, these deposits occur in terranes that reveal distinctive forma- tional ages, metal compositions, and lithologies, which identify and otherwise constrain the components for search of comparable ores in adjacent crustal blocks. Three basic geological and metallogenic properties are integrated here to iden- tify the diagnostic features of ore genesis across the region. These properties comprise: (a) the type and age of basement as identified by tectono-stratigraphic and geochemi- cal studies; (b) consideration of a major structural discontinuity, the Mojave-Sonora megashear, which adds a regional structural component to the study and search for ore deposits; and (c) integration of points (a) and (b) with the tectono-magmatic events over time that are superimposed across terranes and that have added an age component to differing cycles of rock and ore formation. -
Precipitation of Aluminum Containing Species in Tank Wastes
PNNL-13881 Precipitation of Aluminum Containing Species in Tank Wastes S.V. Mattigod K.E. Parker D.T. Hobbs D.E. McCready April 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 PNNL-13881 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 This document was printed on recycled paper. (8/00 PNNL-13881 Precipitation of Aluminum Containing Species in Tank Wastes S. V. Mattigod D. T. Hobbs K. E. Parker D. E. McCready April 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Summary Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. -
1 Introduction
1 Introduction WHO commissions reviews and undertakes health risk assessments associated with exposure to potentially hazardous physical, chemical and biological agents in the home, work place and environment. This monograph on the chemical and radiological hazards associated with exposure to depleted uranium is one such assessment. The purpose of this monograph is to provide generic information on any risks to health from depleted uranium from all avenues of exposure to the body and from any activity where human exposure could likely occur. Such activities include those involved with fabrication and use of DU products in industrial, commercial and military settings. While this monograph is primarily on DU, reference is also made to the health effects and behaviour of uranium, since uranium acts on body organs and tissues in the same way as DU and the results and conclusions from uranium studies are considered to be broadly applicable to DU. However, in the case of effects due to ionizing radiation, DU is less radioactive than uranium. This review is structured as broadly indicated in Figure 1.1, with individual chapters focussing on the identification of environmental and man-made sources of uranium and DU, exposure pathways and scenarios, likely chemical and radiological hazards and where data is available commenting on exposure-response relationships. HAZARD IDENTIFICATION PROPERTIES PHYSICAL CHEMICAL BIOLOGICAL DOSE RESPONSE RISK EVALUATION CHARACTERISATION BACKGROUND EXPOSURE LEVELS EXPOSURE ASSESSMENT Figure 1.1 Schematic diagram, depicting areas covered by this monograph. It is expected that the monograph could be used as a reference for health risk assessments in any application where DU is used and human exposure or contact could result. -
Uranium Mining in Virginia
Nontechnical Summary Uranium Mining in Virginia In recent years, there has been renewed interest in mining uranium in the Common- wealth of Virginia. However, before any mining can begin, Virginia’s General Assembly would have to rescind a statewide moratorium on uranium mining that has been in effect since 1982. The National Research Council was commissioned to provide an independent review of the scientific, environmental, human health and safety, and regulatory aspects of uranium mining, processing, and reclamation in Virginia to help inform the public discussion about uranium mining and to assist Virginia’s lawmakers in their deliberations. eneath Virginia’s convene an independent rolling hills, there committee of experts to Bare occurrences of write a report that described uranium—a naturally occur- the scientific, environmental, ring radioactive element that human health and safety, and can be used to make fuel for regulatory aspects of mining nuclear power plants. In the and processing Virginia’s 1970s and early 1980s, work to uranium resources. Addi- explore these resources led to tional letters supporting this the discovery of a request were received from large uranium deposit at Coles U.S. Senators Mark Warner Hill, which is located in and Jim Webb and from Pittsylvania County in southern Governor Kaine. The Virginia. However, in 1982 the National Research Council Commonwealth of Virginia study was funded under a enacted a moratorium on contract with the Virginia uranium mining, and interest in Center for Coal and Energy further exploring the Coles Hill Research at Virginia deposit waned. Polytechnic Institute and In 2007, two families living in the vicinity of State University (Virginia Tech). -
Comparative Study on Precipitation Methods of Yellow
Precipitation and purification of uranium from rock phosphate Elshafeea H. Y. Abow Slama1, Etemad Ebraheem2 and Adam K. Sam1 1Sudan Atomic Energy Commission P.O. Box 3001, Khartoum-Sudan 2 Sinner University ABSTRACT This study was carried-out to leach uranium from rock phosphate using sulphuric acid in the presence of potassium chlorate as an oxidant and to investigate the relative purity of different forms of yellow cakes produced with ammonia {( NH 4 )2 U2O7 }, magnesia (UO3.xH 2O ) and sodium hydroxide Na2U 2O7 as precipitants, as well as purification of the products with TBP extraction and matching its impurity levels with specifications of the commercial products. Alpha-particle spectrometry was used for determination of activity concentration of uranium isotopes (234U and 238U) in rock phosphate, resulting green phosphoric acid solution, and in different forms of the yellow cake from which the equivalent mass concentration of uranium was deduced. Likewise, atomic absorption spectroscopy (AAS) was used for determination of impurities (Pb, Ni, Cd, Fe, Zn, Mn, and Cu). On the average, the equivalent mass concentration of uranium was 119.38±79.66 ppm (rock phosphate) and 57.85±20.46 ppm (green solution) with corresponding low percent of dissolution (48%) which is considered low. The isotopic ratio (234U: 238U) in all stages of hydrometallurgical process was not much differ from unity indicating lack of fractionation. Upon comparing the levels of impurities in different form of crude yellow cakes, it was found that the lowest levels were measured in UO3.xH2O. This implies that saturated magnesia is least aggressive relative to other precipitants and gives relatively pure crude cake. -
Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media
Article Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media Nicolas Reynier 1,*, Rolando Lastra 1, Cheryl Laviolette 1, Jean-François Fiset 1, Nabil Bouzoubaâ 1 and Mark Chapman 2 Received: 28 September 2015 ; Accepted: 10 November 2015 ; Published: 20 November 2015 Academic Editor: Mostafa Fayek 1 CanmetMINING, Natural Resources Canada, 3484 Limebank Rd., Ottawa, ON K1A 0E4, Canada; [email protected] (R.L.); [email protected] (C.L.); jean-francois.fi[email protected] (J.-F.F.); [email protected] (N.B.) 2 Canadian Nuclear Laboratories, Chalk River Laboratories, Plant Road, Chalk River, ON K0J 1 J0, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-613-954-5602; Fax: +1-613-954-6929 Abstract: The Canadian Nuclear Laboratories (CNL) is developing a long-term management strategy for its existing inventory of solid radioactive cemented wastes, which contain uranium, mercury, fission products, and a number of minor elements. The composition of the cemented radioactive waste poses significant impediments to the extraction and recovery of uranium using conventional technology. The goal of this research was to develop an innovative method for uranium, mercury and cesium recovery from surrogate radioactive cemented waste (SRCW). Leaching using sulfuric acid and saline media significantly improves the solubilization of the key elements from the SRCW. Increasing the NaCl concentration from 0.5 to 4 M increases the mercury solubilization from 82% to 96%. The sodium chloride forms a soluble mercury complex when mercury is present as HgO or metallic mercury but not with HgS that is found in 60 ˝C cured SRCW. -
Uranium Raw Material for the Nuclear Fuel Cycle
Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018) Supply and Demand, Economics Environmental Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018) Proceedings of an International Symposium Vienna, Austria, 25–29 June 2018 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA URANIUM RAW MATERIAL FOR THE NUCLEAR FUEL CYCLE: EXPLORATION, MINING, PRODUCTION, SUPPLY AND DEMAND, ECONOMICS AND ENVIRONMENTAL ISSUES (URAM-2018) The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. PROCEEDINGS SERIES URANIUM RAW MATERIAL FOR THE NUCLEAR FUEL CYCLE: EXPLORATION, MINING, PRODUCTION, SUPPLY AND DEMAND, ECONOMICS AND ENVIRONMENTAL ISSUES (URAM-2018) PROCEEDINGS OF AN INTERNATIONAL SYMPOSIUM ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY IN COOPERATION WITH THE OECD NUCLEAR ENERGY AGENCY AND THE WORLD NUCLEAR ASSOCIATION AND HELD IN VIENNA, 25–29 JUNE 2018 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2020 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. -
Modification of Base-Side 99Mo Production Processes for Leu Metal-Foil Targets
MODIFICATION OF BASE-SIDE 99MO PRODUCTION PROCESSES FOR LEU METAL-FOIL TARGETS G. F. Vandegrift, R. A. Leonard, S. Aase, J. Sedlet, Y. Koma, C. Conner, C. R. Clark, and M. K. Meyer Argonne National Laboratory Argonne, Illinois, and Idaho Falls, Idaho, U.S.A. ABSTRACT Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their 99Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU). The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although 99Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that, up to this point in our study, conversion of the CNEA process to LEU appears viable. INTRODUCTION A number of current producers dissolve uranium-aluminide/aluminum-dispersion plates in alkaline solution as an initial step to recovering fission-product 99Mo from irradiated high- enriched uranium (HEU). These producers include Argentine Comisión Nacional de Energía Atómica (CNEA), Institut National des Radioéléments (IRE), Mallinckrodt, and the Atomic Energy Corporation of South Africa Limited (AEC). Argonne National Laboratory (ANL) has begun a cooperation with one of these producers, CNEA, to convert their process to low- enriched uranium (LEU).