Preparation of Highly Pure Thorium Nitrate Via Thorium Sulfate And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Situ Leach (ISL) Mining of Uranium
In Situ Leach (ISL) Mining of Uranium (June 2009) l Most uranium mining in the USA and Kazakhstan is now by in situ leach methods, also known as in situ recovery (ISR). l In USA ISL is seen as the most cost effective and environmentally acceptable method of mining, and Australian experience supports this. l Australia's first ISL uranium mine is Beverley, which started operation late in 2000. The proposal for Honeymoon has government approval and it is expected to be operating in 2008. Conventional mining involves removing mineralised rock (ore) from the ground, breaking it up and treating it to remove the minerals being sought. In situ leaching (ISL), also known as solution mining, or in situ recovery (ISR) in North America, involves leaving the ore where it is in the ground, and recovering the minerals from it by dissolving them and pumping the pregnant solution to the surface where the minerals can be recovered. Consequently there is little surface disturbance and no tailings or waste rock generated. However, the orebody needs to be permeable to the liquids used, and located so that they do not contaminate ground water away from the orebody. Uranium ISL uses the native groundwater in the orebody which is fortified with a complexing agent and in most cases an oxidant. It is then pumped through the underground orebody to recover the minerals in it by leaching. Once the pregnant solution is returned to the surface, the uranium is recovered in much the same way as in any other uranium plant (mill). In Australian ISL mines (Beverley and the soon to be opened Honeymoon Mine) the oxidant used is hydrogen peroxide and the complexing agent sulfuric acid. -
Precipitation of Aluminum Containing Species in Tank Wastes
PNNL-13881 Precipitation of Aluminum Containing Species in Tank Wastes S.V. Mattigod K.E. Parker D.T. Hobbs D.E. McCready April 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 PNNL-13881 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 This document was printed on recycled paper. (8/00 PNNL-13881 Precipitation of Aluminum Containing Species in Tank Wastes S. V. Mattigod D. T. Hobbs K. E. Parker D. E. McCready April 2002 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Summary Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. -
Comparative Study on Precipitation Methods of Yellow
Precipitation and purification of uranium from rock phosphate Elshafeea H. Y. Abow Slama1, Etemad Ebraheem2 and Adam K. Sam1 1Sudan Atomic Energy Commission P.O. Box 3001, Khartoum-Sudan 2 Sinner University ABSTRACT This study was carried-out to leach uranium from rock phosphate using sulphuric acid in the presence of potassium chlorate as an oxidant and to investigate the relative purity of different forms of yellow cakes produced with ammonia {( NH 4 )2 U2O7 }, magnesia (UO3.xH 2O ) and sodium hydroxide Na2U 2O7 as precipitants, as well as purification of the products with TBP extraction and matching its impurity levels with specifications of the commercial products. Alpha-particle spectrometry was used for determination of activity concentration of uranium isotopes (234U and 238U) in rock phosphate, resulting green phosphoric acid solution, and in different forms of the yellow cake from which the equivalent mass concentration of uranium was deduced. Likewise, atomic absorption spectroscopy (AAS) was used for determination of impurities (Pb, Ni, Cd, Fe, Zn, Mn, and Cu). On the average, the equivalent mass concentration of uranium was 119.38±79.66 ppm (rock phosphate) and 57.85±20.46 ppm (green solution) with corresponding low percent of dissolution (48%) which is considered low. The isotopic ratio (234U: 238U) in all stages of hydrometallurgical process was not much differ from unity indicating lack of fractionation. Upon comparing the levels of impurities in different form of crude yellow cakes, it was found that the lowest levels were measured in UO3.xH2O. This implies that saturated magnesia is least aggressive relative to other precipitants and gives relatively pure crude cake. -
Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media
Article Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media Nicolas Reynier 1,*, Rolando Lastra 1, Cheryl Laviolette 1, Jean-François Fiset 1, Nabil Bouzoubaâ 1 and Mark Chapman 2 Received: 28 September 2015 ; Accepted: 10 November 2015 ; Published: 20 November 2015 Academic Editor: Mostafa Fayek 1 CanmetMINING, Natural Resources Canada, 3484 Limebank Rd., Ottawa, ON K1A 0E4, Canada; [email protected] (R.L.); [email protected] (C.L.); jean-francois.fi[email protected] (J.-F.F.); [email protected] (N.B.) 2 Canadian Nuclear Laboratories, Chalk River Laboratories, Plant Road, Chalk River, ON K0J 1 J0, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-613-954-5602; Fax: +1-613-954-6929 Abstract: The Canadian Nuclear Laboratories (CNL) is developing a long-term management strategy for its existing inventory of solid radioactive cemented wastes, which contain uranium, mercury, fission products, and a number of minor elements. The composition of the cemented radioactive waste poses significant impediments to the extraction and recovery of uranium using conventional technology. The goal of this research was to develop an innovative method for uranium, mercury and cesium recovery from surrogate radioactive cemented waste (SRCW). Leaching using sulfuric acid and saline media significantly improves the solubilization of the key elements from the SRCW. Increasing the NaCl concentration from 0.5 to 4 M increases the mercury solubilization from 82% to 96%. The sodium chloride forms a soluble mercury complex when mercury is present as HgO or metallic mercury but not with HgS that is found in 60 ˝C cured SRCW. -
Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals
metals Review Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals Adrián Carrillo García 1, Mohammad Latifi 1,2, Ahmadreza Amini 1 and Jamal Chaouki 1,* 1 Process Development Advanced Research Lab (PEARL), Chemical Engineering Department, Ecole Polytechnique de Montreal, C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada; [email protected] (A.C.G.); mohammad.latifi@polymtl.ca (M.L.); [email protected] (A.A.) 2 NeoCtech Corp., Montreal, QC H3G 2N7, Canada * Correspondence: [email protected] Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Rare earth elements (REE), originally found in various low-grade deposits in the form of different minerals, are associated with gangues that have similar physicochemical properties. However, the production of REE is attractive due to their numerous applications in advanced materials and new technologies. The presence of the radioactive elements, thorium and uranium, in the REE deposits, is a production challenge. Their separation is crucial to gaining a product with minimum radioactivity in the downstream processes, and to mitigate the environmental and safety issues. In the present study, different techniques for separation of the radioactive elements from REE are reviewed, including leaching, precipitation, solvent extraction, and ion chromatography. In addition, the waste management of the separated radioactive elements is discussed with a particular conclusion that such a waste stream can be -
Modification of Base-Side 99Mo Production Processes for Leu Metal-Foil Targets
MODIFICATION OF BASE-SIDE 99MO PRODUCTION PROCESSES FOR LEU METAL-FOIL TARGETS G. F. Vandegrift, R. A. Leonard, S. Aase, J. Sedlet, Y. Koma, C. Conner, C. R. Clark, and M. K. Meyer Argonne National Laboratory Argonne, Illinois, and Idaho Falls, Idaho, U.S.A. ABSTRACT Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their 99Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU). The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although 99Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that, up to this point in our study, conversion of the CNEA process to LEU appears viable. INTRODUCTION A number of current producers dissolve uranium-aluminide/aluminum-dispersion plates in alkaline solution as an initial step to recovering fission-product 99Mo from irradiated high- enriched uranium (HEU). These producers include Argentine Comisión Nacional de Energía Atómica (CNEA), Institut National des Radioéléments (IRE), Mallinckrodt, and the Atomic Energy Corporation of South Africa Limited (AEC). Argonne National Laboratory (ANL) has begun a cooperation with one of these producers, CNEA, to convert their process to low- enriched uranium (LEU). -
United States Patent Office 2,988,421
United States Patent Office Patented June2,988,421 13, 196 heavailaaaar 1 2 contain more than 200 gms. alkali metal and chloride ions 2,988,421 per litre. The following tables show the loss of thorium PROCESS FOR THE SEPARATION OF THORUM and lanthanons under various conditions in the presence WilliamANDRARE Palmer Kemp, EARTHS Shenfield, FROM and MONAZTE James Johnston, 5 of sodium and potassium chloride. Hainault, England, assignors to Thorium Limited, Lon don, England, a corporation of Great Britain NaCl, ThO Ln2O No Drawing. Filed Aug. 20, 1957, Ser. No. 679,126 Acidity gm.fl. loss, loss, Claim priority, application Great Britain Aug. 24, 1956 gm.fl. gm.fl. 9 Claims. (C. 23-145) -ror-rm-m-m------- 10 : 122 This invention relates to a process for separating thori- 4.5 8: um and lanthanon salts from other materials present in : g monazite. The invention is particularly useful in that it 55 i. provides a process for separating salts of thorium and the : 8. lanthanons from phosphate and impurities present in 1655 400 6.65 ground mineral monazite. The term lanthanon in this specification includes the elements with atomic numbers KC ThO Ln2O from 57-71; this group is also known as the rare earth Acidity fi. is is elements. gm.fl. gm.fl. Monazite sand is a mineral phosphate containing thori- .am-m-m-m-m-m-m-wn um and the lanthanon phosphates to the extent of about 38 o' 95-98% by weight. Another source is ground mineral 300 0.005 1.0 monazite which is far less pure than monazite sand and contains only about 75% of the thorium and lanthanon In a preferred form of the process the filtered extract phosphates. -
Thorium–Ligand Multiple Bonds Via Reductive Deprotection of a Trityl Group† Cite This: Chem
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Thorium–ligand multiple bonds via reductive deprotection of a trityl group† Cite this: Chem. Sci.,2015,6, 3891 Danil E. Smiles,a Guang Wu,a Nikolas Kaltsoyannis*b and Trevor W. Hayton*a Reaction of [Th(I)(NR2)3](R¼ SiMe3)(2) with KECPh3 (E ¼ O, S) affords the thorium chalcogenates, [Th(ECPh3)(NR2)3](3,E¼ O; 4,E¼ S), in moderate yields. Reductive deprotection of the trityl group from 3 and 4 by reaction with KC8, in the presence of 18-crown-6, affords the thorium oxo complex, [K(18- Received 7th April 2015 crown-6)][Th(O)(NR ) ](6), and the thorium sulphide complex, [K(18-crown-6)][Th(S)(NR ) ](7), Accepted 30th April 2015 2 3 2 3 respectively. The natural bond orbital and quantum theory of atoms-in-molecules approaches are DOI: 10.1039/c5sc01248a employed to explore the metal–ligand bonding in 6 and 7 and their uranium analogues, and in particular www.rsc.org/chemicalscience the relative roles of the actinide 5f and 6d orbitals. Introduction be rationalized by the higher energy of the thorium 5f orbitals, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. relative to uranium, which likely weakens metal–ligand The study of actinide–ligand multiple bonds has intensied in p-bonding.50 However, this hypothesis requires further veri- recent years due to the need to understand the extent of both f- cation, highlighting the need for new complexes that feature orbital participation and covalency in actinide–ligand thorium–ligand multiple bonds. -