Quinn H.R., Nir Y. the Mystery of the Missing Antimatter (PUP, 2008

Total Page:16

File Type:pdf, Size:1020Kb

Quinn H.R., Nir Y. the Mystery of the Missing Antimatter (PUP, 2008 THE MYSTERY OF THE MISSING ANTIMATTER Books in the SCIENCE ESSENTIALS series bring cutting-edge science to a general audience. The se- ries provides the foundation for a better understanding of the scientific and technical ad- vances changing our world. In each volume, a prominent scien- tist—chosen by an advisory board of National Academy of Sciences members—conveys in clear prose the fundamental knowledge underlying a rapidly evolving field of scientific en- deavor. The Mystery of the Missing Antimatter Helen R. Quinn and Yossi Nir Illustrations by Rutu Modan Princeton University Press Princeton & Oxford Copyright 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved ISBN: 978-0-691-13309-6 Library of Congress Control Number: 2007934402 British Library Cataloging-in-Publication Data is available This book has been composed in Adobe Garamond and Caflisch Printed on acid-free paper ∞ press.princeton.edu Printed in the United States of America 10987654321 To Tsafra and Dan This page intentionally left blank CONTENTS Acknowledgments xi 1. Prelude: The Mystery of the Missing Antimatter 1 2. Constant Physics in an Evolving Universe 7 Universal Laws 7 Hubble and the Expanding Universe 8 Red-shifts: Evidence for an Expanding Universe 12 Numbers Large and Small 17 What Do We Mean by “Universe”? 19 3. As the Universe Expands 21 Running the Clock Forward: Radiation 21 Running the Clock Forward: Dark Matter 26 Running the Clock Forward: Light Nuclei 29 Running the Clock Forward: Matter and Antimatter 32 4. What Is Antimatter? 36 What Is Matter? 36 Dirac Introduces Antimatter 42 Experiments Confirm That Antimatter Exists 45 Radioactive Decays of Nuclei 48 5. Enter Neutrinos 51 Pauli: The Beta Decay Puzzle 51 Fermi: The Theory of Neutrinos Develops 53 Cowan and Reines: Neutrinos Detected 55 vii viii contents 6. Mesons 57 Yukawa and the Pi-Meson 57 Strange Mesons, Strange Quantum Concepts 61 7. Through the Looking Glass 63 What Physicists Mean by the Term Symmetry 63 A Gedanken Experiment 64 The Actual Experiment 67 8. Through the Looking Antiglass 73 Another Gedanken Experiment 73 Cronin and Fitch: Matter and Antimatter Do Not Follow the Same Laws 75 9. The Survival of Matter 80 Pauli’s Other Letter: Initial Conditions on the Universe 80 Sakharov: The Conditions Needed to Develop an Imbalance 84 Cosmology with Sakharov’s Conditions Met: Baryogenesis 88 10. Enter Quarks 91 Quarks 91 Why Don’t We See the Quarks? 96 What about Dark Matter? 100 The Missing Charm, the Surprising Tau 101 The Standard Model: Particles and Interactions 107 11. Energy Rules 111 Stored Energy, Forces, and Energy Conservation 111 Force Fields Permeating Space 114 Field Theory and the Energy Function 116 12. Symmetry Rules 121 Symmetries as Answers to the Question “Why?” 121 Symmetries and Conservation Laws 123 Space-Time Symmetries 124 Gauge Symmetries 126 Discrete Symmetries 128 Baryon and Lepton Number Conservation? 130 contents ix 13. Standard Model Gauge Symmetries 132 The Symmetry behind the Electromagnetic Interaction 132 The Symmetry behind the Strong Interaction 134 The Symmetry behind the Weak Interaction 137 14. A Missing Piece 140 The Puzzle of Particle Masses 140 How Do We Describe Nothing? 146 At Last, CP Violated in the Standard Model 153 15. It Still Doesn’t Work! 159 Running the Clock Forward: The Standard Model 159 Now What? 163 16. Tools of the Trade 168 Accelerators 168 Detectors 172 Data Handling and Analysis 177 How Projects Develop 178 17. Searching for Clues 180 Where Are We Now? 180 Testing the Standard Model in B-Meson Decays 182 Oddone: How to Build B Factories? 184 Running the B Factories: The First Test 190 18. Speculations 194 Why Are We Never Satisfied? 194 Grand Unified Theories 195 Supersymmetry 201 Way beyond the Standard Model 204 19. Neutrino Surprises 206 Davis, Bahcall, Koshiba: Solar Neutrinos 206 Quantum Neutrino Properties 214 20. Following the New Clues 222 Some Things We Know 222 Some Things We Speculate About 225 Fitting It All Together 227 21. Finale 231 x contents Appendix: A Timeline of Particle Physics and Cosmology 233 Perspective 233 Relevant Nineteenth-Century Developments 234 1900–1930: Development of Quantum Ideas, Beginnings of Scientific Cosmology 238 1930–1950: New Particles, New Ideas 245 1930–1960s: The Advent of Accelerator Experiments—The Particle Explosion; Implications of Expanding Universe Explored 249 1964–1973: Formulation of the Modern View of Particles and the Universe 256 Two Standard Models Emerge—Particles and Cosmology 263 Index 273 ACKNOWLEDGMENTS We are indebted to many colleagues with whom we have worked on and discussed aspects of the science we describe in this book. We owe a particular debt to those at Stanford Linear Accelerator Center and at the Weizmann Institute and to the members of the BaBar collaboration. We have no doubt gathered tips on how to present these ideas by listening to many others do so. We have also learned by teaching; our students, be they graduate students or high school teachers in a workshop, have helped us develop good explanations by asking good questions. This book has been a long project and in that time it has benefited greatly from the comments of several people who have read parts of the manuscript—in particular we appreciate the detailed input of John Bingham, Lesley Wolf, and Sal Glynn. The lecture by Abraham Pais, “Paul Dirac: Aspects of his life and work,” at the dedication of a plaque to Dirac in Westminster Abbey (published in Paul Dirac, the Man and His Work,” edited by Peter Goddard, Cambridge University Press) provided much of our knowledge about the early days of Dirac’s equation and much else from this early period of quantum theory. Bram’s book on Einstein, Subtle Is the Lord (Oxford University Press) was another useful and authoritative reference for us. The timeline section of this book began as a particle physics timeline published as chapter 10 of the book The Charm of Strange Quarks by R. Michael Barnett, Henri Mu¨hry, and Helen Quinn. We are grateful for the permission of the other authors and the publishers to use this starting xi xii acknowledgments point (copyright AIP Press, 2000, used with kind permission of Springer Science and Business Media). The cosmology sections of this timeline owe much to web searches, and particularly to the “BrainyEncyclopedia” timeline of cosmology. The Nobel Prize website was useful in giving us biographical information on Nobel Prize winners. THE MYSTERY OF THE MISSING ANTIMATTER This page intentionally left blank PRELUDE: THE MYSTERY OF 1THE MISSING ANTIMATTER In the beginning—what was the beginning? Every culture asks this ques- tion. Traditionally each finds some answer, a creation myth, a cosmology. These stories satisfy an innate human longing to know about our origins. Only recently has our scientific understanding of the history of the Uni- verse progressed to the point that we can begin to formulate a scientifically based answer—a scientific cosmology. We know that the Universe is evolving and we understand many facets of its history. We know its age, about fourteen billion years! We can ask, and often even answer, detailed questions about the very earliest times, times immediately after the Big Bang. We can test our ideas by comparing detailed observation of the Universe to detailed simulation of its evolution built on our modern understanding of physics. Today our technology for probing physics on both the tiniest and the largest imaginable scales can take us closer to the beginning of the known Universe than ever before. Much has been learned. Big questions remain; each new answer reveals new questions. What a wondrous time this is for cosmology. Our story centers on a question that links cosmology and particle physics. Experiments in high energy physics laboratories have demon- strated that, in addition to the stuff we call matter, there is another set of stuff. It is just like matter except with a reversal of charges. It interacts, with itself and with matter, in ways that we understand. Physicists call this stuff antimatter. We make it and study it in our laboratories, but find very little of it in nature. The laws of physics for antimatter are 1 2 chapter 1 almost an exact mirror of those for matter. That makes the imbalance between matter and antimatter in the Universe a deep mystery. This mystery is the central topic of our book. For each type of matter particle there is a matching type of antimatter particle. Given the right conditions, we can convert energy from radiation into a matched pair of newly formed matter and antimatter particles; that is how we produce antimatter in our laboratory experiments. Conversely, whenever an antimatter particle meets its matching matter twin they can both disappear, converting all their energy into a flash of radiation. Thus any antimatter particles produced in the laboratory, or in naturally occur- ring high energy processes, disappear again very shortly. In a matter- dominated environment their chances for longevity are very slim! In probing the Universe today, experiments from the ground or on satellites can achieve sensitivity to times long before any structure and form evolved within it. They observe radiation that has been traveling through space for a very long time, almost as long as the Universe has existed. We can use these observations to find out about the Universe at the time this radiation began its journey. We can explore even earlier stages by modeling them according to our theories and asking whether the model can match the Universe as we observe it.
Recommended publications
  • April Meeting Goes Mile-High in 2004 Highlights New Techniques For
    January 2004 Volume 13, No. 1 NEWS http://www.physics2005.org A Publication of The American Physical Society http://www.aps.org/apsnews April Meeting Goes Junior Members Respond to Mile-High in 2004 APS Ethics Survey By Ernie Tretkoff The “Mile High” city of Denver, International Affairs, Colorado, will host as many as History of Physics, and Few physicists received for- to include not just research mis- 1500 physicists at the 2004 APS Graduate Student Af- mal ethics training as part of their conduct such as data fabrication, April meeting, to be held May 1-4 fairs; and the Topical education, though many are con- falsification, and plagiarism, but 2004. Groups on Few-Body cerned about professional ethics, also issues such as authorship, Attendees will be drawn from a Systems, Precision a study by the APS Ethics Task proper credit of previous work, wide range of research areas. APS Measurement and Force has found. and data handling and reporting. units represented at the meeting Fundamental Con- Photo Credit: The Denver Metro Convention and Visitors Bureau The task force report was sub- “This was an interesting and include the Divisions of Astrophys- stants, Gravitation, Denver has the 10th largest downtown in America. mitted to and accepted by the sobering project,” said task force ics, Nuclear Physics, Particles and Plasma Astrophysics, APS Council at its meeting in chair Frances Houle of the IBM Fields, Plasma Physics, and Com- and Hadronic Physics. approximately 45 invited sessions. November. Almaden Research Center in San putational Physics; the Forums on The scientific program will fea- There will also be numerous con- The task force, which was con- Jose.
    [Show full text]
  • Professor Helen Quinn
    Professor Helen Quinn Helen Quinn was born in Australia and grew up in the Melbourne suburbs of Blackburn and Mitcham. She attended Tintern Girls Grammar School in Ringwood East. She matriculated successfully and obtained a cadetship from the Australian Department of Meteorology to fund her studies at the University of Melbourne. After beginning her undergraduate studies at the University, her family migrated to San Francisco in the early 1960s. Professor Quinn finished her undergraduate, and eventually graduate education at Stanford University. After receiving her doctorate from Stanford in 1967, she held a postdoctoral position at Deutsches Elektronen Synchrotron in Hamburg, Germany, then served as a research fellow at Harvard in 1971, joining the faculty there in 1972. She returned to Stanford in 1976 as a visitor on a Sloan Fellowship and joined the staff at the Stanford Linear Accelerator Centre (SLAC) in 1977. In her current position as a theoretical physicist at the Stanford Linear Accelerator Center (SLAC), Professor Quinn has made important contributions towards unifying the strong, weak and electromagnetic interactions into a single coherent model of particle physics. In 2000 she was awarded the Dirac Medal and Prize for pioneering contributions to the quest for a unified theory of quarks and leptons and of the strong, weak, and electromagnetic interactions. The award, shared with Professors Howard Georgi of Harvard and Jogesh Pati of the University of Maryland, recognized Professor Quinn for her work on the unification of the three interactions, and for fundamental insights about charge-parity conservation. She has also recently developed basic analysis methods used to search for the origin of particle-antiparticle asymmetry in nature.
    [Show full text]
  • Highlights Se- Mathematics and Engineering— the Lead Signers of the Letter Exhibit
    June 2003 NEWS Volume 12, No.6 A Publication of The American Physical Society http://www.aps.org/apsnews Nobel Laureates, Industry Leaders Petition April Meeting Prizes & Awards President to Boost Science and Technology Prizes and Awards were presented to seven- Sixteen Nobel Laureates in that “unless remedied, will affect call for “a Presidential initiative for teen recipients at the Physics and sixteen industry lead- our scientific and technological FY 2005, following on from your April meeting in Philadel- ers have written to President leadership, thereby affecting our budget of FY 2004, and focusing phia. George W. Bush to urge increas- economy and national security.” on the long-term research portfo- After the ceremony, ing funding for physical sciences, The letter, which is dated April lios of DOE, NASA, and the recipients and their environmental sciences, math- 14th, also indicates that “the Department of Commerce, in ad- guests gathered at the ematics, computer science and growth in expert personnel dition to NSF and NIH,” that, Franklin Institute for a engineering. abroad, combined with the di- “would turn around a decade-long special reception. The letter, reinforcing a recent minishing numbers of Americans decline that endangers the future Photo Credit: Stacy Edmonds of Edmonds Photography Council of Advisors on Science and entering the physical sciences, of our nation.” The top photo shows four of the five women recipients in front of a space-suit Technology report, highlights se- mathematics and engineering— The lead signers of the letter exhibit. They are (l to r): Geralyn “Sam” Zeller (Tanaka Award); Chung-Pei rious funding problems in the an unhealthy trend—is leading were Burton Richter, director Michele Ma (Maria-Goeppert Mayer Award); Yvonne Choquet-Bruhat physical sciences and related fields corporations to locate more of emeritus of SLAC, and Craig (Heineman Prize); and Helen Edwards (Wilson Prize).
    [Show full text]
  • 2005 Annual Report American Physical Society
    1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists.
    [Show full text]
  • Long Term Planning Theme at Annual Users' Meeting
    dn p Events and Happenings Ah Ah~~ in thp SI AC Communitv I Long Term Planning Theme at Annual Users' Meeting "WHAT ARE THE DRIVING questions in high-energy physics for the next 25 years? What are the tools that will answer those questions?" These and other questions were posed by Peter Rosen, Associate Director in the DOE's Office of Science, during the annual SLUO Meeting in July. Over 200 users came to SLAC from around the world for a discussion about the science and politics of high energy physics (HEP). Speaking at the meeting, SLAC Director Jonathan Dorfan and Fermilab Director Michael Witherell expressed similar sentiments. Dorfan suggested that a different planning model is needed for the new challenges facing big science. "Previously we looked at a next generation machine and we endorsed that one s facility. It would be much better for the field if we which is intended to provide an update to the HEPAP looked 20-30 years ahead and developed a roadmap for subpanel. SLUO Chairman Ray Frey showed the future based on physics themes, not an emphasis transparenciesfrom Fermilab's Chris Quigg, who was on a machine," said Dorfan. He added that such a unable to attend the meeting. roadmap must be "world-based" since HEP is a global According to Dorfan, the near future will see data enterprise. "Scarce resources of money and people from several machines that will test the veracity of the necessitate a more international collaboration. We Standard Model, but he believes we have to be able to cannot risk regionalism." use those machines to a greater advantage.
    [Show full text]
  • Rejoice in Slac's Nobel Prize
    I4* 0S r^ * *|_ SEvents and Happenings e^I n ter~actir~o^n Poin t in the SLAC Community 1-=I§~~lJ ; I I. U |l IU IINovember 1990, Vol. ,1, No. 7 _ Friedman,Kendall, Taylor, and Us, Too ALL REJOICE IN SLAC'S NOBEL PRIZE by Bill Kirk THE NEWS RELEASE from Stockholm started this way: The Royal Swedish Academy of Sciences has decided to award the 1990 Nobel Prize in Physics jointly to Professors Jerome I. Friedman and Henry W. Kendall, both of the Massachusetts Institute of Technology, Cambridge, MA, USA, and RichardE. Taylor of Stanford University, Stanford, CA, USA, for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics. The news release then went on to describe the significance of this SLAC- MIT experiment, tracing the series of discoveries in this century that have disclosed ever-smaller layers in the structure of matter: atom, nucleus, proton, quark.... It was interesting to read about the earlier work of such (cont'd. on pg. 2) 1 1970 SLAC Employees (cont'd. from pg. 1) renowned physicists as Ruther- I tHere in 1990 ford, Heisenberg, Chadwick Hofstadter and Gell-Mann. These Louise Addis John Cockroft and others are the people who James Alexander Fred Coffer Matthew Allen Gerarda Collet paved the way for the SLAC-MIT Richard Allen Harry Collins group to know what experiments Eugenio Alvarado Carol Colon Sal Alvarado Steven Combs to do and even, to some extent, Roger Anderson Nada Comstock how to do them.
    [Show full text]
  • IOP, Quarks Leptons and the Big Bang (2002) 2Ed Een
    Quarks, Leptons and the Big Bang Second Edition Quarks, Leptons and the Big Bang Second Edition Jonathan Allday The King’s School, Canterbury Institute of Physics Publishing Bristol and Philadelphia c IOP Publishing Ltd 2002 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with the Committee of Vice- Chancellors and Principals. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7503 0806 0 Library of Congress Cataloging-in-Publication Data are available First edition printed 1998 First edition reprinted with minor corrections 1999 Commissioning Editor: James Revill Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fr´ed´erique Swist Marketing Executive: Laura Serratrice Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset in LATEX2ε by Text 2 Text, Torquay, Devon Printed in the UK by MPG Books Ltd, Bodmin, Cornwall Contents
    [Show full text]
  • Glossary of Terms Absorption Line a Dark Line at a Particular Wavelength Superimposed Upon a Bright, Continuous Spectrum
    Glossary of terms absorption line A dark line at a particular wavelength superimposed upon a bright, continuous spectrum. Such a spectral line can be formed when electromag- netic radiation, while travelling on its way to an observer, meets a substance; if that substance can absorb energy at that particular wavelength then the observer sees an absorption line. Compare with emission line. accretion disk A disk of gas or dust orbiting a massive object such as a star, a stellar-mass black hole or an active galactic nucleus. An accretion disk plays an important role in the formation of a planetary system around a young star. An accretion disk around a supermassive black hole is thought to be the key mecha- nism powering an active galactic nucleus. active galactic nucleus (agn) A compact region at the center of a galaxy that emits vast amounts of electromagnetic radiation and fast-moving jets of particles; an agn can outshine the rest of the galaxy despite being hardly larger in volume than the Solar System. Various classes of agn exist, including quasars and Seyfert galaxies, but in each case the energy is believed to be generated as matter accretes onto a supermassive black hole. adaptive optics A technique used by large ground-based optical telescopes to remove the blurring affects caused by Earth’s atmosphere. Light from a guide star is used as a calibration source; a complicated system of software and hardware then deforms a small mirror to correct for atmospheric distortions. The mirror shape changes more quickly than the atmosphere itself fluctuates.
    [Show full text]
  • DPF NEWSLETTER - December 31, 1996
    DPF NEWSLETTER - December 31, 1996 To: Members of the Division of Particles and Fields From: Jonathan Bagger, Secretary-Treasurer, [email protected] 1996 DPF Elections Howard Gordon was elected Vice-Chair of the DPF. Pat Burchat and Kay Kinoshita were elected to the Executive Committee. The 1997 members of the DPF Executive Committee and the final years of their terms are Chair: Paul Grannis (1997) Chair-Elect: Howard Georgi (1997) Vice-Chair: Howard Gordon (1997) Past Chair: Frank Sciulli (1997) Secretary-Treasurer: Jonathan Bagger (1997) Division Councillor: Henry Frisch (1997), George Trilling (1998) Executive Board: Pat Burchat (1999), Tom Devlin (1998), Martin Einhorn (1997), Kay Kinoshita (1999), John Rutherfoord (1997), Heidi Schellman (1998) Treasurer of APS Harry Lustig retired as Treasurer of the APS on November 11. At its December meeting, the DPF Executive Committee approved the following statement: The Division of Particles and Fields recognizes the important contributions of Harry Lustig to the American Physical Society and all its members. During his tenure as Treasurer, the Society has regained a sound financial basis through his dedicated and prudent judgment. His counsel has been important far beyond the financial realm. The DPF Executive Committee wishes to sincerely thank him for his many contributions to all its member scientists. Lustig has been replaced by Thomas McIlrath, Associate Dean for Research and Graduate Studies at the University of Maryland, College Park. McIlrath is a professor in the Institute for Physical Science and Technology at the University of Maryland and a staff physicist for the National Institute of Standards and Technology in Gaithersburg.
    [Show full text]
  • Interaction Point December 2000, Vol
    Events and Happenings in the SLAC Community Interaction Point December 2000, Vol. 11 ,No. 12 SSRL Users Showcase Success THE 27TH ANNUAL SSRL Users' Meeting last month highlighted recent achievements and advancements in science and technology generated by research done at the Synchrotron Lab. Pat Dehmer, Director of the DOE ct Office of Basic Energy Sciences, commented on "the bO good BES budget news" and the favorable review by the Basic Energy Sciences Advisory Committee (BESAC) panel on the linac coherent light source (LCLS) conceptual design. 0 After SLAC Director Jonathan Dorfan welcomed 0 participants, SSRL Associate Director Keith Hodgson P!S gave an overview of achievements and activities for the past year. Jo St6hr's presentation on the first five LCLS experiments was greeted with excitement, in anticipation of the potential of that machine. The second session was devoted to X-Ray I he rarrelW. Lytle Awara was presentea to Roger rrtnce (ExxonMobil) at the Users' Meeting dinner. Prince was Materials Science with talks on x-ray imaging selected for being an "outstanding industrial scientist techniques and state-of-the-art photoemission studies. making important technical and scientific discoveries Katharina Baur (SSRL) discussed the research studies using synchrotron radiation and being remarkably underway to analyze trace contamination on the surface effective at fostering collaborations between industrial of practical silicon wafers using the technique of Total and academic users and SSRL staff " Graham George Reflection X-Ray Fluorescence (TXRF). Several (SSRL) made the presentation and went down an amusing semiconductor companies are involved in this research laundry list of Prince's experimental sample interests from sulfur in fuels to bee pollen.
    [Show full text]
  • Memories of a Theoretical Physicist
    Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.
    [Show full text]
  • January 1998 Communication, APS Centennial Are Sessler’S Top Priorities in 1998
    Education Outreach A P S N E W S Insert JANUARY1998 THE AMERICAN PHYSICAL SOCIETY VOLUME 7, NO 1 APS NewsTry the enhanced APS News-online: [http://www.aps.org/apsnews] Langer Chosen as APS Vice- Shuttle Physics President in 1997 Election embers of The view, page 2). M American Physi- In other election re- cal Society have elected sults, Daniel Kleppner of James S. Langer, a profes- the Massachusetts Insti- sor of physics at the tute of Technology was University of California, elected as chair-elect of Santa Barbara, to be the the Nominating Com- Society’s next vice-presi- mittee, which will be dent. Langer’s term chaired by Wick Haxton begins on January 1 , (University of Washing- when he will succeed ton) in 1998. The Jerome Friedman (Massa- Nominating Committee chusetts Institute of selects the slate of candi- Technology), who will dates for vice-president, become president-elect. general councillors, and Langer will become APS president in its own chair-elect. Its choices are then 2000. The 1998 president is Andrew Sessler voted on by the APS membership. Beverly (Lawrence Berkeley Laboratory) (see inter- K. Berger (Oakland University), Cynthia McIntyre (George Mason University), Roberto Peccei (University of California, Life APS member, Roger K. Crouch, a payload specialist aboard the 83rd flight of the Los Angeles), and Helen Quinn (Stanford United States Space Shuttle, Columbia, volunteered to take with him an APS paperweight Inside Linear Accelerator Center) were elected commemorating the 100 year anniversary of the electron and 50 year anniversary of the News as general councillors. transistor.
    [Show full text]