THE MYSTERY OF THE MISSING ANTIMATTER Books in the SCIENCE ESSENTIALS series bring cutting-edge science to a general audience. The se- ries provides the foundation for a better understanding of the scientific and technical ad- vances changing our world. In each volume, a prominent scien- tist—chosen by an advisory board of National Academy of Sciences members—conveys in clear prose the fundamental knowledge underlying a rapidly evolving field of scientific en- deavor. The Mystery of the Missing Antimatter Helen R. Quinn and Yossi Nir Illustrations by Rutu Modan Princeton University Press Princeton & Oxford Copyright 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved ISBN: 978-0-691-13309-6 Library of Congress Control Number: 2007934402 British Library Cataloging-in-Publication Data is available This book has been composed in Adobe Garamond and Caflisch Printed on acid-free paper ∞ press.princeton.edu Printed in the United States of America 10987654321 To Tsafra and Dan This page intentionally left blank CONTENTS Acknowledgments xi 1. Prelude: The Mystery of the Missing Antimatter 1 2. Constant Physics in an Evolving Universe 7 Universal Laws 7 Hubble and the Expanding Universe 8 Red-shifts: Evidence for an Expanding Universe 12 Numbers Large and Small 17 What Do We Mean by “Universe”? 19 3. As the Universe Expands 21 Running the Clock Forward: Radiation 21 Running the Clock Forward: Dark Matter 26 Running the Clock Forward: Light Nuclei 29 Running the Clock Forward: Matter and Antimatter 32 4. What Is Antimatter? 36 What Is Matter? 36 Dirac Introduces Antimatter 42 Experiments Confirm That Antimatter Exists 45 Radioactive Decays of Nuclei 48 5. Enter Neutrinos 51 Pauli: The Beta Decay Puzzle 51 Fermi: The Theory of Neutrinos Develops 53 Cowan and Reines: Neutrinos Detected 55 vii viii contents 6. Mesons 57 Yukawa and the Pi-Meson 57 Strange Mesons, Strange Quantum Concepts 61 7. Through the Looking Glass 63 What Physicists Mean by the Term Symmetry 63 A Gedanken Experiment 64 The Actual Experiment 67 8. Through the Looking Antiglass 73 Another Gedanken Experiment 73 Cronin and Fitch: Matter and Antimatter Do Not Follow the Same Laws 75 9. The Survival of Matter 80 Pauli’s Other Letter: Initial Conditions on the Universe 80 Sakharov: The Conditions Needed to Develop an Imbalance 84 Cosmology with Sakharov’s Conditions Met: Baryogenesis 88 10. Enter Quarks 91 Quarks 91 Why Don’t We See the Quarks? 96 What about Dark Matter? 100 The Missing Charm, the Surprising Tau 101 The Standard Model: Particles and Interactions 107 11. Energy Rules 111 Stored Energy, Forces, and Energy Conservation 111 Force Fields Permeating Space 114 Field Theory and the Energy Function 116 12. Symmetry Rules 121 Symmetries as Answers to the Question “Why?” 121 Symmetries and Conservation Laws 123 Space-Time Symmetries 124 Gauge Symmetries 126 Discrete Symmetries 128 Baryon and Lepton Number Conservation? 130 contents ix 13. Standard Model Gauge Symmetries 132 The Symmetry behind the Electromagnetic Interaction 132 The Symmetry behind the Strong Interaction 134 The Symmetry behind the Weak Interaction 137 14. A Missing Piece 140 The Puzzle of Particle Masses 140 How Do We Describe Nothing? 146 At Last, CP Violated in the Standard Model 153 15. It Still Doesn’t Work! 159 Running the Clock Forward: The Standard Model 159 Now What? 163 16. Tools of the Trade 168 Accelerators 168 Detectors 172 Data Handling and Analysis 177 How Projects Develop 178 17. Searching for Clues 180 Where Are We Now? 180 Testing the Standard Model in B-Meson Decays 182 Oddone: How to Build B Factories? 184 Running the B Factories: The First Test 190 18. Speculations 194 Why Are We Never Satisfied? 194 Grand Unified Theories 195 Supersymmetry 201 Way beyond the Standard Model 204 19. Neutrino Surprises 206 Davis, Bahcall, Koshiba: Solar Neutrinos 206 Quantum Neutrino Properties 214 20. Following the New Clues 222 Some Things We Know 222 Some Things We Speculate About 225 Fitting It All Together 227 21. Finale 231 x contents Appendix: A Timeline of Particle Physics and Cosmology 233 Perspective 233 Relevant Nineteenth-Century Developments 234 1900–1930: Development of Quantum Ideas, Beginnings of Scientific Cosmology 238 1930–1950: New Particles, New Ideas 245 1930–1960s: The Advent of Accelerator Experiments—The Particle Explosion; Implications of Expanding Universe Explored 249 1964–1973: Formulation of the Modern View of Particles and the Universe 256 Two Standard Models Emerge—Particles and Cosmology 263 Index 273 ACKNOWLEDGMENTS We are indebted to many colleagues with whom we have worked on and discussed aspects of the science we describe in this book. We owe a particular debt to those at Stanford Linear Accelerator Center and at the Weizmann Institute and to the members of the BaBar collaboration. We have no doubt gathered tips on how to present these ideas by listening to many others do so. We have also learned by teaching; our students, be they graduate students or high school teachers in a workshop, have helped us develop good explanations by asking good questions. This book has been a long project and in that time it has benefited greatly from the comments of several people who have read parts of the manuscript—in particular we appreciate the detailed input of John Bingham, Lesley Wolf, and Sal Glynn. The lecture by Abraham Pais, “Paul Dirac: Aspects of his life and work,” at the dedication of a plaque to Dirac in Westminster Abbey (published in Paul Dirac, the Man and His Work,” edited by Peter Goddard, Cambridge University Press) provided much of our knowledge about the early days of Dirac’s equation and much else from this early period of quantum theory. Bram’s book on Einstein, Subtle Is the Lord (Oxford University Press) was another useful and authoritative reference for us. The timeline section of this book began as a particle physics timeline published as chapter 10 of the book The Charm of Strange Quarks by R. Michael Barnett, Henri Mu¨hry, and Helen Quinn. We are grateful for the permission of the other authors and the publishers to use this starting xi xii acknowledgments point (copyright AIP Press, 2000, used with kind permission of Springer Science and Business Media). The cosmology sections of this timeline owe much to web searches, and particularly to the “BrainyEncyclopedia” timeline of cosmology. The Nobel Prize website was useful in giving us biographical information on Nobel Prize winners. THE MYSTERY OF THE MISSING ANTIMATTER This page intentionally left blank PRELUDE: THE MYSTERY OF 1THE MISSING ANTIMATTER In the beginning—what was the beginning? Every culture asks this ques- tion. Traditionally each finds some answer, a creation myth, a cosmology. These stories satisfy an innate human longing to know about our origins. Only recently has our scientific understanding of the history of the Uni- verse progressed to the point that we can begin to formulate a scientifically based answer—a scientific cosmology. We know that the Universe is evolving and we understand many facets of its history. We know its age, about fourteen billion years! We can ask, and often even answer, detailed questions about the very earliest times, times immediately after the Big Bang. We can test our ideas by comparing detailed observation of the Universe to detailed simulation of its evolution built on our modern understanding of physics. Today our technology for probing physics on both the tiniest and the largest imaginable scales can take us closer to the beginning of the known Universe than ever before. Much has been learned. Big questions remain; each new answer reveals new questions. What a wondrous time this is for cosmology. Our story centers on a question that links cosmology and particle physics. Experiments in high energy physics laboratories have demon- strated that, in addition to the stuff we call matter, there is another set of stuff. It is just like matter except with a reversal of charges. It interacts, with itself and with matter, in ways that we understand. Physicists call this stuff antimatter. We make it and study it in our laboratories, but find very little of it in nature. The laws of physics for antimatter are 1 2 chapter 1 almost an exact mirror of those for matter. That makes the imbalance between matter and antimatter in the Universe a deep mystery. This mystery is the central topic of our book. For each type of matter particle there is a matching type of antimatter particle. Given the right conditions, we can convert energy from radiation into a matched pair of newly formed matter and antimatter particles; that is how we produce antimatter in our laboratory experiments. Conversely, whenever an antimatter particle meets its matching matter twin they can both disappear, converting all their energy into a flash of radiation. Thus any antimatter particles produced in the laboratory, or in naturally occur- ring high energy processes, disappear again very shortly. In a matter- dominated environment their chances for longevity are very slim! In probing the Universe today, experiments from the ground or on satellites can achieve sensitivity to times long before any structure and form evolved within it. They observe radiation that has been traveling through space for a very long time, almost as long as the Universe has existed. We can use these observations to find out about the Universe at the time this radiation began its journey. We can explore even earlier stages by modeling them according to our theories and asking whether the model can match the Universe as we observe it.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages293 Page
-
File Size-