Bbm:978-3-642-85264-0/1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Bbm:978-3-642-85264-0/1.Pdf Prokaryota --------y Eukaryota ----------------------------------------­ SCHIZOBIONTA PHYCOBIONTA, Aigen MYCOBIONTA, Pilze I. Abteilung Archaebacteriophyta, Archaebakterien IV. Abteilung Chlorophyta IX. Abteilung Myxomycophyta, Schlelmpilze II. Abteilung Eubacteriophyta, Bakterien 1. Klasse Chlorophyceae, GriJnslgen 1. Klasse Myxomycetes, Echte Schleimpllze 1. Klasse gram-negative Schizomycetes 1, Unt.rklass. ChlsmydophycldBe 1. Ordnung Protosteliales 2. Klasse gram-positive Schizomycetes 1. Ordnung Volvocafes 2. Ordnung Ceratiomyxales III. Abteilung Cyanophyta, Blaualgen 2. Ordnung Tetrasporales 3. Ordnung Liceales 1. Klasse Cyanophyceae, Blaualgen, Cyanobakterien 3. Ordnung Chlorococcales 4. Ordnung Trichiales 1, Ordnung Chlorococcales 5. Ordnung Echinosteliales 2. Unterklasse U/vophycidae 2. Ordnung Chamaesiphonales 6. Ordnung Stemonitales 1. Ordnung Cadio/a/es 3. Ordnung Hormogonales 7. Ordnung Physarafes 2. Ordnung UJva/es 2. Klasse Labyrlnthulomycetes, Nelzschlelmpilze Anhang: Prochlorophyta 3. Ordnung Cladophorales 4. Ordnung Siphonales 1. Ordnung LabyrinthulomycetaJes 2. Ordnung Hydramyxales 3, Unterklas.e Chlorophyclds8 1. Ordnung Chaetophoral.s 3. Klasse Acrasiomycetes, Zelllge Schle/mpllze 2. Ordnung OedogoniaJes Ordnung Acrasiales 2, Klasse ConjugstophyceBe, Jochalgen 4. Klasse Plasmodiophoromycetes, 1. Ordnung Desmidia/es Parasltlsche Sch/eimpflze 2. Ordnung Zygnemales Ordnung Pfasmodiophorales 3, Kla.se Charophycese, Armleuchterslgen X. Abteilung Oomycota, Aigenplize 1. Ordnung Coleochaetales 1, Klasse Oomycele. 2. Ordnung Charal.s 1. Ordnung Saprolegniafes V. Abteilung Euglenophyta 2. Ordnung Peronosporales 3. Ordnung Leptomitales Klasse Euglenophyceae 4. Ordnung Lagenidiales Ordnung Euglena/es VI. Abteilung Dinophyta XI. Abtellung Eumycota, Echte Pilze Klasse Oinophyceae 1. Klasse TrJchomyc8tes 1. Ordnung Desmocontafes Ordnung TrichomycetaJes 2. Ordnung Peridiniales 2, Kla.s. Hyphochylrlomyceles 3. Ordnung DinococcBles Ordnung Hyphoehytriales 4. Ordnung Dinotrichales 3, Klasse Chytrldlomyceles VII. Abteilung Chromophyta 1. Ordnung Chytridiales 2. Ordnung Blastocladiafes 1. Klasse ChrysophycBae 3. Ordnung Monob/epharidales 1. Unterkla~se Haplophycidse 1. Ordnung Prymnesiales 4. Klasse Zygomycetes 2. Ordnung Coccolithophora/es 1. Ordnung Mucorales 2. Ordnung Entomophthora/es 2. Unterklasse Chrysophycidae 1. Ordnung Chrysomonadales 5. Klasse Ascomycetes, Sch/suchpflze 2. Ordnung Rhizochrysidales 1. Unterklasse Protllscomycetldafl, 3. Ordnung Chrysocapsales H.'ellrtige Aacomyceten 4. Ordnung Chrysophaerales 1. Ordnung Endomycetales 5. Ordnung Chrysotrichales 2. Unterklasse Euascomycetida8, 2. Klass. Xanthophycese (Heteroconlse) Echle Schlauchpllze 1. Ordnung Heterochloridales 1. Ordnung Eurotiales 2. Ordnung Rhizochloridales 2. Ordnung Erysipha/es 3. Ordnung Hetarogloeales 3. Ordnung Pezizales 4. Ordnung Haterococcales 4. Ordnung Tubera/es 5. Ordnung Heterotricha/es 5. Ordnung Helotiales 6. Ordnung HeterosiphonaJes 6. Ordnung PhacidiaJes 7. Ordnung Sphaeriales 3. Klasse Baclllar;ophyceae, Dlatomeen Tafel I A. Pflanzen reich 8. Ordnung Clavicipilales 1. Ordnung Centrales 9. Ordnung Pseudosphaer;ales 2. Ordnung Pennales Diese Tafel soli einen Uberblick Ober die ver­ 10. Ordnung Taphrinafes 4. Klasse Phaeophyceae, Brauna/gen 6. Klasse Basidiomycetes schiedenen Gruppen des Pflanzenreiches vermit· 1. Ordnung Ectocarpales 1. Unterkla••• Helerobasidlomycelldae teln, Die Anordnung und Gliederung dieser Grup· 2. Ordnung SphacelariaJBs 1. Ordnung Uredinales pen ist keineswegs unumstritlen, da die Verwandt­ 3. Ordnung Cutleriales 2. Ordnung Ustilaginafes schaftsverhaltnisse vielfach noch nicht ausreichend 4. Ordnung Tilopteridales 3. Ordnung Tilletiales 5. Ordnung Dietyo tales geklart sind, Die systematische Einteilung einiger 4. Ordnung rremella/es 6. Ordnung Chordariales Verwandtschaftskreise wurde aus der jeweiligen 5. Ordnung Auriculariales 7. Ordnung Sporochnales Spezialliteratur Obernommen. Die neu entdeckten 6. Ordnung Exobasidiales 8. Ordnung Desmarestiales Prokaryoten·Gruppen der Archaebacteria und der 7. Ordnung Daerymyeetales 9. Ordnung Dictyosiphonales Prochlorophyta sind noch nicht eingehend genug 10. Ordnung Laminaria/es 2. Unterklasse Homobasidiomycetldae untersucht, urn eine Kategorisierung zu rechtferti· 11. Ordnung Fuca/es Oberordnung Por/anae gen, Die Pilze (Mycobionta) werden heute vor allem 1. Ordnung Aphyllophorales auf Grund biochemischer Befunde verschiedentlich VIII. Abteilung Rhodophyta 2. Ordnung Sehizophyllales als eigenes dritles "Naturreich" innerhalb der Orga· Klasle Florldeophyceae, Rota/gen 3. Ordnung HymenochaetaJes nismen betrachtet und als Gruppe neben die Pflan· 1. Unterklasse Bangiophycidae 4. Ordnung TeJephorales 5. Ordnung Cantharellales zen und Tiere gesteill. Bei den Pteridophyta und den Ordnung Bangia/es 6. Ordnung Polyporales Gymnospermae wurden die ausgestorbenen, nur 2, Unterkl.sse Florldeophycidae Uberordnung Agaricanae fossil bekannten Gruppen mit aufgenommen, sie 1. Ordnung Nema/ionaJes 1.0rdnungAgaricales wurden besonders gekennzeichnet (t); die Gymno­ 2. Ordnung Gelidiales 2. Ordnung Russulales spermae werden heute oft nicht mehr als einheitliche 3. Ordnung Cryptonemiales 3. Ordnung Boletales 4. Ordnung Gigartinales Gruppe angesehen, Oberordnung Lycoperdanae 5. Ordnung Rhodymeniales 1. Ordnung Lycoperdales 6. Ordnung Caram/ales 2. Ordnung Geastrales 3. Ordnung Nidulariales 4. Klasse Filicstse, Fame 6. Unterklasse PlumbaglnldaB 4. Ordnung Phallales 1. Unterklasse Primofilicidaet 1. Ordnung Plumbaginales 1. Ordnung ProtopteridBles Anhang: Deuteromycetes, Fungl lmperfecti 7. Unterklasse ROBidae 2. Ordnung Coenopteridales 1. Ordnung Rosales 1. Ordnung Moniliales 3. Ordnung Cladoxylales 2. Ordnung Melanconiales 2. Ordnung Ha/oragales 3. Ordnung Sphaeropsidales 2. Unterklasse Eusporsngi/dae 3. Ordnung Podostemonales 1. Ordnung Ophiog/ossa/es 4. Ordnung Myrtales XII. Abteilung Lichenes, Flechten 2. Ordnung Marattiales 5. Ordnung Proteales 1. Klasse Ascolichenes 6. Ordnung Rhamnales 3. Unterklasse Leptosporanglldae (Flllcidae) 1. Ordnung Arthoniales 7 . Ordnung Ce/astrales 1. Ordnung Osmunda/es 2. Ordnung Verrucariales 8. Ordnung Euphorbia/es 2. Ordnung Filicafes 3. Ordnung Pyrenulales 9. Ordnung Santafales 3. Ordnung Salviniales 4. Ordnung Caliciales 10. Ordnung Rafffesiales 4. Ordnung Marsileales 5. Ordnung Graphidales 11 . Ordnung Rutales 6. Ordnung Lecanorales 12. Ordnung Fabales XV. Abteilung Spermatophyta, 13. Ordnung SapindaJes 2. Klasse Basidlollchenes Sam en pflanzen 14. Ordnung Polygalal.s Ordnung Corales 1. Unterabteilung Gymnospermae, 15. Ordnung Geraniales BRYOBIONTA, Moose Nacktsamer 16. Ordnung Cornales 17.0rdnungApiales XIII. Abtellung Bryophyta, Moose 1. Klasse Pteridospermae (Lyginopteridalae), SBmenfarnet B. Unterklasse Dil/enl/dae 1. Klasse Anthocerotae, Hornmoose 1. Ordnung Dilleniales Ordnung Anthocerotales 1. Ordnung Lyginoperidales 2. Ordnung Cayloniales 2. Ordnung Theales 2. Klasse Hepaticae, Lebermoose 3. Ordnung Nepentha/es 2. Klasse Cycadatae, Palm/arne 1. Unterklasse Marchantildae 4. Ordnung Malva/es 1. Ordnung Cycadales 1. Ordnung Sphaerocarpales 5. Ordnung Capparafes 2. Ordnung Nilssonialest 2. Ordnung Monoe/eafes 6. Ordnung Violsles 3. Ordnuf"ftl Marchantiales 3. Klasse Bennett/tatBet 7. Ordnung Salicsles 1. Ordnung Bennettitales 8. Ordnung Bata/es 2. Unterklasse Jungermaniidae 2. Pentoxy/ales 9. Ordnung Ebenales 1. Ordnung Metzgeriales Ordnung 10. Ordnung Erica/es 2. Ordnung JungermaDiales 4. Klasse Ginkgostae 11. Ordnung Primulales 3. Ordnung Calobryales Ordnung Ginkgoales 4. Ordnung Takakiales 9. Unterklasse LamiJdae 5, Klass. Cordaitatae t 1. Ordnung Gentiana/es 3. Klasse MUBC/, Laubmoose Ordnung Cordaitales 2. Ordnung Rubia/as 1. Unterklasse Sphagnidae, Torfmoose 6, Klass. Conlferae (Pinatae) 3. Ordnung Dipsaca/es Ordnung Sphagnales 1. Unterklasse Pin/dae 4. Ordnung Lamia/es 2. Unterklasse Andreaeidae, Klaffmoose 1. Ordnung Voltzialest 5. Ordnung Scrophularia les Ordnung Andreaeales 2. Ordnung Pina/es 6. Ordnung So/ana/as 3. Unterklasse Bryidae 2. Unterklasse Tax/dae 10. Unterklasse Aster/dae Uberordnung Dicrananae Ordnung Taxa/es 1. Ordnung Ca/ycerales 1. Ordnung Dicranales (incl. Archidiales) 7. Klasse Gnetatse 2. Ordnung Campanulales 2. Ordnung Fissidentales 1. Ordnung Welwitschia/es 3. Ordnung Astera/es 3. Ordnung Pottiales 2. Ordnung Ephedrales 4. Ordnung Grimmiales 2. Klasse Monocotyledonsae, Elnkelmbliiltr;ge 3. Ordnung Gnetales 1. Unterklasse Helob/ae Uberordnung Bartramianae 1. Ordnung Alismatales Ordnung Bartramiales 2. Unterabteilung Angiospermae, 2. Ordnung Najadales Uberordnung Funarianae Decksamer 3. Ordnung Triuridales Ordnung Funariales Oberordnung Schistosteganae 1. Klasse Dicotyledoneae, ZweikelmblifiUrige 2. Unterklasse Liliidse 1. Unterklasse MBgnoliidae Ordnung $chistostegales 1. Ordnung Dioscorea/es 1. Ordnung Magnoliales Uberordnung Bryanae 2. 0rdnungAsparaga/es 2. Ordnung Laurales Ordnung Bryales 3. Ordnung Liliales 3. Ordnung Aristoloch;ales Uberordnung Hypnobryanae 4. Ordnung Paeoniales 3. Unterklasse Orchid/daB 1. Ordnung Isobrya/es 1. Ordnung Orchidales 2. Ordnung Hookeriales 5. Ordnung Piperales 3. Ordnung Hypnobrya/es 6. Ordnung Nymphaeales 4. Unterklasse Zinglberidae Uberordnung Buxbaum/anae 2. Unterklasse RsnuncuJ/dae 1, Ordnung Zingiberales Ordnung Buxbaumiales 1. Ordnung Ranunculales 5. Unterklasse Commelinldse Uberordnung Polytrichanae 2. Ordnung Ne/umbonales 1. Ordnung Gommelinsles 1. Ordnung Tetraphidales 3. Ordnung Papaverales 2. Ordnung Bromelia/es 2. Ordnung Dawsoniales 3. Unterklasse Hamamelididae
Recommended publications
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Zygote Gene Expression and Plasmodial Development in Didymium Iridis
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 8-25-2019 Zygote gene expression and plasmodial development in Didymium iridis Sean Schaefer DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Schaefer, Sean, "Zygote gene expression and plasmodial development in Didymium iridis" (2019). College of Science and Health Theses and Dissertations. 322. https://via.library.depaul.edu/csh_etd/322 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Zygote gene expression and plasmodial development in Didymium iridis A Thesis presented in Partial fulfillment of the Requirements for the Degree of Master of Biology By Sean Schaefer 2019 Advisor: Dr. Margaret Silliker Department of Biological Sciences College of Liberal Arts and Sciences DePaul University Chicago, IL Abstract: Didymium iridis is a cosmopolitan species of plasmodial slime mold consisting of two distinct life stages. Haploid amoebae and diploid plasmodia feed on microscopic organisms such as bacteria and fungi through phagocytosis. Sexually compatible haploid amoebae act as gametes which when fused embark on an irreversible developmental change resulting in a diploid zygote. The zygote can undergo closed mitosis resulting in a multinucleated plasmodium. Little is known about changes in gene expression during this developmental transition. Our principal goal in this study was to provide a comprehensive list of genes likely to be involved in plasmodial development.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • A First Contribution to the Knowledge of Mycetozoa from Aveyron (France)
    Carnets natures, 2021, vol. 8 : 67-81 A First Contribution to the knowledge of Mycetozoa from Aveyron (France) Jonathan Cazabonne¹, Michel Ferrières² et Jean-Louis Menos³ Abstract A first official taxonomic checklist of myxomycetes from the French department Aveyron is presented. As the result of data collected by the Mycological and Botanical Association of Aveyron (AMBA), literature and online research, a total of 21 species representing 14 genera, 7 families and 5 orders, were recorded. The following information for each taxon was reported: Latin name, author(s), Basionym, locality (if known) and record sources. Macrophotographs of some new records are also appended. This work is a contribution to the knowledge of myxomycetes of Aveyron, which will eventually be integrated into a national checklist project of French myxomycetes. Key words: Biodiversity, inventory, taxonomy, Myxomycetes, Occitanie. Résumé Une première contribution à la connaissance des Mycetozoa de l’Aveyron (France) Une première liste officielle sur les Myxomycètes du département français de l’Aveyron est présentée. Au total, 21 espèces représentant 14 genres, 7 familles et 5 ordres, ont été listées, grâce aux données collectées par l’Association Mycologique et Botanique de l’Aveyron (AMBA) et à un travail de recherche bibliographique. Les informations suivantes pour chaque taxon ont été indiquées : nom latin, auteur(s), basionyme, localité (si connue) et les références. Des macrophotographies de quelques nouveaux taxa aveyronnais sont aussi annexées. Ce travail est une contribution à la connaissance des myxomycètes d’Aveyron, qui sera éventuellement intégré à un projet de checklist nationale des Myxomycètes de France. Mots clés : Biodiversité, inventaire, taxonomie, Myxomycètes, Occitanie.
    [Show full text]
  • Chytridiomycosis Causes Amphibian Mortality Associated with Population Declines in the Rain Forests of Australia and Central America
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9031–9036, July 1998 Population Biology Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America LEE BERGERa,b,c,RICK SPEAREa,PETER DASZAKd,D.EARL GREENe,ANDREW A. CUNNINGHAMf,C.LOUISE GOGGINg, RON SLOCOMBEh,MARK A. RAGANi,ALEX D. HYATTb,KEITH R. MCDONALDj,HARRY B. HINESk,KAREN R. LIPSl, GERRY MARANTELLIm, AND HELEN PARKESb aSchool of Public Health and Tropical Medicine, James Cook University, Townsville, Queensland 4811, Australia; bAustralian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organization, Ryrie Street, Geelong, Victoria 3220, Australia; dSchool of Life Sciences, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, United Kingdom; eMaryland Animal Health Laboratory, College Park, MD 20740; fInstitute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom; gCommonwealth Scientific and Industrial Research Organization, Marine Research, Hobart, Tasmania 7001, Australia; hVeterinary Clinical Centre, University of Melbourne, Werribee, Victoria 3030, Australia; iCanadian Institute for Advanced Research, Program in Evolutionary Biology, National Research Council of Canada, Halifax, NS Canada B3H 3Z1; jConservation Strategy Branch, Queensland Department of Environment, Atherton, Queensland 4883, Australia; kConservation Resource Unit, Queensland Department of Environment, Moggill, Queensland 4070, Australia; lDepartment of Zoology, Southern Illinois University, Carbondale, IL 62901-6501; and mAmphibian Research Centre, 15 Suvla Grove, Nth Coburg, Victoria 3058, Australia Edited by Robert May, University of Oxford, Oxford, United Kingdom, and approved May 18, 1998 (received for review March 9, 1998) ABSTRACT Epidermal changes caused by a chytridiomy- primary degraders or saprobes, using substrates such as chitin, cete fungus (Chytridiomycota; Chytridiales) were found in plant detritus, and keratin.
    [Show full text]
  • Supplemental Material
    Supplemental material Supplementary Figures ........................................................................................................................................... 2 Figure S1: GC distribution per origin for all nine diatom species. ......................................................................................... 2 Figure S2: Distribution of HGT genes across chromosome-level diatom genomes. .............................................................. 3 Figure S3: CDS length per age category per origin across species. ........................................................................................ 4 Figure S4: Gene ontology enrichment of HGT genes across diatoms. ................................................................................... 5 Figure S5: Functional domain enrichment of HGT genes across diatoms.............................................................................. 6 Figure S6: Correlation between diatom gene abundance and nitrate concentration at surface depth. ............................... 7 Figure S7: Correlation between diatom gene abundance and sampling day length at surface depth. ................................. 8 Figure S8: Correlation between diatom gene abundance and water temperature at surface depth. .................................. 9 Figure S9: Correlation between diatom gene abundance and iron concentration at surface depth. ................................. 10 Figure S10: Gene organization of the bifid shunt operon. .................................................................................................
    [Show full text]
  • October-2009-Inoculum.Pdf
    Supplement to Mycologia Vol. 60(5) October 2009 Newsletter of the Mycological Society of America — In This Issue — Feature Article Fungal zoospores are valuable food Fungal zoospores are valuable food resources in aquatic ecosystems resources in aquatic ecosystems MSA Business President’s Corner By Frank H. Gleason, Maiko Kagami, Secretary’s Email Express Agostina V. Marano and Telesphore Simi-Ngando MSA Officers 2009 –2010 MSA 2009 Annual Reports Fungal zoospores are known to contain large quantities Minutes of the 2009 MSA Annual Council Meeting Minutes of the MSA 2009 Annual Business Meeting of glycogen and lipids in the form of endogenous reserves. MSA 2009 Award Winners Lipids are considered to be high energy compounds, some of MSA 2009 Abstracts (Additional) which are important for energy storage. Lipids can be con - Mycological News A North American Flora for Mushroom-Forming Fungi tained in membrane bound vesicles called lipid globules Marine Mycology Class which can easily be seen in the cytoplasm of fungal Mycohistorybytes Peripatetic Mycology zoospores with both the light and electron microscopes Student Research Opportunities in Thailand (Munn et al . 1981; Powell 1993; Barr 2001). Koch (1968) MSA Meeting 2010 MycoKey version 3.2 and Bernstein (1968) both noted variation in the size and MycoRant numbers of lipoid globules within zoospores in the light mi - Dr Paul J Szaniszlo croscope. The ultrastructure of the lipid globule complex Symposium : Gondwanic Connections in Fungi Mycologist’s Bookshelf was carefully examined by Powell and Roychoudhury A Preliminary Checklist of Micromycetes in Poland (1992). Fungal Pathogenesis in Plants and Crops Pathogenic Fungi in the Cryphonectriaceae Preliminary studies reviewed by Cantino and Mills Recently Received Books (1976) revealed a rich supply of lipids in the cells of Blasto - Take a Break cladiella emersonii .
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Plenary Lecture & Symposium
    PLENARY LECTURE & SYMPOSIUM SYMPOSIuM From genomics to flagellar and ciliary struc - MONDAY 29 JulY tures and cytoskeleton dynamics (by FEPS) PlENARY lECTuRE (ISoP Honorary Member lECTuRE) Chairs (by ISoP) Cristina Miceli , University of Camerino, Camerino, Italy Helena Soares , University of Lisbon and Gulbenkian Foun - Introduction - John Dolan , CNRS-Sorbonne University, Ville - dation, Lisbon, Portugal franche-sur-Mer, France. Jack Sunter - Oxford Brookes University, Oxford, UK- Genome Tom Fenchel University of Copenhagen, Copenhagen, Den - wide tagging in trypanosomes uncovers flagellum asymmetries mark Dorota Wloga - Nencki Institute of Experimental Biology, War - ISoP Honorary Member saw, Poland - Deciphering the molecular mechanisms that coor - dinate ciliary outer doublet complexes – search for “missing Size, Shape and Function among Protozoa links” Helena Soares - University of Lisbon and Polytechnic Institute of Lisbon, Lisbon, Portugal - From centrosomal microtubule an - SYMPOSIuM on ciliate biology and taxonomy in memory choring and organization to basal body positioning: TBCCD1 an of Denis lynn (by FEPS/ISoP) elusive protein Chairs Pierangelo luporini , University of Camerino, Camerino, Italy Roberto Docampo , University of Georgia, Athens, Georgia TuESDAY 30 JulY Alan Warren - Natural History Museum, London, UK. The bio - logy and systematics of peritrich ciliates: old concepts and new PlENARY lECTuRE (PAST-PRESIDENT LECTURE, by ISoP) findings Rebecca Zufall - University of Houston, Houston, USA. Amitosis Introduction - Avelina Espinosa , Roger Williams University, and the Evolution of Asexuality in Tetrahymena Ciliates Bristol, USA Sabine Agatha - University of Salzburg, Salzburg, Austria. The biology and systematics of oligotrichean ciliates: new findings David Bass and old concepts Natural History Museum London, London & Cefas, Weymouth, laura utz - School of Sciences, PUCRS, Porto Alegre, Brazil.
    [Show full text]
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]
  • Cutleriaceae, Phaeophyceae)Pre 651 241..248
    bs_bs_banner Phycological Research 2012; 60: 241–248 Taxonomic revision of the genus Cutleria proposing a new genus Mutimo to accommodate M. cylindricus (Cutleriaceae, Phaeophyceae)pre_651 241..248 Hiroshi Kawai,1* Keita Kogishi,1 Takeaki Hanyuda1 and Taiju Kitayama2 1Kobe University Research Center for Inland Seas, Kobe, and 2Department of Botany, National Museum of Nature and Science, Amakubo, Tsukuba, Japan branched, compressed or cylindrical thalli (e.g., SUMMARY C. chilosa (Falkenberg) P.C. Silva, C. compressa Kützing, C. cylindrica Okamura and C. multifida Molecular phylogenetic analyses of representative Cut- (Turner) Greville); (ii) flat, fan-shaped thalli (e.g. C. leria species using mitochondrial cox3, chloroplast adspersa (Mertens ex Roth) De Notaris, C. hancockii psaA, psbA and rbcL gene sequences showed that E.Y. Dawson, C. kraftii Huisman and C. mollis Allender C. cylindrica Okamura was not included in the clade et Kraft). However, only a sporophytic generation is composed of other Cutleria species including the gen- reported for some taxa and the nature of their gameto- eritype C. multifida (Turner) Greville and the related phytic (erect) thalli are unclear (e.g. C. canariensis taxon Zanardinia typus (Nardo) P.C. Silva. Instead, (Sauvageau) I.A. Abbott et J.M. Huisman and C. irregu- C. cylindrica was sister to the clade composed of the laris I.A. Abbott & Huisman). Cutleria species typically two genera excluding C. cylindrica. Cutleria spp. have show a heteromorphic life history alternating between heteromophic life histories and their gametophytes are relatively large dioecious gametophytes of trichothallic rather diverse in gross morphology, from compressed or growth and small crustose sporophytes, considered cylindrical-branched to fan-shaped, whereas the sporo- characteristic of the order.
    [Show full text]
  • MMA MASTERLIST - Sorted by Taxonomy
    MMA MASTERLIST - Sorted by Taxonomy Sunday, December 10, 2017 Page 1 of 86 Amoebozoa Mycetomycota Protosteliomycetes Protosteliales Ceratiomyxaceae Ceratiomyxa fruticulosa Ceratiomyxa fruticulosa var. fruticulosa Ceratiomyxa fruticulosa var. poroides Ceratiomyxa sp. Mycetozoa Myxogastrea Incertae Sedis in Myxogastrea Liceaceae Licea minima Stemonitidaceae Brefeldia maxima Comatricha pulchella Comatricha sp. Comatricha typhoides Stemonitis axifera Stemonitis fusca Stemonitis sp. Stemonitis splendens Chromista Oomycota Incertae Sedis in Oomycota Peronosporales Peronosporaceae Plasmopara viticola Pythiaceae Pythium deBaryanum Oomycetes Saprolegniales Saprolegniaceae Saprolegnia sp. Peronosporea Albuginales Albuginaceae Albugo candida Fungus Ascomycota Ascomycetes Boliniales Boliniaceae Camarops petersii Capnodiales Capnodiaceae Scorias spongiosa Diaporthales Gnomoniaceae Cryptodiaporthe corni Sydowiellaceae Stegophora ulmea Valsaceae Cryphonectria parasitica Valsella nigroannulata Elaphomycetales Elaphomycetaceae Elaphomyces granulatus Elaphomyces sp. Erysiphales Erysiphaceae Erysiphe aggregata Erysiphe cichoracearum Erysiphe polygoni Microsphaera extensa Phyllactinia guttata Podosphaera clandestina Uncinula adunca Uncinula necator Hysteriales Hysteriaceae Glonium stellatum Leotiales Bulgariaceae Crinula caliciiformis Crinula sp. Mycocaliciales Mycocaliciaceae Phaeocalicium polyporaeum Peltigerales Collemataceae Leptogium cyanescens Lobariaceae Sticta fimbriata Nephromataceae Nephroma helveticum Peltigeraceae Peltigera evansiana Peltigera
    [Show full text]