Dell EMC Poweredge T40 Technical Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quickspecs Pacstation Plus
QuickSpecs PACStation Plus Overview 1. Power Button Array 4. Rear access Panel 2. Internal System Cooling 5. Side access Panel. Support Access only. 3. USB Port with QUAD Access. PACStation Plus — FL – Worldwide — Version 7 — January 1, 2017 Page 1 QuickSpecs PACStation Plus Overview 6. Internal CPU PODS 7. Front Grill and faceplate 8. Video Interface Module 9. External Video System Controller 10. Video Workflow Manager 11. Primary Cable Harness 12. Internal Voltage Regulator 13. USB Transfer Ports 14. External Video Array (See Placement on page 10 for installation process) 15. Network Management Module 16. Screen Management Controller Hot plug. PACStation Plus — FL – Worldwide — Version 7 — January 1, 2017 Page 2 QuickSpecs PACStation Plus Overview Overview Form Factor Tower Operating Systems Preinstalled: Windows 10 Pro 64-bit Windows 10 Pro 64 to Windows 7 Professional 64-bit \Windows 7 Professional 64-bit Windows 8.1 Pro 64-bit OS Supported: Windows 8/8.1 Enterprise 64-bit Windows 7 Enterprise 64-bit Windows 10 Pro 64-bit Windows 10 Pro 64 to Windows 7 Professional 64-bit Available Processors QPI Featuring Intel® Turbo Clock Memory Hyper Name Cores Cache (MB) Speed Intel® vProTM Boost TDP (W) Speed Speed (MT/s) Threading (GT/s) Technology Technology1 (GHz) Intel Core TM i3-5010U 2.1 GHz 2 3 1600 NO YES NO YES 65 Intel Core TM i5-5300U 2.3-2.9 GHz 2 3 1600 NO YES YES YES 65 Intel Core TM i7-5557U 3.1-3.4 GHz 2 4 1600 NO YES YES YES 65 The specifications shown in this column represent the following: (all core maximum turbo steps, one core maximum turbo steps). -
Allgemeines Abkürzungsverzeichnis
Allgemeines Abkürzungsverzeichnis L. -
Dell EMC Poweredge T340 Technical Guide
Dell EMC PowerEdge T340 Technical Guide Regulatory Model: E60S Regulatory Type: E60S001 Dec. 2020 Rev. A07 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2018 - 2020 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 1 Product Overview Topics: • Introduction • New technologies Introduction The Dell EMC PowerEdge T340 is the reliable, easy to manage, and scalable 1-socket tower server for growing businesses and remote offices/ branch offices. New technologies The PowerEdge T340 equipped with Intel® Xeon® E-2100 and E-2200 product family processors support to help run applications faster and support for full-feature remote management (iDRAC9). The T340 is versatile enough to address many customer segments and workloads. Target workloads include ● Small and medium businesses and organizations: Collaboration/sharing productivity applications, databases, web serving, backup/recovery, and mail and messaging. ● ROBO: Applications and workloads specific to the particular industry, e.g. Retail, Healthcare, Finance, Education, etc. The following table shows the list of new technologies offered by the PowerEdge T340: New Technologies Detailed Descriptions Intel® C246 series chipset Please refer to the chipset section for details. Intel® Xeon® processor E- 2100 and E-2200 Product The Intel® processor that works with Intel® C246 series Family chipset. -
2Nd Generation Intel Core Processor Family with Intel 6 Series Chipset Development Kit User Guide
2nd Generation Intel® Core™ Processor Family with Intel® 6 Series Chipset Development Kit User Guide March 2011 Document Number: 325208 About This Document INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Intel processor numbers are not a measure of performance. -
3. System Management Bus
Input/Output Systems and Peripheral Devices 1 3. SYSTEM MANAGEMENT BUS This laboratory work presents the System Management Bus (SMBus). After an over- view of SMBus, bit and data transfers are described, the bus arbitration procedure is present- ed, the differences between SMBus and the I2C bus are highlighted, and several command protocols are detailed. Next, the Intel SMBus controller is presented, including its registers and commands, as well as its use with I2C devices. The applications aim to detect the devices connected to the computer’s SMBus, read the contents of SPD memories present in the sys- tem, and decode the contents of these memories. 3.1. Overview of SMBus System Management Bus (SMBus) is a simple serial bus with only two signal lines. This bus can be used for communication between various system devices and between these devices and the rest of a system. The operating principles of SMBus are similar to those of the I2C bus. There are, however, several differences between the two buses, differences which will be presented later. SMBus represents a control bus for system management and power management op- erations. A system may use the SMBus to transfer messages to and from various devices in- stead of using individual control lines, which allows to reduce pin count and interconnection wires. A device may use the SMBus to provide manufacturer information, provide the device model number, report different types of errors, accept control parameters, and return the de- vice status. SMBus was initially proposed by Intel as a link between an intelligent battery, a charger for the battery and a microcontroller that communicates with the rest of the system. -
The New Intel® Xeon® Processor Scalable Family
Akhilesh Kumar Intel Corporation, 2017 Authors: Don Soltis, Irma Esmer, Adi Yoaz, Sailesh Kottapalli Notices and Disclaimers This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. -
EPC612D8A-TB EPC612D8A EPC612D8 User Manual
EPC612D8A-TB EPC612D8A EPC612D8 User Manual Version 1.1 Published August 2016 Copyright©2016 ASRock Rack INC. All rights reserved. Version 1.1 Published October 2016 Copyright©2016 ASRock Rack Inc. All rights reserved. Copyright Notice: No part of this documentation may be reproduced, transcribed, transmitted, or translated in any language, in any form or by any means, except duplication of documentation by the purchaser for backup purpose, without written consent of ASRock Rack Inc. Products and corporate names appearing in this documentation may or may not be registered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to the owners’ benefit, without intent to infringe. Disclaimer: Specifications and information contained in this documentation are furnished for informational use only and subject to change without notice, and should not be constructed as a commitment by ASRock Rack. ASRock Rack assumes no responsibility for any errors or omissions that may appear in this documentation. With respect to the contents of this documentation, ASRock Rack does not provide warranty of any kind, either expressed or implied, including but not limited to the implied warranties or conditions of merchantability or fitness for a particular purpose. In no event shall ASRock Rack, its directors, officers, employees, or agents be liable for any indirect, special, incidental, or consequential damages (including damages for loss of profits, loss of business, loss of data, interruption of business and the like), even if ASRock Rack has been advised of the possibility of such damages arising from any defect or error in the documentation or product. -
EMC’S Perspective: a Look Forward
The Performance Impact of NVM Express and NVM Express over Fabrics PRESENTATION TITLE GOES HERE Live: November 13, 2014 Presented by experts from Cisco, EMC and Intel Webcast Presenters J Metz, R&D Engineer for the Office of the CTO, Cisco Amber Huffman, Senior Principal Engineer, Intel Steve Sardella , Distinguished Engineer, EMC Dave Minturn, Storage Architect, Intel SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced in their entirety without modification The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney. The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. 3 What This Presentation Is A discussion of a new way of talking to Non-Volatile -
Im Divar Ip 6000 2U
DIVAR IP 6000 2U DIP-6080-00N, DIP-6082-8HD, DIP-6083-8HD en Installation Manual DIVAR IP 6000 2U Table of Contents | en 3 Table of contents 1 Safety precautions 5 1.1 General safety precautions 5 1.2 Electrical safety precautions 6 1.3 ESD precautions 7 1.4 Operating precautions 7 1.5 Important notices 8 1.6 FCC and ICES compliance 8 2 System overview 9 2.1 Chassis features 9 2.2 Chassis components 9 2.2.1 Chassis 10 2.2.2 Backplane 10 2.2.3 Fans 10 2.2.4 Mounting rails 10 2.2.5 Power supply 10 2.2.6 Air shroud 10 2.3 System interface 10 2.3.1 Control panel buttons 11 2.3.2 Control panel LEDs 12 2.3.3 Drive carrier LEDs 12 3 Chassis setup and maintenance 13 3.1 Removing the chassis cover 13 3.2 Installing hard drives 14 3.2.1 Removing hard drive trays 14 3.2.2 Installing a hard drive 15 3.3 Installing an optional floppy or fixed hard drive 16 3.4 Installing or replacing a DVD-ROM drive 17 3.5 Replacing the internal transcoder device 17 3.6 Replacing or installing the front port panel 17 3.7 Installing the motherboard 18 3.8 Installing the air shroud 18 3.9 System fans 19 3.10 Power supply 20 3.10.1 Replacing the power supply 21 3.10.2 Replacing the power distributor 22 4 Rack installation 23 4.1 Unpacking the system 23 4.2 Preparing for setup 23 4.2.1 Choosing a setup location 23 4.2.2 Rack precautions 23 4.2.3 General system precautions 24 4.2.4 Rack mounting considerations 24 4.3 Rack mounting instructions 24 4.3.1 Separating the sections of the rack rails 25 4.3.2 Installing the inner rails 26 4.3.3 Installing the outer rails to the -
Desktop 4Th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family Datasheet – Volume 1 of 2
Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family Datasheet – Volume 1 of 2 July 2014 Order No.: 328897-008 By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. -
SATA Express
1-512-256-0197 www.mindshare.com [email protected] SATA Express Let MindShare Bring “SATA Express” to Life for You MindShare brings the SATA Express course to life through its interactive classroom style and demonstrations. SATA Express bus interface supports both Serial ATA (SATA) and PCI Express (PCIe) storage devices, initially standardized in the SATA 3.2 specification. The SATA Express connector used on the host side is backward compatible with the standard SATA data connector. It also provides multiple PCI Express lanes as a pure PCI Express connection to the storage device. Three options are available for connection of storage devices, 1) Legacy SATA, 2) SATA Express using AHCI, 3) SATA Express using NVMe. This course assumes the student is familiar with both SATA and PCI Express protocol. The course focuses on connector and cable architecture as well as M.2 Device architecture. The course then covers the architecture of both AHCI and NVMe host controllers associated with SATA and PCIe connected storage devices. You Will Learn: • SATA Express connector and cable structure • M.2 devices and sockets/cards • Pertinent AHCI controller and commands • Pertinent NVMe controller and commands • Interrupt handling • Error handling • Power management Course Length: 2 Days Who Should Attend? Hardware designers, software developers, and system validation engineers will all benefit from this course. Both hardware and software requirements of a SATA Express subsystem are detailed and explained through numerous examples. Course Contents: -
BRKINI-2390.Pdf
BRKINI-2390 Data Center security within modern compute and attached fabrics - servers, IO, management Dan Hanson Director UCS Architectures and Technical Marketing Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Recent Press Items © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • x86 Architecture Review • BIOS and Kernel Manipulation • Device Firmware Manipulation • On Server Data Storage Manipulation • Segmentation and Device access • Root of Trust Flow • Policy Control vs. Component Configuration (Cisco UCS and ACI) • Example of Security Offloading: Skyport Systems • Conclusion x86 Architecture Review Many Points of possible attack X86 Reference Legacy Elements • You may see many terms in various articles shown here • Over time, items moving on the CPU itself • Memory • PCIe • Processors/Servers differentiation in some areas • Front Side Bus speeds • Direct Media Interface • Southbridge Configurations BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 X86 Reference Fundamental Architecture • Not shown: Quick Path Interconnect/UltraPath Interconnect for CPU to CPU communications • Varied counts and speeds for multi-socket systems • Current Designs have On-Die PCIe and Memory controllers • Varied numbers and DIMMs in memory channels by CPU • Platform Controller Hub varies and can even offer server acceleration and security functions BRKINI-2390 © 2018 Cisco and/or its affiliates.