Megalocytivirus Infections in Fish, with Emphasis on Ornamental Species1

Total Page:16

File Type:pdf, Size:1020Kb

Megalocytivirus Infections in Fish, with Emphasis on Ornamental Species1 FA182 Megalocytivirus Infections in Fish, with Emphasis on Ornamental Species1 Roy P. E. Yanong and Thomas B. Waltzek2 Introduction ornamental freshwater and marine fishes. In the early 1990s, RSIV was first observed in Japan and since What are the megalocytiviruses? then has been reported primarily in Asian marine finfish. Today, RSIV is reportable to the World The megalocytiviruses are an important group Organization for Animal Health (OIE) and the United (genus) of fish viruses in the family Iridoviridae (the States Department of Agriculture-Animal and Plant iridoviruses). Megalocytiviruses cause systemic Health Inspection Service (USDA-APHIS). The third infections that can result in moderate to heavy losses subgroup TRBIV has been reported predominantly in in many different species of freshwater and marine Asian flounder species. New viral isolates from other fishes in both cultured and wild stocks. In some fish species are currently being evaluated by disease outbreaks, 100% losses have occurred in scientists to determine their relationships to these under one week. Megalocytiviruses have been three main groups. This publication provides disease, reported in fish in the United States as well as other diagnostic, and management information on parts of the world, especially Asia. megalocytiviruses in fish for producers, wholesalers, retailers, and others who work with fish and may be Currently, nearly all isolates from diseased fish unaware of this disease. appear to be strains of the same virus species. Isolates have been divided into three major subgroups based Which fish species are susceptible? on their genetic similarities and differences: a) infectious spleen and kidney necrosis virus (ISKNV); Ornamental finfish species known to be b) red sea bream iridovirus (RSIV); and c) turbot susceptible to megalocytiviruses are listed in Table 1. reddish body iridovirus (TRBIV). Many popular aquarium fish are on this list, including freshwater angelfish (Pterophyllum Strains closely resembling ISKNV have been scalare), other cichlids (Family Cichlidae), reported to cause disease in numerous species of swordtails, sailfin mollies, and other common 1. This document is FA182, one of a series of the Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date December 2010. Visit the EDIS Web site at http://edis.ifas.ufl.edu. 2. Roy P. E. Yanong, associate professor and extension veterinarian, Tropical Aquaculture Laboratory, Ruskin, FL 33570, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, UF/IFAS, Gainesville, FL 32611; and Thomas B. Waltzek, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. U.S. Department of Agriculture, Cooperative Extension Service, University of Florida, IFAS, Florida A. & M. University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Millie Ferrer- Chancy, Interim Dean Megalocytivirus Infections in Fish, with Emphasis on Ornamental Species 2 live-bearers (Family Poeciliidae) and a number of (coelomic distension), ulceration, hemorrhages species of gourami (Family Osphronemidae and (including pinpoint hemorrhages on the skin and Family Helostomatidae). gills), pale gills/anemia, fin erosion, white feces, and heavy mortalities. Numerous marine and freshwater food and game finfish species have also been shown to be Although studies are ongoing, one research susceptible to infection by megalocytiviruses group has suggested that the virus may target and be including: jacks and pompanos (several species, spread by white blood cells or other immune cells in Family Carangidae), mackerels and tuna (several the body (Lee et al. 2009). This may explain why the species, Family Scombridae), grouper (several virus can be found throughout the body in severe species, Family Serranidae), cobia (Rachycentron cases. During necropsy, megalocytovirus-infected canadum), largemouth bass (Micropterus salmoides), fish are often observed to have damage to many barramundi (Lates calcarifer), redfish (Sciaenops internal organs (i.e., tissue death, necrosis) especially ocellatus), hybrid striped bass (Morone saxatilis x the spleen (which is often enlarged), kidney, and M. chrysops), and gray mullet (Mugil cephalus). A liver. Other organs and tissues, including muscles, more complete list is available online at OIEs gonads, heart, gills, and the gastrointestinal tract, may website also be affected. Some fish may have amber or http://www.oie.int/fileadmin/Home/eng/ hemorrhagic fluid visible within the body cavity. Internationa_Standard_Setting/docs/pdf/ 2.3.07_RSIVD.pdf. Concurrent (i.e., occurring at the same time) infections with bacteria, parasites, or fungi may result The first megalocytivirus discovered in a wild in additional disease signs and complicate the North American fish was recently described from the diagnostic process. Unfortunately, most sick fish threespine stickleback (Gasterosteus aculeatus, often have more than one disease contributing to their Family Gasterosteidae) in Canada, where outbreaks conditions. Determining the presence or absence of in 2007–2008 resulted in low mortality. DNA megalocytovirus in a group of diseased fish is studies demonstrate that the cause of this outbreak is important when making decisions about the yet another unique strain of the megalocytivirus disposition of the entire exposed population. (Waltzek et al. 2010), and is not one of the three types mentioned above. How do I tell if my fish has a megalocytivirus infection? Within what temperature range can megalocytiviruses infect fish and Special diagnostic tests are required to confirm a cause disease? diagnosis of megalocytivirus in fish. Only a fish health professional or fish disease diagnostic Megalocytiviruses have been reported to cause laboratory has the equipment and expertise to make disease at water temperatures ranging from this determination. Appropriate diagnostic tests 20–32°C (68–89.6°F). include histopathology, in which a preparation of thin fixed tissue sections are placed on a glass slide, What are typical external and internal stained, and examined under the microscope (figure signs of disease? 1); virus isolation, which requires growing the virus in cell culture; testing for evidence of antibodies Fish infected with megalocytivirus develop made by the fish against the virus; use of an electron clinical signs of disease that are non-specific, microscope to look for viral particles themselves meaning that they are similar to clinical signs (figure 2); and use of polymerase chain reactions observed with many other diseases. These include (PCR) or DNA probes (pieces of genetic material lethargy, loss of appetite, darkening, abnormal that will bind specifically to megalocytiviruses), in swimming (including spinning) or position in the order to reveal evidence of viral DNA. Because these water, increased respiration, distended body cavity are highly specialized tests, not all laboratories are Megalocytivirus Infections in Fish, with Emphasis on Ornamental Species 3 equipped to run them. Contact your local fish health contribute, and therefore a complete review of the professional for diagnostic assistance. facility including water quality records, movement of animals in or out, and a review of husbandry When a fish health professional or pathologist procedures (including nutrition, stocking rates, examines tissues prepared for histopathology, the cleaning and disinfection, and other related most distinctive finding is the presence of large, biosecurity and system management protocols), be bright blue (basophilic) or pale, foamy cells (figure carried out as part of a disease investigation. A 1). These enlarged, infected cells have become virus thorough necropsy carried out by a fish health factories and are typically found in the spleen, professional of representative fish showing clinical kidney, or liver. Other associated pathology, signs of disease should be performed. including dead tissue (necrosis), can be found in just about any organ. Can megalocytivirus infections be confused with any other diseases? Yes. Megalocytivirus infections in fish can cause disease signs that are similar to many other infectious diseases, especially those caused by bacteria or other viruses. They may also resemble disease signs caused by environmental toxins or poor water quality. A thorough fish disease investigation is required to confirm the presence of megalocytovirus infection and determine whether other factors are contributing to the disease outbreak. What factors contribute to Figure 1. H&E stain. Posterior kidney from a variable development and spread of platyfish (Xiphophorus variatus) with a megalocytivirus megalocytivirus disease? infection. Note large, bluish/purple (basophilic) cells, identified with arrows, which are filled with viral particles. As with other viral diseases, environmental and Photo credit: Roy P. E. Yanong procedural stressors
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • FAMILY Poeciliidae Bonaparte 1831
    FAMILY Poeciliidae Bonaparte 1831 - viviparous toothcarps, livebearers SUBFAMILY Poeciliinae Bonaparte 1831 - viviparous toothcarps [=Unipupillati, Paecilini, Belonesocini, Cyprinodontidae limnophagae, Gambusiinae, Tomeurinae, Poeciliopsinae, Heterandriini, Guirardinini, Cnesterodontini, Pamphoriini, Xiphophorini, Alfarini, Quintanini, Xenodexiinae, Dicerophallini, Scolichthyinae, Priapellini, Brachyrhaphini, Priapichthyini] GENUS Alfaro Meek, 1912 - livebearers [=Furcipenis, Petalosoma, Petalurichthys] Species Alfaro cultratus (Regan, 1908) - Regan's alfaro [=acutiventralis, amazonum] Species Alfaro huberi (Fowler, 1923) - Fowler's alfaro GENUS Belonesox Kner, 1860 - pike topminnows Species Belonesox belizanus Kner, 1860 - pike topminnow [=maxillosus] GENUS Brachyrhaphis Regan, 1913 - viviparous toothcarps [=Plectrophallus, Trigonophallus] Species Brachyrhaphis cascajalensis (Meek & Hildebrand, 1913) - Río Cascajal toothcarp Species Brachyrhaphis episcopi (Steindachner, 1878) - Obispo toothcarp [=latipunctata] Species Brachyrhaphis hartwegi Rosen & Bailey, 1963 - Soconusco gambusia Species Brachyrhaphis hessfeldi Meyer & Etzel, 2001 - Palenque toothcarp Species Brachyrhaphis holdridgei Bussing, 1967 - Tronadora toothcarp Species Brachyrhaphis olomina (Meek, 1914) - Orotina toothcarp Species Brachyrhaphis parismina (Meek, 1912) - Parismina toothcarp Species Brachyrhaphis punctifer (Hubbs, 1926) - Quibari Creek toothcarp Species Brachyrhaphis rhabdophora (Regan, 1908) - Río Grande de Terraba toothcarp [=tristani] Species Brachyrhaphis roseni
    [Show full text]
  • Alien Freshwater Fish, Xiphophorus Interspecies Hybrid (Poeciliidae) Found in Artificial Lake in Warsaw, Central Poland
    Available online at www.worldscientificnews.com WSN 132 (2019) 291-299 EISSN 2392-2192 SHORT COMMUNICATION Alien freshwater fish, Xiphophorus interspecies hybrid (Poeciliidae) found in artificial lake in Warsaw, Central Poland Rafał Maciaszek1,*, Dorota Marcinek2, Maria Eberhardt3, Sylwia Wilk4 1 Department of Genetics and Animal Breeding, Faculty of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland 2 Faculty of Animal Sciences, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland 3 Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Ciszewskiego 8, 02-786 Warsaw, Poland 4 Veterinary Clinic “Lavia-Vet”, Jasionka 926, 36-002, Jasionka, Poland *E-mail address: [email protected] ABSTRACT This paper describes an introduction of aquarium ornamental fish, Xiphophorus interspecies hybrid (Poeciliidae) in an artificial water reservoir in Pole Mokotowskie park complex in Warsaw, Poland. Caught individuals have been identified, described and presented in photographs. Measurements of selected physicochemical parameters of water were made and perspectives for the studied population were evaluated. The finding is discussed with available literature describing introductions of alien species with aquaristical origin in Polish waters. Keywords: aquarium, invasive species, ornamental pet, green swordtail, southern platyfish, variatus platy, stone maroko, Pole Mokotowskie park complex, Xiphophorus ( Received 14 July 2019; Accepted 27 July 2019; Date of Publication 29 July 2019 ) World Scientific News 132 (2019) 291-299 1. INTRODUCTION The fish kept in aquariums and home ponds are often introduced to new environment accidentaly or intentionaly by irresponsible owners. Some species of these ornamental animals are characterized by high expansiveness and tolerance to water pollution, which in the case of their release in a new area may result in local ichthyofauna biodiversity decline.
    [Show full text]
  • Helostoma Temminckii (Kissing Gourami)
    Kissing Gourami (Helostoma temminckii) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: 5snake5. Licensed under CC BY-SA 4.0. Available: https://commons.wikimedia.org/wiki/File:Helostoma_temminkii_01.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Fuller and Neilson (2018): “Tropical Asia, including central Thailand, Malay Peninsula, Sumatra, Borneo, and Java (Berra 1981; Roberts 1989; Talwar and Jhingran 1992).” 1 Status in the United States Fuller and Neilson (2018) report Helostoma temminckii from the following HUCs (hydrologic units) in Florida between 1971 and 1978: Florida Southeast Coast, Little Manatee, and Tampa Bay. From Fuller and Neilson (2018): “Failed at both locations in Florida. No additional specimens have been reported or collected.” This species is in trade in the United States. From Arizona Aquatic Gardens (2018): “Pink Kissing Gourami Fish […] $8.99 Out of stock” Means of Introductions in the United States From Fuller and Neilson (2018): “The introduction resulted from either an aquarium release or a fish-farm escape.” Remarks This species’ name is spelled “Helostoma temminkii” according to ITIS (2018), but the correct spelling according to Fricke et al. (2018) is “Helostoma temminckii”. The misspelling occurs often enough that it was also used when researching in preparation of this report. From Fricke et al. (2018): “temminkii, Helostoma Cuvier [G.] (ex Kuhl & van Hasselt) 1829:228 [Le Règne
    [Show full text]
  • Recent Trends in Breeding and Trade of Ornamental Gourami in India
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331717622 Recent Trends in Breeding and Trade of Ornamental Gourami in India Article in World Aquaculture · March 2019 CITATIONS READS 3 3,032 2 authors: Alok Kumar Jena Pradyut Biswas Central Institute of Fisheries Education Central Agricultural University 29 PUBLICATIONS 37 CITATIONS 62 PUBLICATIONS 132 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Effects of temperature on the Caudal fin regeneration of Flying Barb Esomus danricus (Hamilton, 1822) (Cyprinidae) View project Grow-out rearing of Indian butter catfish, Ompok bimaculatus (Bloch), at different stocking densities in outdoor concrete tanks View project All content following this page was uploaded by Alok Kumar Jena on 13 March 2019. The user has requested enhancement of the downloaded file. Recent Trends in Breeding and Trade of Ornamental Gourami in India Alok Kumar Jena, Pradyut Biswas and Sandeep Shankar Pattanaik FIGURE 2. Blue gourami Trichogaster trichopterus (Left) and pearl gourami Trichogaster leeri (Right). FIGURE 1. Banded gourami Colisa fasciatus juvenile. TABLE 1. List of gouramis indigenous to India. Common Name Scientific Name Rainbow gourami/banded gourami Colisa fasciatus Dwarf gourami/lily gourami Colisa lalia Honey gourami Colisa chuna FIGURE 3. Preparation of bubble nest by a male gourami. The ornamental fish TABLE 2. List of gouramis exotic to India. farms located in the country
    [Show full text]
  • Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
    animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model.
    [Show full text]
  • And Post-Spawning Behavior in the Blue Gourami, Trichogaster Trichopterus (Pallas) , and the Paradise Fish, Macropodus Opercularis (Linnaeus)
    PRE- AND POST-SPAWNING BEHAVIOR IN THE BLUE GOURAMI, TRICHOGASTER TRICHOPTERUS (PALLAS), AND THE PARADISE FISH, MACROPODUS OPERCULARIS (LINNAEUS) By HOWARD RUSSELL HOPKINS // I Bachelor of Science The Pennsylvania State University University Park, Pennsylvania 1959 Master of Science The Pennsylvania State University University Park, Pennsylvania 1962 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1971 PRE- AND POST-SPAWNING BEHAVIOR GOURAMI, TRICHOGASTER TRICHOPTERUS ... (PALLAS), AND THE PARADISE FISH, MACROPODUS OPERCULARIS (LINNAEUS) Thesis Approved: Q LL . 803908 PREFACE The objectives of the present investigation are to: (1) Describe the motor patterns for seven presumably functional classes of behavior in Trichogaster trichopterus and Macropodus opercularis. (2) Determine the length of reproductive cycles and the characteristic diel rhythinicity of spawning activities. (J) Evaluate the influence of precipitation, barometric pressure, and water temperature on the presence of a nest and the onset of spawning. (~) Determine if activity cycles exist by measuring fluctuations in daily activity. (5) Compare the changes in the composition of behavior during the spawning cycle. Dr. Rudolph J. Miller served as major adviser and was extremely helpful during all phases of the study. Drs. Roy w. Jones, Troy Dorris, L. Herbert Bruneau, and Larry T. Brown served on the advisory committee and edited the manuscript. Donald E. Maritt suggested the method for computer analysis of the data. James Butler was instrumental in writing the computer programs and was helpful in expediting the work in the Computer Science Department. Dr. Dale D. Grosvenor, Director of the University Computer Center, was most encouraging.
    [Show full text]
  • Cambodian Journal of Natural History
    Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy.
    [Show full text]
  • Download Download
    Journal ofThreatened JoTT TaxaBuilding evidence for conservation globally 10.11609/jott.2020.12.10.16195-16406 www.threatenedtaxa.org 26 July 2020 (Online & Print) Vol. 12 | No. 10 | Pages: 16195–16406 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) PLATINUM OPEN ACCESS Dedicated to Dr. P. Lakshminarasimhan ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Development India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms.
    [Show full text]
  • Breeding and Embryonic Development of an Indigenous Ornamental Fish
    Journal of Entomology and Zoology Studies 2017; 5(3): 111-115 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(3): 111-115 Breeding and embryonic development of an © 2017 JEZS indigenous ornamental fish Trichogaster lalius Received: 18-03-2017 Accepted: 19-04-2017 (Hamilton, 1822) in captive condition Shibam Saha Department of Fisheries Resource Management, Faculty of Fishery Shibam Saha, S. Behera, Dibakar Bhakta, Abhrajyoti Mandal, Sanjeev Sciences, West Bengal University of Animal and Fishery Sciences, Kumar and Anandamoy Mondal Budherhat Road, Chakgaria, Panchasayar, Kolkata, West Bengal, India. Abstract The present study was conducted to perform the captive breeding and embryonic development of dwarf S. Behera gourami Trichogaster lalius (Hamilton, 1822) in control condition at the Laboratory of Faculty of Department of Fisheries Resource Management, Faculty of Fishery Fishery Sciences, WBUAFS, Kolkata, West Bengal between May and June, 2016. A total 10 sets of Sciences, West Bengal University of experiment were conducted by keeping one pair of healthily fish (male and female 1:1 ratio) for each set. Animal and Fishery Sciences, The absolute fecundity was ranged from 1000 to 1350. The fertilization rate was found to be 63±0.50% Budherhat Road, Chakgaria, and incubation period was recorded 23 to 26 hours at 29.15 ± 0.95 ºC. The fertilized eggs were not Panchasayar, Kolkata, West Bengal, India. adhesive, golden in colour and optically transparent and size was ranged from 0.60 ± 0.05 to 0.69 ± 0.08 mm. The present findings established that T. lalius can easily bred in captive condition by maintaining Dibakar Bhakta suitable environmental parameters which is prerequisite to conserve the species in natural water bodies.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Species Composition and Invasion Risks of Alien Ornamental Freshwater
    www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people.
    [Show full text]