Gain-Of-Function Genetic Alterations of G9a Drive Oncogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Gain-Of-Function Genetic Alterations of G9a Drive Oncogenesis Published OnlineFirst April 8, 2020; DOI: 10.1158/2159-8290.CD-19-0532 RESEARCH ARTICLE Gain-of-Function Genetic Alterations of G9a Drive Oncogenesis Shinichiro Kato 1 , Qing Yu Weng 1 , Megan L. Insco 2 , 3 , 4 , Kevin Y. Chen 2 , 3 , 4 , Sathya Muralidhar 5 , Joanna Pozniak 5 , Joey Mark S. Diaz5 , Yotam Drier 6 , 7 , 8 , Nhu Nguyen 1 , Jennifer A. Lo 1 , Ellen van Rooijen 2 , 3 , Lajos V. Kemeny 1 , Yao Zhan1 , Yang Feng 1 , Whitney Silkworth 1 , C. Thomas Powell 1 , Brian B. Liau 9 , Yan Xiong 10 , Jian Jin 10 , Julia Newton-Bishop5 , Leonard I. Zon 2 , 3 , Bradley E. Bernstein 6 , 7 , 8 , and David E. Fisher 1 . Downloaded from cancerdiscovery.aacrjournals.org on September 25, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst April 8, 2020; DOI: 10.1158/2159-8290.CD-19-0532 ABSTRACT Epigenetic regulators, when genomically altered, may become driver oncogenes that mediate otherwise unexplained pro-oncogenic changes lacking a clear genetic stimulus, such as activation of the WNT/β -catenin pathway in melanoma. This study identifi es previ- ously unrecognized recurrent activating mutations in the G9a histone methyltransferase gene, as well as G9a genomic copy gains in approximately 26% of human melanomas, which collectively drive tumor growth and an immunologically sterile microenvironment beyond melanoma. Furthermore, the WNT pathway is identifi ed as a key tumorigenic target of G9a gain-of-function, via suppression of the WNT antagonist DKK1. Importantly, genetic or pharmacologic suppression of mutated or amplifi ed G9a using multiple in vitro and in vivo models demonstrates that G9a is a druggable target for therapeutic intervention in melanoma and other cancers harboring G9a genomic aberrations. SIGNIFICANCE: Oncogenic G9a abnormalities drive tumorigenesis and the “cold” immune microenvi- ronment by activating WNT signaling through DKK1 repression. These results reveal a key druggable mechanism for tumor development and identify strategies to restore “hot” tumor immune microenvi- ronments. INTRODUCTION and NSD2 ( 8 ) are also targeted by gain-of-function genetic alterations that engender oncogenic properties. The identifi cation and targeting of genomically altered Another histone methyl transferase, G9a (gene name Euchro- oncogenic drivers remains a compelling therapeutic strategy matic Histone lysine MethylTransferase 2, EHMT2 ), encodes a for otherwise incurable cancers. Disruption of the epigenetic primary SET domain–containing enzyme that can catalyze landscape is a relatively common event in cancer, often due monomethylation and dimethylation of histone H3K9 in a to genetic alterations of epigenetic regulatory genes ( 1 ). One heterodimeric complex with G9a-like protein (GLP; ref. 9 ). G9a epigenetic modifi er that undergoes somatic recurrent acti- plays critical roles in multiple developmental processes and cell vating oncogenic mutations is enhancer of zeste homolog 2 fate decisions through modulation of H3K9me2 levels ( 10 ). (EZH2), which can silence expression of target genes (includ- Genome-wide analysis suggests that H3K9me2 is functionally ing tumor suppressors) through H3K27 trimethylation ( 2 ). linked with transcriptional repression ( 11 ). Multiple studies Recurrent mutations of EZH2 have been observed within its have reported elevated G9a expression in various cancers and SET domain, which is well conserved across SET domain– suggested functional linkages with malignant behaviors of containing histone methyltransferases (HMT) and is essential cancer cells (e.g., aberrant proliferation, chemoresistance, and for their enzymatic activity ( 3–5 ). The SET domain–containing metastasis) by silencing tumor suppressors ( 12 ) and/or activat- HMTs Mixed Lineage Leukemia 1 (MLL1; ref. 6 ), MLL3 ( 7 ), ing survival genes ( 13 ) or epithelial-to-mesenchymal transition (EMT) programs ( 14 ). In addition, recent functional studies have implicated G9a’s oncogenic role in MYC-driven tumori- 1 Cutaneous Biology Research Center, Department of Dermatology, Mas- genesis ( 15 ). However, genomic alterations of G9a that could sachusetts General Hospital, Harvard Medical School, Charlestown, Mas- directly trigger oncogenesis have not been previously identi- sachusetts. 2 Howard Hughes Medical Institute, Chevy Chase, Maryland. 3 Stem Cell Program and Division of Pediatric Hematology/Oncology, Bos- fi ed. Here we report the occurrence of recurrent activating ton Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical mutations within the SET domain of G9a and demonstrate School, Boston, Massachusetts. 4 Department of Stem Cell and Regen- their oncogenic function. We further fi nd that genomic copy erative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts. gains of G9a are relatively common in melanomas and other 5 Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom. 6 Center for Cancer Research, Massachusetts General malignancies, and they display very similar oncogenic activity Hospital, Boston, Massachusetts. 7 Department of Pathology, Massachu- in vitro and in vivo . G9a is found to function through repression setts General Hospital, Harvard Medical School, Boston, Massachusetts. of DKK1, a negative regulator of the WNT pathway, an impor- 8 Broad Institute of MIT and Harvard, Cambridge, Massachusetts. 9 Depart- tant developmental pathway heavily implicated in numerous ment of Chemistry and Chemical Biology, Harvard University, Cambridge, malignancies including some in which its overactivity has Massachusetts. 10 Mount Sinai Center for Therapeutics Discovery, Depart- ment of Pharmaceutical Sciences and Oncological Sciences, Tisch Cancer lacked prior mechanistic explanation. Institute, Icahn School of Medicine at Mount Sinai, New York, New York. Note: Supplementary data for this article are available at Cancer Discovery RESULTS Online (http://cancerdiscovery.aacrjournals.org/). Corresponding Author: David E. Fisher, Massachusetts General Hospital , G9a Is Recurrently Mutated and Amplifi ed in Bartlett 655, Fruit Street, Boston, MA 02114 . Phone: 617-643-5428; Patients with Melanoma E-mail: dfi [email protected]. edu We interrogated publicly available whole-exome sequencing Cancer Discov 2020;10:980–97 data for human melanomas and identifi ed 6 cases harboring doi: 10.1158/2159-8290.CD-19-0532 recurrent G9a point mutations at glycine 1069 ( Fig. 1A ): four ©2020 American Association for Cancer Research. cases with G1069L and two cases with G1069W (P = 8.45e-13). JULY 2020 CANCER DISCOVERY | 981 Downloaded from cancerdiscovery.aacrjournals.org on September 25, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst April 8, 2020; DOI: 10.1158/2159-8290.CD-19-0532 RESEARCH ARTICLE Kato et al. 0.08 0.1 0.2 1p12 NOTECH2 AC1q21.3 SETDB1 TAD: transcription activation domain G1069L (4 cases) 1 1q31.2 Poly Glu: poly glutamine-rich domain G1069W (2 cases) 1q32.1 1q44 NLS: nuclear localization signal P = 8.45e-13 SMYD3 2 3p13 MITF SET: methyltransferase catalytic domain 4q12 KIT 5p15.33 T555I S895F P1134L 3 TERT 5p15.31 5p15.2 Poly N N Ankyrin Pre- Post- 4 5p15.2 TAD L L SET Glu S S repeat SET SET 5p13.2 NEDD9 6p24.3 1 280 300 326 341 348 357 362 684 882 925 1038 1160 1180 1210 5 6p21.33 G9a 6 6q12 Recurrent nonsynonymous mutation 7q22.3 7 7q34 BRAF Nonsynonymous mutation 7q36.1 EZH2 8 8q11.22 G9a G1069 8q21.13 PDL1 EZH2 Y641 9 8q24.3 B Chromosomes 10 11q13.3 JAK2 G9a VRLQLYRTAK–MGWGVRALQTIPQGTFICEYVGELISDAEADVR––––EDD–SYLFDLDNKDGE 11q14.1 CCND1 11 11q22.1 GLP ARLQLYRTRD–MGWGVRSLQDIPPGTFVCEYVGELISDSEADVR–––––EED–SYLFDLDNKDGE 12 12q14.1 CDK4 SETDB1 VRLQLFKTQN–KGWGIRCLDDIAKGSFVCIYAGKILTDDFADKEGLEMGDE––––YFANLDHIESV 12q15 MDM2 SUV39H1 YDLCIFRTDDGRGWGVRTLEKIRKNSFVMEYVGEIITSEEAERRGQIYDRQGA–TYLFDLDYVE–D 13 12q15 14 15q24.3 SUV39H2 YSLCIFRTSNGRGWGVKTLVKIKRMSFVMEYVGEVITSEEAERRGQFYDNKGI–TYLFDLDYES–D 15 15q26.2 EZH1 –KHLLLAPSDVAGWGTFIKESVQKNEFISEYCGELISQDEADRRGKVYD–KYMSSFLFNLN––––N 16 17q23.2 17 17q25.3 EZH2 –KHLLLAPSDVAGWGIFIKDPVQKNEFISEYCGEIISQDEADRRGKVYD–KYMCSFLFNLN–––N 18 19p13.2 19 MLL –––VGVYRSPIHGRGLFCKRNIDAGEMVIEYAGNVIRSIQTDKREKYYDSKGIGCYMFRID–––D 20 20q13.2 21 22q13.1 MLL2 –––VGVYRSAIHGRGLFCKRNIDAGEMVIEYSGIVIRSVLTDKREKFYDGKGIGCYMFRMD–––D 0.25 10 10 10 10 10 22 22q13.2 EP300 Conserved AA: − − − − − L3MBTL2 ** ** 2 3 6 10 20 AdoMet Catalytic Significance of amplification acceptor site (q-value, FDR) Figure 1. G9a recurrent mutations G1069L/W enhance catalytic activity and melanomagenesis. A, Domain architecture of human G9a and mutations reported in 16 publicly available whole-exome sequencing datasets of patient-derived melanomas (2,034 cases). Red arrowheads indicate recurrent non- synonymous mutations. B, Alignment of a portion of the human G9a SET domain with 8 different SET domain–containing histone methyltransferases. The blue and red columns indicate the highly conserved catalytic site tyrosine (e.g., EZH2 Y641 or G9a Y1067) and glycine (e.g., G9a G1069 or EZH2 G643), respectively. C, Genomic Identification of Significant Targets in Cancer analysis (see Methods) revealed significant regions of recurrent focal chromo- somal copy-number gain/amplification among TCGA human melanomas. continued( on following page) The recurrently mutated site glycine 1069 resides within the lytic activity on several substrates, but neither G9a G1069L nor highly conserved SET methyltransferase domain (Fig. 1A and G9a G1069W displayed significant activity in the absence of GLP B; Supplementary Fig. S1A and S1B; Supplementary Table S1) (Fig.
Recommended publications
  • A Cell Line P53 Mutation Type UM
    A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Tumor Suppressors in Chronic Lymphocytic Leukemia: from Lost Partners to Active Targets
    cancers Review Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets 1, 1, 2 1 Giacomo Andreani y , Giovanna Carrà y , Marcello Francesco Lingua , Beatrice Maffeo , 3 2, 1, , Mara Brancaccio , Riccardo Taulli y and Alessandro Morotti * y 1 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; [email protected] (G.A.); [email protected] (G.C.); beatrice.maff[email protected] (B.M.) 2 Department of Oncology, University of Torino, 10043 Orbassano, Italy; [email protected] (M.F.L.); [email protected] (R.T.) 3 Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-011-9026305 These authors equally contributed to the work. y Received: 21 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL).
    [Show full text]
  • (BPA) Exposure Biomarkers in Ovarian Cancer
    Journal of Clinical Medicine Article Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer Aeman Zahra 1, Qiduo Dong 1, Marcia Hall 1,2 , Jeyarooban Jeyaneethi 1, Elisabete Silva 1, Emmanouil Karteris 1,* and Cristina Sisu 1,* 1 Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; [email protected] (A.Z.); [email protected] (Q.D.); [email protected] (M.H.); [email protected] (J.J.); [email protected] (E.S.) 2 Mount Vernon Cancer Centre, Northwood HA6 2RN, UK * Correspondence: [email protected] (E.K.); [email protected] (C.S.) Abstract: Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease- associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern Citation: Zahra, A.; Dong, Q.; Hall, as a consequence of the disease.
    [Show full text]
  • Clinically Annotated Breast, Ovarian and Pancreatic Cancer
    www.nature.com/scientificreports OPEN MetaGxData: Clinically Annotated Breast, Ovarian and Pancreatic Cancer Datasets and their Use in Received: 19 November 2018 Accepted: 31 May 2019 Generating a Multi-Cancer Gene Published: xx xx xxxx Signature Deena M. A. Gendoo 1, Michael Zon2,4, Vandana Sandhu2, Venkata S. K. Manem2,3,5, Natchar Ratanasirigulchai2, Gregory M. Chen2, Levi Waldron 6 & Benjamin Haibe- Kains2,3,7,8,9 A wealth of transcriptomic and clinical data on solid tumours are under-utilized due to unharmonized data storage and format. We have developed the MetaGxData package compendium, which includes manually-curated and standardized clinical, pathological, survival, and treatment metadata across breast, ovarian, and pancreatic cancer data. MetaGxData is the largest compendium of curated transcriptomic data for these cancer types to date, spanning 86 datasets and encompassing 15,249 samples. Open access to standardized metadata across cancer types promotes use of their transcriptomic and clinical data in a variety of cross-tumour analyses, including identifcation of common biomarkers, and assessing the validity of prognostic signatures. Here, we demonstrate that MetaGxData is a fexible framework that facilitates meta-analyses by using it to identify common prognostic genes in ovarian and breast cancer. Furthermore, we use the data compendium to create the frst gene signature that is prognostic in a meta-analysis across 3 cancer types. These fndings demonstrate the potential of MetaGxData to serve as an important resource in oncology research, and provide a foundation for future development of cancer-specifc compendia. Ovarian, breast and pancreatic cancers are among the leading causes of cancer deaths among women, and recent studies have identifed biological and molecular commonalities between them1–4.
    [Show full text]
  • A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response
    A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, Ana Camejo, Pierre-Jean Matteï, Béatrice Regnault, Marie-Anne Nahori, Didier Cabanes, et al. To cite this version: Alice Lebreton, Goran Lakisic, Viviana Job, Lauriane Fritsch, To Nam Tham, et al.. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, American Association for the Advancement of Science, 2011, 331 (6022), pp.1319-21. 10.1126/sci- ence.1200120. cea-00819299 HAL Id: cea-00819299 https://hal-cea.archives-ouvertes.fr/cea-00819299 Submitted on 26 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lebreton et al. Science 2011 doi:10.1126/science.1200120 A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response Alice Lebreton1,2,3, Goran Lakisic4, Viviana Job5, Lauriane Fritsch6, To Nam Tham1,2,3, Ana Camejo7, Pierre-Jean Matteï5, Béatrice Regnault8, Marie-Anne Nahori1,2,3, Didier Cabanes7, Alexis Gautreau4, Slimane Ait-Si-Ali6, Andréa Dessen5, Pascale Cossart1,2,3* and Hélène Bierne1,2,3* 1.
    [Show full text]
  • Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer
    Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer H. Billur Engin1, Emre Guney2, Ozlem Keskin1, Baldo Oliva2, Attila Gursoy1* 1 Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey, 2 Structural Bioinformatics Group (GRIB), Universitat Pompeu Fabra Abstract Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype- phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis.
    [Show full text]
  • Downregulation of SNRPG Induces Cell Cycle Arrest and Sensitizes Human Glioblastoma Cells to Temozolomide by Targeting Myc Through a P53-Dependent Signaling Pathway
    Cancer Biol Med 2020. doi: 10.20892/j.issn.2095-3941.2019.0164 ORIGINAL ARTICLE Downregulation of SNRPG induces cell cycle arrest and sensitizes human glioblastoma cells to temozolomide by targeting Myc through a p53-dependent signaling pathway Yulong Lan1,2*, Jiacheng Lou2*, Jiliang Hu1, Zhikuan Yu1, Wen Lyu1, Bo Zhang1,2 1Department of Neurosurgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China;2 Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China ABSTRACT Objective: Temozolomide (TMZ) is commonly used for glioblastoma multiforme (GBM) chemotherapy. However, drug resistance limits its therapeutic effect in GBM treatment. RNA-binding proteins (RBPs) have vital roles in posttranscriptional events. While disturbance of RBP-RNA network activity is potentially associated with cancer development, the precise mechanisms are not fully known. The SNRPG gene, encoding small nuclear ribonucleoprotein polypeptide G, was recently found to be related to cancer incidence, but its exact function has yet to be elucidated. Methods: SNRPG knockdown was achieved via short hairpin RNAs. Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG. Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues. Results: The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53. In addition, the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent. Furthermore, SNRPG was increased in TMZ-resistant GBM cells, and downregulation of SNRPG potentially sensitized resistant cells to TMZ, suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway.
    [Show full text]
  • Ncounter® Human Autoimmune Profiling Panel
    nCounter® Human AutoImmune Profiling Panel - Gene and Probe Details Official Symbol Accession Alias / Previous Symbol Official Full Name Other targets or Isoform Information ACE NM_000789.2 DCP1;angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 angiotensin I converting enzyme ACIN1 NM_001164815.1 ACINUS;apoptotic chromatin condensation inducer in the nucleus apoptotic chromatin condensation inducer 1 ACP5 NM_001611.3 acid phosphatase 5, tartrate resistant CTRN2;ARP1 (actin-related protein 1, yeast) homolog B (centractin beta),ARP1 actin-related ACTR1B NM_005735.3 protein 1 homolog B, centractin beta ARP1 actin related protein 1 homolog B ADAM17 NM_003183.4 TACE;tumor necrosis factor, alpha, converting enzyme ADAM metallopeptidase domain 17 ADAR NM_001111.3 IFI4,G1P1;interferon-induced protein 4 adenosine deaminase, RNA specific ADORA2A NM_000675.3 ADORA2 adenosine A2a receptor AGER NM_001136.3 advanced glycosylation end-product specific receptor AGT NM_000029.3 SERPINA8;serpin peptidase inhibitor, clade A, member 8 angiotensinogen AHR NM_001621.3 aryl hydrocarbon receptor AICDA NM_020661.2 activation-induced cytidine deaminase activation induced cytidine deaminase AIM2 NM_004833.1 absent in melanoma 2 APECED;autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal AIRE NM_000383.2 dystrophy) autoimmune regulator AKT1 NM_001014432.1 v-akt murine thymoma viral oncogene homolog 1 AKT serine/threonine kinase 1 AKT2 NM_001626.4 v-akt murine thymoma viral oncogene homolog 2 AKT serine/threonine kinase 2 AKT3 NM_005465.4
    [Show full text]
  • Regulation of Cancer Stemness in Breast Ductal Carcinoma in Situ by Vitamin D Compounds
    Author Manuscript Published OnlineFirst on May 28, 2020; DOI: 10.1158/1940-6207.CAPR-19-0566 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds Naing Lin Shan1, Audrey Minden1,5, Philip Furmanski1,5, Min Ji Bak1, Li Cai2,5, Roman Wernyj1, Davit Sargsyan3, David Cheng3, Renyi Wu3, Hsiao-Chen D. Kuo3, Shanyi N. Li3, Mingzhu Fang4, Hubert Maehr1, Ah-Ng Kong3,5, Nanjoo Suh1,5 1Department of Chemical Biology, Ernest Mario School of Pharmacy; 2Department of Biomedical Engineering, School of Engineering; 3Department of Pharmaceutics, Ernest Mario School of Pharmacy; 4Environmental and Occupational Health Sciences Institute and School of Public Health, 5Rutgers Cancer Institute of New Jersey, New Brunswick; Rutgers, The State University of New Jersey, NJ, USA Running title: Regulation of cancer stemness by vitamin D compounds Key words: Breast cancer, cancer stemness, gene expression, DCIS, vitamin D compounds Financial Support: This research was supported by the National Institutes of Health grant R01 AT007036, R01 AT009152, ES005022, Charles and Johanna Busch Memorial Fund at Rutgers University and the New Jersey Health Foundation. Corresponding author: Dr. Nanjoo Suh, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, New Jersey 08854. Tel: 848-445-8030, Fax: 732-445-0687; e-mail: [email protected] Disclosure of Conflict of Interest: “The authors declare no potential conflicts of interest” 1 Downloaded from cancerpreventionresearch.aacrjournals.org on October 1, 2021.
    [Show full text]
  • De Novo Deletion of Chromosome 11Q12.3 in Monozygotic Twins
    CASE REPORT Open Access De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland Syndrome Carlotta Maria Vaccari1†, Maria Victoria Romanini2†, Ilaria Musante1, Elisa Tassano3, Stefania Gimelli4, Maria Teresa Divizia3, Michele Torre5, Carmen Gloria Morovic6, Margherita Lerone3, Roberto Ravazzolo1,3,7 and Aldamaria Puliti1,3,7* Abstract Background: Poland Syndrome (PS) is a rare disorder characterized by hypoplasia/aplasia of the pectoralis major muscle, variably associated with thoracic and upper limb anomalies. Familial recurrence has been reported indicating that PS could have a genetic basis, though the genetic mechanisms underlying PS development are still unknown. Case presentation: Here we describe a couple of monozygotic (MZ) twin girls, both presenting with Poland Syndrome. They carry a de novo heterozygous 126 Kbp deletion at chromosome 11q12.3 involving 5 genes, four of which, namely HRASLS5, RARRES3, HRASLS2, and PLA2G16, encode proteins that regulate cellular growth, differentiation, and apoptosis, mainly through Ras-mediated signaling pathways. Conclusions: Phenotype concordance between the monozygotic twin probands provides evidence supporting the genetic control of PS. As genes controlling cell growth and differentiation may be related to morphological defects originating during development, we postulate that the observed chromosome deletion could be causative of the phenotype observed in the twin girls and the deleted genes could play a role in PS development. Keywords: Chromosome 11q deletion, Congenital abnormalities, Monozygotic twins, Poland syndrome, CNV, HRASLS5, HRASLS2, RARRES3, PLA2G16 Background Poland Syndrome (PS) (OMIM 173800) is characterized Vaccari et al. BMC Medical Genetics 2014, 15:63 Page 2 of 7 http://www.biomedcentral.com/1471-2350/15/63 proximal and distal muscles, and sternum, develop accor- indication for surgical intervention.
    [Show full text]