Introduction to Camera Trapping

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Camera Trapping Choosing the right camera traps based on interests, goals, and species Marcella J. Kelly- Professor, Virginia Tech Dept of Fish and Wildlife Conservation WildLabs Community – Tech Tutors July 15, 2021 Remote-Camera Trapping Background Remote cameras/camera traps/game cameras Been around since the late 1890s. But using trip wires and track pads and gave single shots only. 1980s deer hunters => scout hunting grounds 1990s biologists expanded techniques using multiple shot film cameras - film 2000s (mid) brought affordable digital camera technology Remote Camera Applications - Today Scientific Studies Mammals – especially for monitoring of various forest carnivores (e.g. American marten, fisher, wolverine, lynxes, tigers, jaguars, etc.), but also for big game, and large-mammal movement across highways, prey studies, denning behavior (black bears); physical condition of animals (sun bears) Birds – count and monitor ground bird; avian nest predation Herps: e.g. monitoring of timber rattlesnakes. But few herp studies. Remote Wildlife Photography Recreational users (e.g. hunters etc.) Camera Types Cameras now use mostly passive (PIR) infrared sensors PIR –triggers by motion/heat differential when moving object differs in temperature from the environment and moves in front of the sensor Up and coming– remotely download to a base station or satellite uplink Things to consider Do you need protection from wildlife? White flash or infrared? Do you need to lock cameras due to theft? User-friendliness? Do you have a price range? Still photos or video? How long do you need them to last? Protection from the weather? One camera or two per station? How often can you checK them? Battery life Memory card size Kelly et al. 2013 Camera set up with 2 cameras and locKs Example Brands – between $100 and $250 Bushnell Camera Lens Browning IR Sensor Camera Lens IR Sensor Moultrie $57 when you buy 10 or more IR sensor Camera Lens Reconyx (older model) $400-500 and Camera Lens not so user friendly Info Screen Operational Buttons Power Button IR Sensor SD Card Slot User Friendliness Reconyx Video – Professional Series ($500 – $600) Camera Lenses IR Sensor Things to consider for data analysis and results What species are you interested in? How many cameras for a scientific study? How far apart or what spatial arrangement? What are you interested in learning about? species presence or distribution (occupancy) species diversity species activity levels species use of specific features species population abundance, density and trends, species interactions (co-occurrence) species survival Camera Setup – baited vs. unbaited Camera PIR set with hanging bait Unbaited trail set with paired PIR cameras Unbaited PIR set outside of a culvert Baited cubby set triggered by a Long et al. (2008) Noninvasive pressure pad => to get picture Unbaited PIR set along a mouse runway Survey Methods for Carnivores of ear tag General Camera Trapping Uses with increasing complexity 1) Behavior 2) Indices of activity - trap rates 3) Presence/absence (i.e. occupancy) 4) Population Estimation using Mark- Recapture (CMR, SCR, SMR, SPIM) 1) Behavioral Research New Information - Den behavior – emergence times and frequency Patterns Activity 10% 12% 14% 0% 2% 4% 6% 8% 0:00 1:00 2:00 3:00 4:00 5:00 6:00 Puma (N=208)Puma 7:00 8:00 9:00 10:00 11:00 Jaguar (N=172) Jaguar 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Nest Predation documented by remote cameras Nest predation on bird eggs by foxes and crocodile eggs by monitor lizards Underpass Usage https://www.youtube.com/watch?v=2bICTWNRrGE Scavenging behavior – VT Study Dominance at carcasses Herp studies https://t.co/SIwtuF8vqT SNAKE study using cameras on time lapse 2) Index of Activity –Trap rate or trap success Number of photo captures per 100 Trap nights TS = (Caps/TN)*100 Capture = independent events within a 30 minute period Some use 60 minute time periods Indices of Activity - Trap Success Trap success = the number of trap events per night or per 100 trap-nights Not as powerful as occupancy or individual ID, but still can be useful Camera Survey at the Mountain Lake Biological Station, VA; (Kelly and Holub 2008) However, indices are problematic Smiley J4 male For Example: 2005 Pine Forest Survey in Belize Total Jaguar “Captures” = 109 12 individuals dates time x-location y-location place 06/22/01 night 284995 1861441 NM 06/24/01 day 284995 1861441 NM 07/12/01 21:08 284995 1861441 NM Total Captures of J27 male = 75 07/28/01 07:59 284917 1850123 MR 07/28/01 20:07 283538 1851661 RR2 08/14/01 11:14 287315 1860485 NM2 08/23/01 06:55 287315 1860485 NM2 3) Presence/Absence or detection/non- detection (e.g. occupancy) “Occupancy” replaced the term presence when imperfect detection was included. For species where you can not tell individuals apart. Estimate detection and occupancy simultaneously. Darryl MacKenzie et al. (2006, 2015) demonstrated p/a information (detection histories) could be incorporated directly into a maximum liKelihood estimation framework Landscape occupancy Farris et al. 2015, 2016. 0.6 0.5 0.4 Introduced species 0.3 ) Ψ ( 0.2 0.1 Indian civet probability of occupancy 0 0 2 4 6 8 10 12 14 Distance to Village Multi-season occupancy NATIVE SPECIES Cryptoprocta ferox Fossa fossana Eupleres goudotii 1 1 1 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 Probability of Occupancy of Probability 0 0 0 2008 2010 2011 2012 2013 2008 2010 2011 2012 2013 2008 2010 2011 2012 2013 Galidia elegans Galidictis fasciata Salanoia concolor 1 1 1 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 Probability of Occupancy of Probability 0 0 0 2008 2010 2011 2012 2013 2008 2010 2011 2012 2013 2008 2010 2011 2012 2013 Canis familaris Felis species EXOTIC SPECIES 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 Probability of Occupancy of Probability Farris et al. 2017 0 0 2008 2010 2011 2012 2013 2008 2010 2011 2012 2013 ABUNDANCE/DENSITY ESTIMATION 1998: Seminal paper by Karanth and Nichols establishing use of camera traps to study naturally marked carnivores 4) Abundance/density estimation Individual ID and Capture Histories Compare spot/stripe patterns to identify individuals => get abundance and density estimates Kelly et al. 2003, Silver et al. 2004 Individual ID of male deer from antlers Population size estimates for male deer from mark- recapture Black Bear Research Population size estimates using “marked” bears. Note streamers as “marks”. Bridges et al. 2004 Ocelots density and sex ratios in Belize Satter et al. 2019 Multi-season SCR – growth and survival Ocelot survival through time Ocelot population growth rate between time periods Satter et al. 2019 Ocelot density surfaces Darker blue indicates areas of higher ocelot density Satter et al. 2019 Rich et al. 2019 Multiple densities? 25 Mopane Non-mopane Overall 20 15 10 Density(#/100Km²) 5 0 Spotted Leopard Wild dogs Serval Civet Aardwolf Lion hyena Rich et al. 2019 Abundance/Density Estimation is rapidly expanding Spatially explicit mark-recapture Maximum liKelihood (Program DENSITY) Bayesian techniques (SpaceCap – etc.) MarK-Resight for partially marKed populations Spatial Mark-Resight SPIM – Spatial partially identity models for marked pops with categories. Camera Trapping - Strength/Weakness 1. Strengths: y Minimally intrusive y Abundant data with relatively minimal labor y Detects multiple species simultaneously y Photos often important for public outreach y Studies of elusive species possible 2. Weaknesses: y Costly equipment (especially for initial set up) y Equipment malfunctions (e.g. sensitive to weather etc.) y Individual identification (hence abundance estimate) is only possible for species with distinctive marKs or pelage (e.g. tigers, jaguars, bobcats etc.) y Results may be sex-biased CHALLENGES: Camera Trap Data Management Spreadsheets, Citizen Science, Artificial Intelligence Importance of Data Mgmt Encourage entering data on ALL species and humans the first time around. Often takes longer than collecting data if you enter everything Formatting for various programs and analyses also taKe time Entering data on species captured 1) Manual data entry using “home-made” spread sheets (Excel, Access). 2) Use Citizen Science existing platform 3) Use an Artificial Intelligence existing platform Kelly et al. 2012 Manual Data entry Dcoument camera info at each first and last trigger, including when changing out memory cards. In addition to camera station, date, and camera number, I have now added “time” to our trigger cards in case the time stamp malfunctions (you can correct for that later). Kelly et al. 2012 Manual Data entry!! Helps if you have access to undergrads or interns Manual Data Entry for Individual ID Kelly et al. 2013 Citizen Science eMammal https://emammal.si.edu/ eMammal - facilitates the sharing of camera trap images and data for research and education purposes. Provides the public a query tool, allowing a user to access and share camera trap information from a variety of projects. Encourages collaboration with other institutions and individuals. For a fun animal ID game using eMammal favorites, clicK on eMammal Lite for more! eMammal License to Use Data. Provider grants to SI the royalty-free, nonexclusive, worldwide right, but not the obligation, to use, reproduce, publish, distribute, or otherwise use all Data (including, without limitation, to aggregate it with other data to create new products, to copy it, to cache it and to incorporate it into other worKs in any form, media or technology now Known or later developed), and to sublicense such rights to third parties for purposes within the scope of the Data, Software and Web Site User Agreement (Attachment).
Recommended publications
  • Galidictis Grandidieri, Grandidier's Vontsira
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T8834A45198057 Galidictis grandidieri, Grandidier’s Vontsira Assessment by: Hawkins, F. View on www.iucnredlist.org Citation: Hawkins, F. 2015. Galidictis grandidieri. The IUCN Red List of Threatened Species 2015: e.T8834A45198057. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T8834A45198057.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Carnivora Eupleridae Taxon Name: Galidictis grandidieri Wozencraft, 1986 Common Name(s): • English: Grandidier’s Vontsira, Giant-striped Mongoose, Grandidier's Mongoose Assessment Information Red List Category & Criteria: Endangered B1ab(i,ii,iii,v) ver 3.1 Year Published: 2015 Date Assessed: March 2, 2015 Justification: This species is listed as Endangered under B1ab(i,ii,iii,v).
    [Show full text]
  • The Impact of Forest Logging and Fragmentation on Carnivore Species Composition, Density and Occupancy in Madagascar’S Rainforests
    The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests B RIAN D. GERBER,SARAH M. KARPANTY and J OHNY R ANDRIANANTENAINA Abstract Forest carnivores are threatened globally by Introduction logging and forest fragmentation yet we know relatively little about how such change affects predator populations. arnivores are one of the most threatened groups of 2009 This is especially true in Madagascar, where carnivores Cterrestrial mammals (Karanth & Chellam, ). have not been extensively studied. To understand better the Declines of predators are often attributed to habitat loss effects of logging and fragmentation on Malagasy carnivores and fragmentation but few quantitative studies have we evaluated species composition, density of fossa examined how carnivore populations and communities 2002 Cryptoprocta ferox and Malagasy civet Fossa fossana, and change with habitat loss or fragmentation (Crooks, ; 2005 carnivore occupancy in central-eastern Madagascar. We Michalski & Peres, ). This is particularly true for ’ photographically-sampled carnivores in two contiguous Madagascar s carnivores, with knowledge lacking about ff (primary and selectively-logged) and two fragmented rain- their ecology and the e ects of anthropogenic disturbances 2010 forests (fragments , 2.5 and . 15 km from intact forest). (Irwin et al., ), especially in the eastern rainforest where Species composition varied, with more native carnivores in only short-term studies have been conducted (Gerber et al., 2010 16 the contiguous than fragmented rainforests. F. fossana was ). With only % of the original primary forests extant absent from fragmented rainforests and at a lower density in Madagascar and those remaining becoming smaller and 2007 in selectively-logged than in primary rainforest (mean more isolated over time (Harper et al., ), habitat loss −2 1.38 ± SE 0.22 and 3.19 ± SE 0.55 individuals km , respect- and fragmentation are serious threats to many endemic 2010 ively).
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Download PDF File
    1.08 1.19 1.46 Nimravus brachyops Nandinia binotata Neofelis nebulosa 115 Panthera onca 111 114 Panthera atrox 113 Uncia uncia 116 Panthera leo 112 Panthera pardus Panthera tigris Lynx issiodorensis 220 Lynx rufus 221 Lynx pardinus 222 223 Lynx canadensis Lynx lynx 119 Acinonyx jubatus 110 225 226 Puma concolor Puma yagouaroundi 224 Felis nigripes 228 Felis chaus 229 Felis margarita 118 330 227 331Felis catus Felis silvestris 332 Otocolobus manul Prionailurus bengalensis Felis rexroadensis 99 117 334 335 Leopardus pardalis 44 333 Leopardus wiedii 336 Leopardus geoffroyi Leopardus tigrinus 337 Pardofelis marmorata Pardofelis temminckii 440 Pseudaelurus intrepidus Pseudaelurus stouti 88 339 Nimravides pedionomus 442 443 Nimravides galiani 22 338 441 Nimravides thinobates Pseudaelurus marshi Pseudaelurus validus 446 Machairodus alberdiae 77 Machairodus coloradensis 445 Homotherium serum 447 444 448 Smilodon fatalis Smilodon gracilis 66 Pseudaelurus quadridentatus Barbourofelis morrisi 449 Barbourofelis whitfordi 550 551 Barbourofelis fricki Barbourofelis loveorum Stenogale Hemigalus derbyanus 554 555 Arctictis binturong 55 Paradoxurus hermaphroditus Genetta victoriae 553 558 Genetta maculata 559 557 660 Genetta genetta Genetta servalina Poiana richardsonii 556 Civettictis civetta 662 Viverra tangalunga 661 663 552 Viverra zibetha Viverricula indica Crocuta crocuta 666 667 Hyaena brunnea 665 Hyaena hyaena Proteles cristata Fossa fossana 664 669 770 Cryptoprocta ferox Salanoia concolor 668 772 Crossarchus alexandri 33 Suricata suricatta 775
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • Assessing Carnivore Distribution from Local Knowledge Across a Human-Dominated Landscape in Central-Southeastern Madagascar M
    bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Assessing carnivore distribution from local knowledge across a human-dominated landscape in central-southeastern Madagascar M. Kotschwar Logan1, B. D. Gerber1, S. M. Karpanty1, S. Justin2 & F. N. Rabenahy3 1 Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA 2 Centre ValBio, Ranomafana, Ifanadiana, Madagascar 3 MICET, Manakambahiny, Antananarivo, Madagascar Keywords Abstract carnivores; distribution; disturbance; forest loss; human-dominated landscape; local Carnivores are often sensitive to habitat loss and fragmentation, both of which are ecological knowledge; Madagascar; widespread in Madagascar. Clearing of forests has led to a dramatic increase in human-carnivore conflict. highly disturbed, open vegetation communities dominated by humans. In Mada- gascar’s increasingly disturbed landscape, long-term persistence of native carni- Correspondence vores may be tied to their ability to occupy or traverse these disturbed areas. Sarah Karpanty, 150 Cheatham Hall, However, how Malagasy carnivores are distributed in this landscape and how they Department of Fish and Wildlife interact with humans are unknown, as past research has concentrated on popu- Conservation, Virginia Tech, Blacksburg, VA lations within continuous and fragmented forests. We investigated local ecological 24061, USA. knowledge of carnivores using semi-structured interviews in communities 0 to Email: [email protected] 20 km from the western edge of continuous rainforest in central-southeastern
    [Show full text]
  • Page 1 SMALL CARNIVORE CONSERVATION INNL The
    Svran CnnNrvonr CoNSERVATToN The Newsletterand Journal of the IUCN/SSC Mustelid,Viverrid & ProcyonidSpecialist Group IUCN Number28 April2003 SPEcrEsSunvrvAL CoMMISSIoN Stflpe-necked/vlongoose Herp€stes vitticollis - Photo:M. N.loyokunor, lFS,ARPS, AFIAP The productionand distributionof this issuehas beensponsored by "l\,4arwellPreservation Trust Ltd", Colden Common, UK "RoyalZoological Society of Antwerp",Antwerp, Belgium "CarnivoreConservation & ResearchTrust". Knoxville. TN. USA "ColumbusZoo", Powell, Ohio, USA and "WildlifeConservation Society/Central Park Wildlife Centel', NewYork, NY, USA ColumbusZOO ...1'!hiigtr4rr iihtr r.ontt. t.t dos Svrnn Cnnxrvonr CoNSERVATToN The Newsletterand Joumal of the IUCN/SSC Mustelid.Viverrid & hocyonidSpecialist Group Editor-in-chief: HarryVan Rompaey, Edegem, Belgium Associateeditor: William Duckworth,Bristol, UK Editorial board: AngelaGlatston, Rotterdam, Netherlands MichaelRiffel, Heidelberg,Germany Amd Schreiber,Heidelberg, Germany RolandWinh, Miinchen, Germany Thc !icws cxpressedin tbis publicalioDare thoseoflhe authorsand do not necessarilyreflec! lhose of lhe IUCN. nor the IUCN/SSC Musteljd. viverrid & ProcyonidSpecialist Group. Thc ann ofthis publicatbn is to offc. thc mcmbcrsol rheIUCN/SSC MV&PSG, andthose who are conccmedwith mustclids,vi!cnids, and procyonids,briefpapers, news items. abstacts. and titles of recentliterature. A1l readersare invited to send material toi Small Carnivore Conservation cy'oDr. H. Van Rompaey Jan Verbertlei,15 2650 Edegem- Belgium [email protected] Pnnredon reclcledpaper ISSN 1019-5041 Brown-tailed Mongoose Salanois concolor in the Betampona Reserve, eastern Madagascar:Photographs and an ecological cornparison with Ring-tailed Mongoose Galidia elegans Adam BRITTT and Mcki VIRKAITISI Fi! 1 Bt \tn 1orl..l Moh(..t SaL3i.,a .oicolor Ph.b: V Vnkniis Abstract Photographsot' the lir(le knoNn Bros,n tailed Mongoose Sa I un o i a tu no lor in rhe BetamponaReser!c.
    [Show full text]
  • The Carnivora of Madagascar
    THE CARNIVORA OF MADAGASCAR 49 R. ALBIGNAC The Carizizrorn of Madagascar The carnivora of Madagascar are divided into 8 genera, 3 subfamilies and just one family, that of the Viverridae. All are peculiar to Madagascar except for the genus Viverricula, which is represented by a single species, Viverricula rasse (HORSFIELD),which is also found throughout southern Asia and was probably introduced to the island with man. Palaeontology shows that this fauna is an ancient one comprising many forms, which appear to be mainly of European origin but with very occasional kinships with the Indian region. For instance, Cvptofiroctaferox, although perhaps not directly related to Proailurus lenianensis (a species found in the phosphorites of the Quercy region of France and in the Aquitanian formations of Saint Gérand-le- Puy) , nevertheless appears to be the descendant of this line. Similarly, the origin of the Fossa and Galidiinae lines would seem to be close to that of the holarctic region. Only Eupleres raises a problem, having affinities with Chrotogale, known at present in Indochina. The likely springboard for these northern species is the continent of Africa. This archaic fauna has survived because of the conservative influence of the island, which has preserved it into modern times. In the classification of mammals G. G. SIMPSONputs the 7 genera of Madagascan carnivora in the Viverridae family and divides them into 3 subfamilies, as shown in the following table : VIVERRIDAE FAMILY Fossinae subfamily (Peculiar to Madagascar) Fossa fossa (Schreber) Eupleres goudotii Doyère Galidiinae subfamily (peculiar to Madagascar) Galidia elegans Is. Geoffroy Calidictis striata E. Geoffroy Mungotictis lineatus Pocock Salanoia concolor (I.
    [Show full text]
  • Small Carnivore CAMP 1993.Pdf
    SMALL CARNIVORE CONSERVATION ASSESSMENT AND MANAGEMENT PLAN Final Review Draft Report 1G May 1994 Edited and compiled by Roland Wirth, Angela Glatston, Onnie Byers, Susie Ellis, Pat Foster-Turley, Paul Robinson, Harry Van Rompaey, Don Moore, Ajith Kumar, Roland Melisch, and Ulysses Seal Prepared by the participants of a workshop held in Rotterdam, The Netherlands 11-14 February 1993 A Collaborative Workshop IUCN/SSC MUSTELID, VIVERRID, AND PROCYONID SPECIALIST GROUP IUCN/SSC OTTER SPECIALIST GROUP IUCN/SSC CAPTIVE BREEDING SPECIALIST GROUP Sponsored by The Rotterdam Zoo IUCN/SSC Sir Peter Scott Fund United Kingdom Small Carnivore Taxon Advisory Group A contribution of the IUCN/SSC Captive Breeding Specialist Group, IUCN/SSC Mustelid, Viverrid, and Procyonid Specialist Group and the IUCN/SSC Otter Specialist Group. The Primary Sponsors of the Workshop were: The Rotterdam Zoo, IUCN/SSC Peter Scott Fund, United Kingdom Small Carnivore Taxon Advisory Group. Cover Photo: Malayan Civet, Viverra tangalunga by Roland Wirth. Wirth, R., A Glatston, 0. Byers, S. Ellis, P. Foster-Turley, P. Robinson, H. Van Rompaey, D. Moore, A Kumar, R. Melisch, U.Seal. (eds.). 1994. Small Carnivore Conservation Assessment and Management Plan. IUCN/SSC Captive Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Captive Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Bank. Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No.
    [Show full text]
  • An Unidentified Carnivoran Species from the Masoala Peninsula of Madagascar
    MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 8 | ISSUE 2 — NOVEMBER 2013 PAGE 81 SHORT NOTE http://dx.doi.org/10.4314/mcd.v8i2.6 The fitoaty: an unidentified carnivoran species from the Masoala peninsula of Madagascar Cortni Borgerson University of Massachusetts Department of Anthropology Amherst, U.S.A. E - mail: [email protected] ABSTRACT travers des enquêtes villageoises portant sur la présence de cet Little is known about carnivoran ecology and population animal sur la presqu’île Masoala, d’autre part. À l’exception de dynamics in northeastern Madagascar, especially on the little sa grande taille (avec un poids estimé à 3–4 kg), d’une muscu- studied Masoala peninsula. This leaves the status of threatened lature développée, d’un pelage noir uniforme, court et brillant, carnivores on the Masoala peninsula poorly understood. Even et de ses yeux rouge - orangé, la morphologie du fitoaty rappelle less is known about the relative taxonomic position and role of celle d’un chat domestique. Il semblerait que le fitoaty serait domestic, feral, and possible wild cats in Madagascar. Adequate distribué sur une vaste étendue géographique de la presqu’île conservation of the Masoala peninsula will remain limited until Masoala. Contrairement aux chats sauvages rencontrés ailleurs the status, threats, and roles of felines and native carnivorans à Madagascar, le fitoaty semble préférer les forêts du Parc in regional system dynamics are documented. Six of the ten car- National de Masoala et de ses environs. Même dans les villages nivoran species belonging to the endemic family Eupleridae, as où le fitoaty a été vu à de nombreuses reprises, il est considéré well as introduced civets, domestic dogs, and cats are known to comme rare.
    [Show full text]
  • List of Vertebrate Species Recorded at Tsinjoarivo
    VERTEBRATE SPECIES RECORDED AT TSINJOARIVO, MADAGASCAR Compiled by M. Irwin, 2010 SOURCE: English Name Scientific Name Local Name 1 2 3 4 MAMMALIA: PRIMATES Diademed Sifaka Propithecus diadema ssp. - EN Sadabe + + + Lesser Bamboo Lemur Hapalemur griseus - VU Kotraika + + + Brown Lemur Eulemur fulvus – NT Varika + + + Red-Bellied Lemur Eulemur rubriventer - VU Varika mena + + Woolly Lemur Avahi laniger – LC Ramiona (Avahina) + + + Sportive Lemur Lepilemur mustelinus – DD Tsidika + + + Mouse Lemur Microcebus rufus – LC Tsilamodamoka + + + Crossley’s Dwarf Lemur Cheirogaleus crossleyi - DD Matavirambo + Sibree’s Dwarf Lemur Cheirogaleus sibreei - DD Matavirambo + Aye-aye Daubentonia madagascariensis - NT Hay-hay + + Black and White Ruffed Lemur Varecia variegata variegata ? ? MAMMALIA: INSECTIVORA Common Tenrec Tenrec ecaudatus – LC Trandraka + + + Shrew Tenrecs: Microgale cowani – LC + + Microgale dobsoni – LC + + Microgale fotsifotsy – LC + Microgale gracilis – LC + + Microgale gymnorhyncha – LC + Microgale longicaudata – LC + + Microgale major 1 – LC + Microgale parvula – LC + Microgale pusilla – LC + Microgale soricoides – LC + Microgale taiva – LC + Microgale thomasi – LC + + Lowland Streaked Tenrec Hemicentetes semispinosus – LC Sora + + + Highland Streaked Tenrec Hemicentetes nigriceps – LC Sora + Greater Hedgehog Tenrec Setifer setosus – LC + + Rice Tenrec Oryzorictes hova – LC + * Musk Shrew Suncus murinus – LC + MAMMALIA: RODENTIA Tuft-tailed Rats: Eliurus grandidieri – LC + Eliurus majori – LC + Eliurus minor – LC + Voalavoanala
    [Show full text]