The Cenozoic Geology of the Chetoh Country, Arizona and New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

The Cenozoic Geology of the Chetoh Country, Arizona and New Mexico The Cenozoic geology of the Chetoh country, Arizona and New Mexico Item type text; Dissertation-Reproduction (electronic); maps Authors Howell, Paul William, 1909-1972 Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Downloaded 22-Jan-2018 17:05:41 Link to item http://hdl.handle.net/10150/565556 THE CENOZOIC GEOLOGY OF THE CHETOH COUNTRY, ARIZONA AND NEW MEXICO by Paul W.''Howell A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 1959 ZFf7?y /f-$7 io STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or repro­ duction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: UJL APPROVED BY THESIS DIRECTOR This thesis has been approved on the date shown below: JOHN F. LANCE Date Professor of Geology i ACKNOWLEDGEMENTS The work on this thesis has covered a considerable length of time, and the people who have helped the writer with his work are many, more, in fact, than it is practical to mention here. If anyone has been left unmentioned, let him be. assured that it is not for lack of appreciation of the help he gave that his name does not appear. The writer is most indebted to his wife, without whose assist­ ance and encouragement this thesis might never have been completed. He is deeply indebted also to Ted McKee, his field assistant for two summers, whose unfailing energy and humor made the work easy and the time pleasant, and who has no peer in the art of field cuisine. In lesser degree the writer is indebted to Dick Burnette, Joao Jose Bigarella, and Rudy Strand, each of whom assisted him for a short time in the field. Filtrol Corporation of Los Angeles, and El Paso Natural Gas Company helped considerably by allowing the use of their buildings as field camp headquarters. The writer takes this opportunity to express his gratitude to Edwin D. McKee, who as head of the Department of Geology at the University of Arizona in 1952 made it possible for the writer to take up and follow such an interesting problem. Professor John F. Lance, who as thesis director gave unstintingly of his time and help, has earned the writer's lasting gratitude. Mr.. Jackson L. Clark, formerly State Mineralogist for Arizona, and Mr. George Roseveare, ii Metallurgist for the Arizona Bureau of Mines, gave the writer invalu­ able assistance and technical guidance in the chemical, spectrographic and X-Ray work. Mr. Arthur Schmidt, Petrographer for the Corps of Engineers North Pacific Division Laboratory, took the photomicrographs of rock thin-sections for the writer. Many others of the writers co-workers in the Corps of Engineers have given technical assistance. The writer wishes to thank the Museum of Northern Arizona for the use of their quarters and laboratory facilities, and for the many privileges and kindnesses extended him. The Department of Geology and the School of Mines at the University of Arizona through the loan of their equipment and materials were of great help in carrying out the laboratory work. The writer was greatly helped through discussions and field trips with H. Wesley Peirce, fellow graduate student and sympathetic listener. Professors John F. Lance, Evans B. Mayo, and Halsey W. Miller read and criticized the thesis for the writer, and have been most helpful in bringing it to completion. ill THE CENOZOIC GEOLOGY OF THE CHETOH COUNTRY, ARIZONA AND NEW MEXICO. By Paul W. Howell CONTENTS INTRODUCTION 1 The Thesis Problem 1 \ Location and Accessibility 3 Topography, Climate, and Vegetation 5 Topography 5 Climate and Vegetation 7 GEOLOGIC SETTING 10 Geologic Units and Relationships 10 Pre-Tertiary Rocks 10 Tertiary Deposits 13 Quaternary Deposits 13 Structural Features 14 CENOZOIC GEOLOGY l6 The Tertiary Period 16 Previous Work on the Tertiary Geology 16 Stratigraphy of the Tertiary 20 General Character of the Tertiary Deposits 20 The Zuni Erosion Surface 22 iv The Zuni Pebble Zone 25 The Chetoh Formation 30 Stratigraphy 30 Sedimentology 37 Correlative Formations 46 The Hopi Buttes Erosion Surface 48 The Bidahochi Formation 53 The Upper Bidahochi 53 The Volcanic Member 57 The Lower Bidahochi 58 The White Ash Beds 59 Bidahochi Sedimentology 62 Areal Extent of the Bidahochi 68 Correlative Formations 71 The Quaternary Period 73 Previous Work 73 General Character of the Deposits 75 Stratigraphy 77 The High Mesa Fill 77 The Gamerco Formation 88 The Jeddito Fill 92 The Naha Fill 96 Tectonics of the Cenozoic 98 v THE IGNEOUS ROCKS 100 Tertiary Volcanic Rocks 100 Salic Volcanic Rocks 101 Alkaline Basic Volcanics 104 Moderately Alkaline Basalts 107 Quaternary Volcanic Rocks 111 Volcanic Rocks in the Gravel Deposits 114 Zxmi Pebble Zone Gravel at Crazy Creek 114 High Mesa Fill Gravels at Cheto Mine 115 High Mesa Fill Gravels - South Side of Hardscrabble Mesa H 5 GEOMORPHOLOGY 117 . Geomorphic Evidence 117 The Erosion Surfaces 118 The Fill Surfaces 124 Stream Patterns and Superimpositions 126 Cycle and Stage of the Chetoh Country 130 Late Stream Patterns and Causes in the Chetoh Country 131 SEQUENCE OF EVENTS 135 Summary l4l BIBLIOGRAPHY 143 APPENDIX vi ILLUSTRATIONS PLATES 1 Geologic Map of the Chetoh Country Pocket 2 Geologic Sections of Bidahochi Basin tt II 3 Table of Sedimentary Environments 4 to 27 Photographs of Formations and Other Geologic Features Appendix 2? to 35 Photomicrographs of Rock Thin Sections ft 36 X-Ray Diffraction Photographs of Tertiary Clays If FIGURES 1 to 26 Stratigraphic Sections 27 to 33 Mechanical Analysis Cumulative Curves TABLES 1 Precipitation in the Chetoh Country Page 8 2 to 27 Data on the Chetoh and Related Formations Appendix 28 to 43 Data on the Bidahochi Formation " 44 to 57 Data on the High Mesa Fill " 58 Data on the Gamerco Formation " 59 and 60 Data on the Jeddito Fill " 6l to 70 Data on the Volcanic Rocks " vii INTRODUCTION The Thesis Problem The late Cenozoic geology of the Colorado Plateau is relatively unknown compared to that of the earlier epochs and periods. This con­ dition exists despite the great interest in the late geologic history of the Plateau and the Colorado River, an interest that has continued unabated since the days of the early, explorations. It is not for lack of work in the region that this condition exists, for much has been accomplished and written about it. The cause lies in the facts that the region is vast, that most of the record has been destroyed by erosion, and that the problem thereby is very difficult. When the Cenozoic geology and history of the Plateau are finally unravelled it will probably not be as the result of brilliant perception and deduction, but rather as the result of persistent and careful study of the scattered bits of remaining .evidence. The challenge of this unsolved problem, however, cannot be easily ignored by one working in the area, and it finally led the writer to undertake a comprehensive study of the late Cenozoic geology of a portion of the Plateau. It is hoped that this study, though it has not deciphered the Plateau1 s history, has at least produced some much needed basic data concerning it. The Chetoh country,of Arizona and New Mexico was chosen for the study because> as far as the writer knows, it contains the most com- . plete record of the late Cenozoic geology of the Plateau. 1 2 The intent of this thesis, therefore, is to determine the character and environment of the Cenozoic formations of the Chetoh country. 3 Location and Accessibility The name Chetoh country is herein assigned to a large area of the Colorado Plateau encompassing parts of the states of Arizona and New Mexico. It embraces a large part of the country north of the Little Colorado River and includes such landmarks as Defiance Uplift, Puerco River, and the Painted Desert. To the east of the Chetoh country lie the Chuska and Zuni Mountains, and to the south the Zuni and Little Colorado Rivers; to the west and north lie the Hop! Buttes, Black Mesa, and Chinle Valley. The settlement of Sanders, Arizona, is located near the center of the area, at the junction of U. S. Highways 66 and 666. The detailed studies for the thesis were carried out within this area, but correlation studies took the writer into outlying districts. Compared to some parts of the Colorado Plateau the Chetoh country is easily accessible. One may enter the area on any of three good paved highways, or by railroad. U. S. Highway 66 passes through the middle of the area from southwest to northeast, following the Puerco River and is paralleled by the Santa Fe Railroad. U. S. High­ way 666 passes northward through the area from St.
Recommended publications
  • Narbonapass.Pdf
    FIRST-DAY ROAD LOG 1 FIRST-DAY ROAD LOG, FROM GALLUP TO GAMERCO, YAH-TA-HEY, WINDOW ROCK, FORT DEFIANCE, NAVAJO, TODILTO PARK, CRYSTAL, NARBONA PASS, SHEEP SPRINGS, TOHATCHI AND GALLUP SPENCER G. LUCAS, STEVEN C. SEMKEN, ANDREW B. HECKERT, WILLIAM R. BERGLOF, First-day Road Log GRETCHEN HOFFMAN, BARRY S. KUES, LARRY S. CRUMPLER AND JAYNE C. AUBELE ������ ������ ������ ������� ������ ������ ������ ������ �������� Distance: 141.8 miles ������� Stops: 5 ���� ������ ������ SUMMARY ������ �� ������ �� ����� �� The first day’s trip takes us around the southern �� �� flank of the Defiance uplift, back over it into the �� southwestern San Juan Basin and ends at the Hogback monocline at Gallup. The trip emphasizes Mesozoic— especially Jurassic—stratigraphy and sedimentation in NOTE: Most of this day’s trip will be conducted the Defiance uplift region. We also closely examine within the boundaries of the Navajo (Diné) Nation under Cenozoic volcanism of the Navajo volcanic field. a permit from the Navajo Nation Minerals Department. Stop 1 at Window Rock discusses the Laramide Persons wishing to conduct geological investigations Defiance uplift and introduces Jurassic eolianites near on the Navajo Nation, including stops described in this the preserved southern edge of the Middle-Upper guidebook, must first apply for and receive a permit Jurassic depositional basin. At Todilto Park, Stop 2, from the Navajo Nation Minerals Department, P.O. we examine the type area of the Jurassic Todilto For- Box 1910, Window Rock, Arizona, 86515, 928-871- mation and discuss Todilto deposition and economic 6587. Sample collection on Navajo land is forbidden. geology, a recurrent theme of this field conference. From Todilto Park we move on to the Green Knobs diatreme adjacent to the highway for Stop 3, and then to Stop 4 at the Narbona Pass maar at the crest of the Chuska Mountains.
    [Show full text]
  • Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado by Peter W
    Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado By Peter W. Lipman Pamphlet to accompany Geologic Investigations Series I–2799 dacite Ceobolla Creek Tuff Nelson Mountain Tuff, rhyolite Rat Creek Tuff, dacite Cebolla Creek Tuff Rat Creek Tuff, rhyolite Wheeler Geologic Monument (Half Moon Pass quadrangle) provides exceptional exposures of three outflow tuff sheets erupted from the San Luis caldera complex. Lowest sheet is Rat Creek Tuff, which is nonwelded throughout but grades upward from light-tan rhyolite (~74% SiO2) into pale brown dacite (~66% SiO2) that contains sparse dark-brown andesitic scoria. Distinctive hornblende-rich middle Cebolla Creek Tuff contains basal surge beds, overlain by vitrophyre of uniform mafic dacite that becomes less welded upward. Uppermost Nelson Mountain Tuff consists of nonwelded to weakly welded, crystal-poor rhyolite, which grades upward to a densely welded caprock of crystal-rich dacite (~68% SiO2). White arrows show contacts between outflow units. 2006 U.S. Department of the Interior U.S. Geological Survey CONTENTS Geologic setting . 1 Volcanism . 1 Structure . 2 Methods of study . 3 Description of map units . 4 Surficial deposits . 4 Glacial deposits . 4 Postcaldera volcanic rocks . 4 Hinsdale Formation . 4 Los Pinos Formation . 5 Oligocene volcanic rocks . 5 Rocks of the Creede Caldera cycle . 5 Creede Formation . 5 Fisher Dacite . 5 Snowshoe Mountain Tuff . 6 Rocks of the San Luis caldera complex . 7 Rocks of the Nelson Mountain caldera cycle . 7 Rocks of the Cebolla Creek caldera cycle . 9 Rocks of the Rat Creek caldera cycle . 10 Lava flows premonitory(?) to San Luis caldera complex . .11 Rocks of the South River caldera cycle .
    [Show full text]
  • 2016 Arizona Shade Tree Planting Prioritization ATLAS
    2016 Shade Tree Planting Prioritization 1 Urban and Community Forestry 2016 Arizona Shade Tree Planting Prioritization ATLAS Planning Maps for the Department of Forestry and Fire Management 2016 Shade Tree Planting Prioritization Atlas About the 2016 Shade Tree Planting Prioritization Atlas This collection of maps summarizes the results of the 2016 Shade Tree Planting Prioritization analysis of the Urban and Community Forestry Program (UCF) at the Arizona Department of Forestry and Fire Management (DFFM). The purpose of the analysis was to assess existing urban forests in Arizona’s communities and identify shade tree planting needs. The spatial analysis, based on U.S. Census Block Group polygons, generated seven sub-indices for criteria identified by an expert panel: population density, lack of canopy cover, low-income, traffic proximity, sustainability, air quality, and urban heat effect. The seven sub-indices were combined into one Shade Tree Planting Priority Index and further summarized into a Shade Tree Planting Priority Ranking. The resulting reports, maps, and GIS data provide compiled information that can be easily used for identifying areas for strategic shade tree planting within a community or across Arizona’s major cities and towns. These maps provide limited detail for conveying the scale and depth of the analysis results which – for more detailed use – are best explored through the analysis report, interactive maps, and the GIS data available through the UCF Program webpage at https://forestryandfire.az.gov/forestry-community-forestry/urban-community-forestry/projects. Note: At the time of publication, two known analysis area errors have been identified. A few of Safford’s incorporated easements were not captured correctly.
    [Show full text]
  • Structural Geology of the Upper Rock Creek Area, Inyo County, California, and Its Relation to the Regional Structure of the Sierra Nevada
    Structural geology of the upper Rock Creek area, Inyo County, California, and its relation to the regional structure of the Sierra Nevada Item Type text; Dissertation-Reproduction (electronic); maps Authors Trent, D. D. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:38:23 Link to Item http://hdl.handle.net/10150/565293 STRUCTURAL GEOLOGY OF THE UPPER ROCK CREEK AREA, INYO COUNTY, CALIFORNIA, AND ITS RELATION TO THE REGIONAL STRUCTURE OF THE SIERRA NEVADA by Dee Dexter Trent A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by __________ Dee Dexter Trent______________________ entitled Structural Geology of the Upper Rock Creek Area . Tnvo County, California, and Its Relation to the Regional Structure of the Sierra Nevada ________________ be accepted as fulfilling the dissertation requirement of the degree of ____________Doctor of Philosophy_________ ___________ P). /in /'-/7. 3 Dissertation Director fJ Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f t M m /q 2 g ££2 3 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • Hydrogeology of the Chinle Wash Watershed, Navajo Nation Arizona, Utah and New Mexico
    Hydrogeology of the Chinle Wash Watershed, Navajo Nation Arizona, Utah and New Mexico Item Type Thesis-Reproduction (electronic); text Authors Roessel, Raymond J. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 19:50:22 Link to Item http://hdl.handle.net/10150/191379 HYDROGEOLOGY OF THE CHINLE WASH WATERSHED, NAVAJO NATION, ARIZONA, UTAH AND NEW MEXICO by Raymond J. Roessel A Thesis Submitted to the Faculty of the DEPARTMENT OF HYDROLOGY AND WATER RESOURCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN HYDROLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 1994 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Index 1 INDEX
    Index 1 INDEX A Blue Spring 76, 106, 110, 115 Bluff Spring Trail 184 Adeii Eechii Cliffs 124 Blythe 198 Agate House 140 Blythe Intaglios 199 Agathla Peak 256 Bonita Canyon Drive 221 Agua Fria Nat'l Monument 175 Booger Canyon 194 Ajo 203 Boundary Butte 299 Ajo Mountain Loop 204 Box Canyon 132 Alamo Canyon 205 Box (The) 51 Alamo Lake SP 201 Boyce-Thompson Arboretum 190 Alstrom Point 266, 302 Boynton Canyon 149, 161 Anasazi Bridge 73 Boy Scout Canyon 197 Anasazi Canyon 302 Bright Angel Canyon 25, 51 Anderson Dam 216 Bright Angel Point 15, 25 Angels Window 27 Bright Angel Trail 42, 46, 49, 61, 80, 90 Antelope Canyon 280, 297 Brins Mesa 160 Antelope House 231 Brins Mesa Trail 161 Antelope Point Marina 294, 297 Broken Arrow Trail 155 Apache Junction 184 Buck Farm Canyon 73 Apache Lake 187 Buck Farm Overlook 34, 73, 103 Apache-Sitgreaves Nat'l Forest 167 Buckskin Gulch Confluence 275 Apache Trail 187, 188 Buenos Aires Nat'l Wildlife Refuge 226 Aravaipa Canyon 192 Bulldog Cliffs 186 Aravaipa East trailhead 193 Bullfrog Marina 302 Arch Rock 366 Bull Pen 170 Arizona Canyon Hot Springs 197 Bush Head Canyon 278 Arizona-Sonora Desert Museum 216 Arizona Trail 167 C Artist's Point 250 Aspen Forest Overlook 257 Cabeza Prieta 206 Atlatl Rock 366 Cactus Forest Drive 218 Call of the Canyon 158 B Calloway Trail 171, 203 Cameron Visitor Center 114 Baboquivari Peak 226 Camp Verde 170 Baby Bell Rock 157 Canada Goose Drive 198 Baby Rocks 256 Canyon del Muerto 231 Badger Creek 72 Canyon X 290 Bajada Loop Drive 216 Cape Final 28 Bar-10-Ranch 19 Cape Royal 27 Barrio
    [Show full text]
  • Navajo Nation Surface Water Quality Standards 2015
    Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. July 22, 2021 Navajo Nation Surface Water Quality Standards 2015 Effective March 17, 2021 The federal Clean Water Act (CWA) requires states and federally recognized Indian tribes to adopt water quality standards in order to "restore and maintain the chemical, physical, and biological integrity of the Nation's Waters" (CWA, 1988). The attached WQS document is in effect for Clean Water Act purposes with the exception of the following provisions. Navajo Nation’s previously approved criteria for these provisions remain the applicable for CWA purposes. The “Navajo Nation Surface Water Quality Standards 2015” (NNSWQS 2015) made changes amendments to the “Navajo Nation Surface Water Quality Standards 2007” (NNSWQS 2007). For federal Clean Water Act permitting purposes, the United States Environmental Protection Agency (USEPA) must approve these changes to the NNSWQS 2007 which are found in the NNSWQS 2015. The USEPA did not approve of three specific changes which were made to the NNSWQS 2007 and are in the NNSWQS 2015. (October 15, 2020 Letter from USEPA to Navajo Nation Environmental Protection Agency). The three specific changes which USEPA did not accept are: 1) Aquatic and Wildlife Habitat Designated Use - Suspended Solids Changes (NNSWQS 2015 Section 207.E) The suspended soils standard for aquatic and wildlife habitat designated use was changed to only apply to flowing (lotic) surface waters and not to non-flowing (lentic) surface waters.
    [Show full text]
  • Tertiary Stratigraphy of the Navajo Country Charles A
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/9 Tertiary stratigraphy of the Navajo country Charles A. Repenning, J. F. Lance, and J. H. Irwin, 1958, pp. 123-129 in: Black Mesa Basin (Northeastern Arizona), Anderson, R. Y.; Harshbarger, J. W.; [eds.], New Mexico Geological Society 9th Annual Fall Field Conference Guidebook, 205 p. This is one of many related papers that were included in the 1958 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    Von Herzen, R. P., Robinson, P. T., et al., 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 118 22. PLASTIC DEFORMATION AT AN OCEANIC SPREADING RIDGE: A MICROSTRUCTURAL STUDY OF THE SITE 735 GABBROS (SOUTHWEST INDIAN OCEAN)1 Mathilde Cannat2 ABSTRACT Microstructural analysis suggests that some Site 735 gabbros were deformed in the crystal mush stage, before they had completely crystallized. Later, solid-state deformation began in granulite-facies metamorphic conditions. At this stage, temperature-dependent diffusion processes may have controlled the plastic deformation of these gabbros, and mylonites formed only in intervals containing more than 10% Fe-Ti oxides. Most oxides in these mylonites are interpreted as magmatic in origin. A sharp change of deformation processes occurred as temperature decreased to the stability conditions of amphibolite-facies metamorphic assemblages: dislocation slip in plagioclase may have become the leading plastic flow mechanism. This change of deformation processes coincides with increased availability of hydrothermal water and with a marked decrease of the plagioclase recrystallized grain size. This reduction in recrystallized grain size is thought to result from an increase of the deviatoric stress, and thus from an increase of the yield strength of the gabbros. In amphibolite-facies metamorphic conditions, dynamic recrystallization of plagioclase locally caused strain-softening, leading to the formation of mylonites. Relict porphyroclasts (plagioclase, olivine, and pyroxenes) in these mylonites are fractured and boudinaged. The cracks produced by this brittle failure are filled with green to brown hydrothermal hornblende. INTRODUCTION the Site 735 deformed gabbros. These results are used to interpret the tectonic evolution of these gabbros (Cannat et A total of 500 m of gabbro was drilled at Site 735 during al., this volume).
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Detrital Zircon U-Pb Provenance of the Colorado River: a 5 M.Y
    Research Paper THEMED ISSUE: CRevolution 2: Origin and Evolution of the Colorado River System II GEOSPHERE Detrital zircon U-Pb provenance of the Colorado River: A 5 m.y. record of incision into cover strata overlying the GEOSPHERE; v. 11, no. 6 doi:10.1130/GES00982.1 Colorado Plateau and adjacent regions David L. Kimbrough1, Marty Grove2, George E. Gehrels3, Rebecca J. Dorsey4, Keith A. Howard5, Oscar Lovera6, Andres Aslan7, P. Kyle House8, 19 figures; 5 tables; 1 supplemental file and Philip A. Pearthree9 1Department of Geological Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA CORRESPONDENCE: [email protected] 2School of Earth, Energy & Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305, USA 3Department of Geosciences, University of Arizona, 1040 4th Street, Tucson, Arizona 85721, USA CITATION: Kimbrough, D.L., Grove, M., Gehrels, 4Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA G.E., Dorsey, R.J., Howard, K.A., Lovera, O., Aslan, 5U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025-3591, USA A., House, P.K., and Pearthree, P.A., 2015, Detrital 6Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive East, Los Angeles, California 90095, USA zircon U-Pb provenance of the Colorado River: A 7Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA 5 m.y. record of incision into cover strata overlying the 8U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA Colorado Plateau and adjacent regions: Geosphere, 9Arizona Geological Survey, 416 W.
    [Show full text]
  • Late Cretaceous Stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/9 Late Cretaceous stratigraphy of Black Mesa, Navajo and Hopi Indian Reservations, Arizona H. G. Page and C. A. Repenning, 1958, pp. 115-122 in: Black Mesa Basin (Northeastern Arizona), Anderson, R. Y.; Harshbarger, J. W.; [eds.], New Mexico Geological Society 9th Annual Fall Field Conference Guidebook, 205 p. This is one of many related papers that were included in the 1958 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]