2021-2022 Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thriving in a Crowded and Changing World: C++ 2006–2020
Thriving in a Crowded and Changing World: C++ 2006–2020 BJARNE STROUSTRUP, Morgan Stanley and Columbia University, USA Shepherd: Yannis Smaragdakis, University of Athens, Greece By 2006, C++ had been in widespread industrial use for 20 years. It contained parts that had survived unchanged since introduced into C in the early 1970s as well as features that were novel in the early 2000s. From 2006 to 2020, the C++ developer community grew from about 3 million to about 4.5 million. It was a period where new programming models emerged, hardware architectures evolved, new application domains gained massive importance, and quite a few well-financed and professionally marketed languages fought for dominance. How did C++ ś an older language without serious commercial backing ś manage to thrive in the face of all that? This paper focuses on the major changes to the ISO C++ standard for the 2011, 2014, 2017, and 2020 revisions. The standard library is about 3/4 of the C++20 standard, but this paper’s primary focus is on language features and the programming techniques they support. The paper contains long lists of features documenting the growth of C++. Significant technical points are discussed and illustrated with short code fragments. In addition, it presents some failed proposals and the discussions that led to their failure. It offers a perspective on the bewildering flow of facts and features across the years. The emphasis is on the ideas, people, and processes that shaped the language. Themes include efforts to preserve the essence of C++ through evolutionary changes, to simplify itsuse,to improve support for generic programming, to better support compile-time programming, to extend support for concurrency and parallel programming, and to maintain stable support for decades’ old code. -
Ali Aydar Anita Borg Alfred Aho Bjarne Stroustrup Bill Gates
Ali Aydar Ali Aydar is a computer scientist and Internet entrepreneur. He is the chief executive officer at Sporcle. He is best known as an early employee and key technical contributor at the original Napster. Aydar bought Fanning his first book on programming in C++, the language he would use two years later to build the Napster file-sharing software. Anita Borg Anita Borg (January 17, 1949 – April 6, 2003) was an American computer scientist. She founded the Institute for Women and Technology (now the Anita Borg Institute for Women and Technology). While at Digital Equipment, she developed and patented a method for generating complete address traces for analyzing and designing high-speed memory systems. Alfred Aho Alfred Aho (born August 9, 1941) is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, and his textbooks on the art and science of computer programming. Aho received a B.A.Sc. in Engineering Physics from the University of Toronto. Bjarne Stroustrup Bjarne Stroustrup (born 30 December 1950) is a Danish computer scientist, most notable for the creation and development of the widely used C++ programming language. He is a Distinguished Research Professor and holds the College of Engineering Chair in Computer Science. Bill Gates 2 of 10 Bill Gates (born October 28, 1955) is an American business magnate, philanthropist, investor, computer programmer, and inventor. Gates is the former chief executive and chairman of Microsoft, the world’s largest personal-computer software company, which he co-founded with Paul Allen. Bruce Arden Bruce Arden (born in 1927 in Minneapolis, Minnesota) is an American computer scientist. -
Secure Multi Keyword Fuzzy with Semantic Expansion Based Search Over Encrypted Cloud Data
SECURE MULTI KEYWORD FUZZY WITH SEMANTIC EXPANSION BASED SEARCH OVER ENCRYPTED CLOUD DATA ARFA BAIG Dept of Computer Science & Engineering B.N.M Institute of Technology, Bangalore, India E-mail: [email protected] Abstract— The initiation of cloud computing has led to ease of access in Internet-based computing and is commonly used for web servers or development systems where there are security and compliance requirements. Nevertheless, some of the confidential information has to be encrypted to avoid any intrusion. Henceforward as an attempt, a semantic expansion based multi- keyword fuzzy search provides solution over encrypted cloud data by using the locality-sensitive hashing technique. This solution returns not only the accurately matched files, but also the files including the terms semantically related to the query keyword. In the proposed scheme fuzzy matching is achieved through algorithmic design rather than expanding the index files. It also eradicates the need of a predefined dictionary and effectively supports multiple keyword fuzzy search without increasing the index or search complexity. The indexes are formed based on locality sensitive hashing (LSH), the result files are returned according to the total relevance score. Index Terms—Multi keyword fuzzy search, Locality Sensitive Hashing, Secure Semantic Expansion. support fuzzy search and also required the use of pre- I. INTRODUCTION defined dictionary which lacked scalability and Cloud computing is a form of computing that depends flexibility for modification and updation of the data. on sharing computing resources rather than having These drawbacks create the necessity of the new local servers or personal devices to handle technique of multi keyword fuzzy search. -
Lower Bounds on Lattice Sieving and Information Set Decoding
Lower bounds on lattice sieving and information set decoding Elena Kirshanova1 and Thijs Laarhoven2 1Immanuel Kant Baltic Federal University, Kaliningrad, Russia [email protected] 2Eindhoven University of Technology, Eindhoven, The Netherlands [email protected] April 22, 2021 Abstract In two of the main areas of post-quantum cryptography, based on lattices and codes, nearest neighbor techniques have been used to speed up state-of-the-art cryptanalytic algorithms, and to obtain the lowest asymptotic cost estimates to date [May{Ozerov, Eurocrypt'15; Becker{Ducas{Gama{Laarhoven, SODA'16]. These upper bounds are useful for assessing the security of cryptosystems against known attacks, but to guarantee long-term security one would like to have closely matching lower bounds, showing that improvements on the algorithmic side will not drastically reduce the security in the future. As existing lower bounds from the nearest neighbor literature do not apply to the nearest neighbor problems appearing in this context, one might wonder whether further speedups to these cryptanalytic algorithms can still be found by only improving the nearest neighbor subroutines. We derive new lower bounds on the costs of solving the nearest neighbor search problems appearing in these cryptanalytic settings. For the Euclidean metric we show that for random data sets on the sphere, the locality-sensitive filtering approach of [Becker{Ducas{Gama{Laarhoven, SODA 2016] using spherical caps is optimal, and hence within a broad class of lattice sieving algorithms covering almost all approaches to date, their asymptotic time complexity of 20:292d+o(d) is optimal. Similar conditional optimality results apply to lattice sieving variants, such as the 20:265d+o(d) complexity for quantum sieving [Laarhoven, PhD thesis 2016] and previously derived complexity estimates for tuple sieving [Herold{Kirshanova{Laarhoven, PKC 2018]. -
Bjarne Stroustrup
Bjarne Stroustrup 52 Riverside Dr. #6A +1 979 219 5004 NY, NY 10024 [email protected] USA www.stroustrup.com Education Ph.D. in Computer Science, University of Cambridge, England, 1979 Ph.D. Thesis: Communication and Control in Distributed Computer Systems Thesis advisor: David Wheeler Cand.Scient. in Mathematics with Computer Science, Aarhus University, Denmark, 1975 Thesis advisor: Brian H. Mayoh Research Interests Distributed Systems, Design, Programming techniques, Software development tools, and Programming Languages Professional Experience Technical Fellow, Morgan Stanley, New York, January 2019 – present Managing Director, Division of Technology and Data, Morgan Stanley, New York, January 2014 – present Visiting Professor, Columbia University, New York, January 2014 – present Visiting Professor in the Computer Lab and Fellow of Churchill College, Cambridge University, Spring 2012 Visiting Professor in the Computer Science Department, Princeton University, Fall 2011 The College of Engineering Chair Professor in Computer Science, Department of Computer Science, Texas A&M University, October 2002 – January 2014 Department Head, AT&T Laboratories – Research, Florham Park, New Jersey, July 1995 – October 2002 Distinguished Member of Technical Staff, AT&T Bell Laboratories, Murray Hill, NJ, June 1987 – July 1995 Member of Technical Staff, AT&T Bell Laboratories, Murray Hill, NJ, March 1979 – June 1987 Honors & Awards 2019: Honorary doctor of University Carlos III in Madrid, Spain. 1 2018: The John Scott Legacy Medal and Premium from The Franklin Institute and the City Council of Philadelphia to men and women whose inventions improved the comfort, welfare, and happiness of human kind in a significant way. 2018: The Computer Pioneer Award from The IEEE Computer Society For bringing object- oriented programming and generic programming to the mainstream with his design and implementation of the C++ programming language. -
Academic Program Review
Academic Program Review April 16-18, 2012 Department of Computer Science and Engineering Room 301 Harvey R. Bright Building Texas A&M University College Station, Texas 1 Contents I Introduction ............................................................................................................................... 4 I.1 Charge to Review Committee ............................................................................................. 4 I.2 Schedule of Review/Itinerary ............................................................................................. 5 I.3 Administrative Structure .................................................................................................... 6 II Brief History ............................................................................................................................... 7 II.1 Founding of Department .................................................................................................... 7 II.2 Founding and Development of Related Centers ................................................................ 7 II.3 Review and Changes in Past Seven Years ........................................................................ 15 II.4 Date of Last Program Review ........................................................................................... 16 III Vision and Goals ................................................................................................................... 16 III.1 Strategic Plan ................................................................................................................... -
A History of C++: 1979− 1991
A History of C++: 1979−1991 Bjarne Stroustrup AT&T Bell Laboratories Murray Hill, New Jersey 07974 ABSTRACT This paper outlines the history of the C++ programming language. The emphasis is on the ideas, constraints, and people that shaped the language, rather than the minutiae of language features. Key design decisions relating to language features are discussed, but the focus is on the overall design goals and practical constraints. The evolution of C++ is traced from C with Classes to the current ANSI and ISO standards work and the explosion of use, interest, commercial activity, compilers, tools, environments, and libraries. 1 Introduction C++ was designed to provide Simula’s facilities for program organization together with C’s effi- ciency and flexibility for systems programming. It was intended to deliver that to real projects within half a year of the idea. It succeeded. At the time, I realized neither the modesty nor the preposterousness of that goal. The goal was modest in that it did not involve innovation, and preposterous in both its time scale and its Draco- nian demands on efficiency and flexibility. While a modest amount of innovation did emerge over the years, efficiency and flexibility have been maintained without compromise. While the goals for C++ have been refined, elaborated, and made more explicit over the years, C++ as used today directly reflects its original aims. This paper is organized in roughly chronological order: §2 C with Classes: 1979– 1983. This section describes the fundamental design decisions for C++ as they were made for C++’s immediate predecessor. §3 From C with Classes to C++: 1982– 1985. -
Introduc)On to C++
Introduc)on to C++ CS 16: Solving Problems with Computers I Lecture #2 Ziad Matni Dept. of Computer Science, UCSB Announcements • Homework #1 due today – Please take out any staples or paper clips • No more switching lab )mes – Labs at 9am, 10am, 11am are FULL – Other labs have some space leF 9/27/16 Matni, CS16, Fa16 2 Lecture Outline • Computer Systems -‐-‐-‐ A review from last week • Programming and Problem Solving • IntroducPon to C++ 9/27/16 Matni, CS16, Fa16 3 Defining Computer A device that can be instructed to carry out an arbitrary set of arithme)c or logical opera)ons automaPcally 9/27/16 Matni, CS16, Fa16 4 Computer SoFware • The collecPon of programs used by a computer, and includes: – ApplicaPons – Translators (compilers) – System Managers (drivers, other OS components) 9/27/16 Matni, CS16, Fa16 5 5 Main Components to Computers • Inputs • Outputs • Processor • Main memory – Usually inside the computer, volaPle • Secondary memory – More permanent memory for mass storage of data 9/27/16 Matni, CS16, Fa16 6 Computer Memory • Usually organized in two parts: – Address • Where can I find my data? – Data (payload) • What is my data? • The smallest representaPon of the data – A binary bit (“0”s and “1”s) – A common collecPon of bits is a byte (8 bits = 1 byte) 9/27/16 Matni, CS16, Fa16 7 What is the Most Basic Form of Computer Language? • Binary a.k.a Base-‐2 • Expressing data AND instrucPons in either “1” or “0” – So, “01010101 01000011 01010011 01000010 00100001 00100001” could mean an instruc-on to “calculate 2 + 3” Or it could -
2004 Annual Report
2004 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE NATIONAL ACADEMY OF ENGINEERING 2101 Constitution Avenue, NW Washington, DC 20418 www.nae.edu 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports The National Academy of Sciences is a private, non- 4 Engineering Education profit, self-perpetuating society of distinguished schol- 4 ars engaged in scientific and engineering research, Center for the Advancement of Scholarship on dedicated to the furtherance of science and technolo- Engineering Education gy and to their use for the general welfare. Upon the 5 authority of the charter granted to it by the Congress in Technological Literacy 1863, the Academy has a mandate that requires it to 6 Public Understanding of Engineering advise the federal government on scientific and techni- cal matters. Dr. Ralph J. Cicerone is president of the Media Relations National Academy of Sciences. Public Relations The National Academy of Engineering was established Developing Effective Messages Project in 1964, under the charter of the National Academy of Great Achievements Website Sciences, as a parallel organization of outstanding 8 engineers. It is autonomous in its administration and in Engineering Ethics the selection of its members, sharing with the National 8 Diversity in the Engineering Workforce Academy of Sciences the responsibility for advising the 11 federal government. The National Academy of Engi- Frontiers of Engineering neering also sponsors engineering programs aimed at Lillian M. Gilbreth Lectureships for Young Engineers meeting national needs, encourages education and 12 research, and recognizes the superior achievements of Engineering and the Health Care System engineers. -
Efficient (Ideal) Lattice Sieving Using Cross-Polytope
Efficient (ideal) lattice sieving using cross-polytope LSH Anja Becker1 and Thijs Laarhoven2? 1 EPFL, Lausanne, Switzerland | [email protected] 2 TU/e, Eindhoven, The Netherlands | [email protected] Abstract. Combining the efficient cross-polytope locality-sensitive hash family of Terasawa and Tanaka with the heuristic lattice sieve algorithm of Micciancio and Voulgaris, we show how to obtain heuristic and prac- tical speedups for solving the shortest vector problem (SVP) on both arbitrary and ideal lattices. In both cases, the asymptotic time complex- ity for solving SVP in dimension n is 20:298n+o(n). For any lattice, hashes can be computed in polynomial time, which makes our CPSieve algorithm much more practical than the SphereSieve of Laarhoven and De Weger, while the better asymptotic complexities imply that this algorithm will outperform the GaussSieve of Micciancio and Voulgaris and the HashSieve of Laarhoven in moderate dimensions as well. We performed tests to show this improvement in practice. For ideal lattices, by observing that the hash of a shifted vector is a shift of the hash value of the original vector and constructing rerandomiza- tion matrices which preserve this property, we obtain not only a linear decrease in the space complexity, but also a linear speedup of the overall algorithm. We demonstrate the practicability of our cross-polytope ideal lattice sieve IdealCPSieve by applying the algorithm to cyclotomic ideal lattices from the ideal SVP challenge and to lattices which appear in the cryptanalysis of NTRU. Keywords: (ideal) lattices, shortest vector problem, sieving algorithms, locality-sensitive hashing 1 Introduction Lattice-based cryptography. -
Heritage Days 14 & 15 Sept
HERITAGE DAYS 14 & 15 SEPT. 2019 A PLACE FOR ART 2 ⁄ HERITAGE DAYS Info Featured pictograms Organisation of Heritage Days in Brussels-Capital Region: Urban.brussels (Regional Public Service Brussels Urbanism and Heritage) Clock Opening hours and Department of Cultural Heritage dates Arcadia – Mont des Arts/Kunstberg 10-13 – 1000 Brussels Telephone helpline open on 14 and 15 September from 10h00 to 17h00: Map-marker-alt Place of activity 02/432.85.13 – www.heritagedays.brussels – [email protected] or starting point #jdpomd – Bruxelles Patrimoines – Erfgoed Brussel The times given for buildings are opening and closing times. The organisers M Metro lines and stops reserve the right to close doors earlier in case of large crowds in order to finish at the planned time. Specific measures may be taken by those in charge of the sites. T Trams Smoking is prohibited during tours and the managers of certain sites may also prohibit the taking of photographs. To facilitate entry, you are asked to not B Busses bring rucksacks or large bags. “Listed” at the end of notices indicates the date on which the property described info-circle Important was listed or registered on the list of protected buildings or sites. information The coordinates indicated in bold beside addresses refer to a map of the Region. A free copy of this map can be requested by writing to the Department sign-language Guided tours in sign of Cultural Heritage. language Please note that advance bookings are essential for certain tours (mention indicated below the notice). This measure has been implemented for the sole Projects “Heritage purpose of accommodating the public under the best possible conditions and that’s us!” ensuring that there are sufficient guides available. -
Murari Lal (India), Hideo Harasawa (Japan), and Daniel Murdiyarso (Indonesia)
11 Asia MURARI LAL (INDIA), HIDEO HARASAWA (JAPAN), AND DANIEL MURDIYARSO (INDONESIA) Lead Authors: W.N. Adger (UK), S. Adhikary (Nepal), M. Ando (Japan), Y. Anokhin (Russia), R.V. Cruz (Philippines), M. Ilyas (Malaysia), Z. Kopaliani (Russia), F. Lansigan (Philippines), Congxian Li (China), A. Patwardhan (India), U. Safriel (Israel), H. Suharyono (Indonesia), Xinshi Zhang (China) Contributing Authors: M. Badarch (Mongolia), Xiongwen Chen (China), S. Emori (Japan), Jingyun Fang (China), Qiong Gao (China), K. Hall (USA), T. Jarupongsakul (Thailand), R. Khanna-Chopra (India), R. Khosa (India), M.P. Kirpes (USA), A. Lelakin (Russia), N. Mimura (Japan), M.Q. Mirza (Bangladesh), S. Mizina (Kazakhstan), M. Nakagawa (Japan), M. Nakayama (Japan), Jian Ni (China), A. Nishat (Bangladesh), A. Novoplansky (Israel), T. Nozawa (Japan), W.T . Piver (USA), P.S. Ramakrishnan (India), E. Rankova (Russia), T.L. Root (USA), D. Saltz (Israel), K.P. Sharma (Nepal), M.L. Shrestha (Nepal), G. Srinivasan (India), T.S. Teh (Malaysia), Xiaoping Xin (China), M. Yoshino (Japan), A. Zangvil (Israel), Guangsheng Zhou (China) Review Editors: Su Jilan (China) and T. Ososkova (Uzbekistan) CONTENTS Executive Summary 53 5 11. 2 . 4 . Oceanic and Coastal Ecosystems 56 6 11. 2 . 4 . 1 . Oceans and Coastal Zones 56 6 11. 1 . The Asian Region 53 9 11. 2 . 4 . 2 . Deltas, Estuarine, 11. 1 . 1 . Ba c k g r o u n d 53 9 and Other Coastal Ecosystems 56 7 11. 1 . 2 . Physical and Ecological Features 53 9 11.2.4.3. Coral Reefs 56 7 11. 1 . 2 . 1 . Regional Zonation 53 9 11.2.4.4.