Spectroscopic Tools for Quantitative Studies of DNA Structure And

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopic Tools for Quantitative Studies of DNA Structure And INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Profesional Ticomán Modelado y Control de un Vehículo Aéreo sin Tripulación de Cuatro Rotores Tesina que para oprobar el Seminario de Actualización con opción a Titulación “Sistemas de Aviónica” Daniel Alvarado García Consejeros académicos: Jorge Sandoval1, Raymundo Hernández2 & J. Cesar Jiménez 3 1,2Departamento de Control 3Departamento de Electrónica Ingeniería Aeronáutica Sistemas de Aviónica Ciudad de México Comité de evaluación: M. en C. José Javier Roch Soto Escuela Superior de Ingeniería Mecánica y Eléctrica, Director. M. en I. Raymundo Hernández Barcenas Sistemas de Aviónica, Coordinador. M. en C. Juan Jesús Navarro Parada Escuela Superior de Ingeniería Mecánica y Eléctrica, Departmento de Titulación. MÉXICO Modelado y control de un Vehícu- lo Aéreo sin Tripulación de Cua- tro Rotores Resumen corto: Helicópteros de cuatro rotores o Quad-Rotor helicopters, han emergido como una plataforma popular de investigación de los Vehículos Aéreos sin tripulación, UAV’s, gracias a la facilidad de su construcción y man- tenimiento, su habilidad de hover y su capacidad de aterrizar y despe- gar verticalmente, VTOL. En el presente documento presentaremos las principales características del helicópero de cuatro rotores así como el modelo dinámico del mismo utilizando una aproximación Lagrangiana. Palabras clave: UAV’s, VTOL. Lista de Documentos I A. Y. Elruby, M. M. El-khatib, N.H. El-Amary and A. I. Hashad Dynamic Modeling and Control of Quadrotor Vehicle Arab Academy for Science and Technology, Egypt (2012), 13 II Paul Pounds, Robert Mahony and Peter Corke Modelling and Control of a Quad-Rotor Robot CSIRO ICT Centre, Brisbane, Australia (2010), 10 III Nitin Sydney, Brendan Smyth and Derek A. Paley Dynamic Control of Autonomous Quadrotor Flight in an Estimated Wind Field Department of Control (2012) IV Moses Bangura and Robert Mahony Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor Australian National University, Canberra, Australia. (2012), 3-5 V Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander and Claire J. Tomlin Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment American Institute of Aeronautics and Astronautics (2010), 1-10 VI Samir Bouabdallah and Roland Siegwart Full Control of a Quadrotor Swiss Federal Institute of Technology, ETHZ, Zürich, Switzerland (2012), 3-10 VII P. Castillo, A. Dzul and R. Lozano REAL-TIME STABILIZATION AND TRACKING OF A FOUR ROTOR MINI-ROTORCRAFT Heudiasyc- UTC UMR 6599 VIII Alejandro Sámano, Rafael Castro and Sergio Salazar Modelling and stabilization of a multi-rotor helicopter Informe de la Contribución Documentos I, II, III y V son la base principal del presente documento. Documentos excluidos en la tesis: Nitin Sydney, Brendan Smyth and Derek A. Paley Dynamic Control of Autonomous Quadrotor Flight in an Estimated Wind Field Department of Control (2012) Programas Informáticos utilizados en la tesis: MatLab R2012_b: Análisis y simulación de sistemas. Maple 16: Análisis y simulación de sistemas. Prefacio Una teoría es los más impresionante, lo más simple son sus premisas, lo más distinguible son las cosas que conecta, y lo más amplio es su rango de aplicabilidad. Albert Einstein. Quadrotor helicópteros se están convirtiendo en una plataforma popular para el vehículo aéreo no tripulado (UAV) de investigación, debido a la simplicidad de su construcción y mantenimiento, su capacidad de hover, su despegue vertical y aterrizaje (VTOL). Los diseños actuales a menudo han considerado sólo las condiciones nominales de funcionamiento para el diseño de control del vehículo. Este trabajo trata de abordar los problemas que surgen cuando se desvíen significativamente del régimen de vuelo a punto fijo. La oportunidades de aplicar los principios y métodos de control para aviones miniatura aparecen a principios del siglo XXI. Modelos no lineales y la teoría moderna de control no lineal juegan un papel importante en el logro del vuelo autónomo de alto rendimiento para los nuevos mini y micro-máquinas de volar. El rápido desarrollo también se debe a los avances de la computación, la comunicación y la percepción que cada vez son más accesibles y omnipresentes. Esto hará posible el desarrollo de nuevos y pequeños UAV’s con sofisticadas configuraciones aerodiná micas. El uso de la teoría de control automático permite mini-aviones ser mas eficientes y rentables con un grado de inteligencia y receptividad que ampliará enormemente su campo de aplicación. Objetivos de la Tesis La presente tesis presenta un estudio sistemático de modelado y control no lineal de vehículos aéreos que toman en cuenta ausencias de linealidad físicas y de fuerzas aerodinámicas, las limitaciones de los sensores y los actuadores y los efectos de los retrasos debido al tiempo de cáculo. El objetivo es obtener leyes de control que se cumplen satisfactoriamente incluso en la presencia de disturbios encontrados comúnmente en aplicaciones reales. Esta tesis se centra particularmente en los vehículos aéreos capaces de realizar hover, como es el caso del helicóptemos, así como la realización de vuelo hacia adelante como los aviones normales. Se estudiará la siguiente máquina: Un helicóptero de Cuatro Rotores. Esquema de la Tesis El Cap´titulo 1 presenta una breve historia de la aeronáutica y se centra espe- cialmente en la evolución del helicóptero multi-rotor. El éxito de los vehículos aéreos de hoy ciertamente no sería posible sin las incesantes intentos realizados en el siglo pasado por muchos pioneros valientes del dominio aeroespacial. El modelo de la aeronave de despegue y aterrizaje vertical planar representa una simplificación del modelo de un verdadero avión de despegue vertical. También representa el modelo longitudinal de un helicópero. La comunidad de control ha mostrado un gran interés en el problema del PVTOL porque es un problema teórico interesante y desafiante de los sistemas no lineales que esta claramente motivado por una aplicación. Diseño de controladores no lineales apropiados basados en el modelo PVTOL se pueden utilizar para mejorar el rendimiento y los márgenes de estabilidad del sistema en lazo cerrado para el despegue en vertical y aterrizaje de aeronaves. El Cap´titulo 2 presenta una estrategia de control no lineal para la estabi- lización del PVTOL utilizando el enfoque de saturaciones anidadas. Hemos desarrollado una plataforma experimental para probar los algoritmos de control que hemos propuesto. El helicóptero de cuatro rotores puede ser visto como una generalización del PVTOL en el espacio tridimensional. También puede ser visto como una alternativa a los helicópteros estándar que no tienen plato oscilante. Helicópteros de cuatro rotores tienen menos partes mecánicas que los mini-helicópteros convencionales. Esto se traduce en una reducción de tiempo empleado en mantenimiento. Dado que las cuchillas giran en direcciones opues- tas, los fenómenos giroscópicos debido a las cuchillas son menos importantes en los helicópteros de cuatro rotores de lo que es para los helicópteros estándar. Co- mo consecuencia el helicóptero de cuatro rotores tiene mayor maniobrabilidad pero esto significa también que tienden a ser mas inestables. En el Cap´tulo 3 presentaremos una estrategia de control no lineal para estabilizar el helicóptero de cuatro rotores. La ley de control propuesta ha sido probada en experimentos en tiempo real. Índice general Índice de figuras IX Índice de cuadros XI 1. Introducción y Motivación1 1.1. Introducción y Antecedentes Históricos..............2 1.1.1. Definiciones.........................2 1.1.2. Primeros conceptos de la Aeronave VTOL........4 1.1.3. Vehículo Aéreo sin Tripulación.............. 12 1.1.4. Primeros experimentos, UAV’s.............. 14 1.1.5. Clasificación de los UAV’s................. 21 1.1.6. Restricciones........................ 24 1.1.7. Configuración del Rotorcraft............... 25 1.1.8. Primeros conceptos del Quad-Rotor Helicóptero..... 26 1.2. El Helicóptero de Cuatro Rotores................. 30 1.2.1. Requerimientos....................... 31 2. Modelo Dinámico 33 2.1. Características del Quad-rotor helicóptero............ 35 2.1.1. Descripción del Sistema.................. 37 3. Control no lineal del Quad-Rotor 43 3.1. Descripción del modelo....................... 44 3.2. Dinámica del Quad-Rotor...................... 45 3.3. Representación en Espacio de Estados............... 46 3.3.1. Vector de estados y Vector de control........... 47 3.4. Punto de equilibrio......................... 47 3.5. Linealización............................. 48 3.5.1. Forma Compa{n...................... 48 3.5.2. Controlabilidad....................... 49 3.5.3. Matriz de Controlabilidad................. 50 3.6. Control Yaw............................. 52 3.7. Control Roll............................. 54 3.8. Técnica de FCL del PVTOL.................... 58 3.8.1. Código............................ 60 4. Conclusiones 63 5. Agradecimientos 65 Índice de figuras 1.1. Principales componentes del Helicóptero..............3 1.2. Diagrama del Quadcopter “XAircraft X650 Flight Style”.Plus Style, motores distribuidos delantero (M1), Izquierda (M2), Trasero (M3), Derecho (M4)....................4 1.3. El primer concepto de ala rotatoria de la aviación........5 1.4. El tornillo aéreo. Créditos - Hiller Aviation Museum [16].....6 1.5. Aerial carriage. Credits - Hiller Aviation Museum [16]......6 1.6. Gustave Ponton d’Amecourt’s helicopters. Credits - Hiller Avia- tion Museum [16]...........................8
Recommended publications
  • The Flying Octopus--October 1990
    The Flying Octopus--October 1990 http://www.afa.org/magazine/1990/1090octopus.html October 1990, Vol. 73, No. 10 Sikorsky's was the first practical helicopter, but a different Russian and a younger Air Service got a chopper off the ground in 1922 The Flying Octopus By C. V. Glines MOST aviation historians agree that Igor I. Sikorsky deserves credit for designing, building, and flying the first practical helicopter. His XR-4, the first rotary-winged aircraft accepted by the Air Force, weighed 1,900 pounds and could lift 500 pounds of payload. It first flew in January 1942 and was demonstrated to Gen. Henry H. "Hap" Arnold the next July. General Arnold liked what he saw. "The Army Air Force," said he, "has taken flyers before with not so much gain promised." One "flyer" to which General Arnold may have been referring was an earlier helicopter venture. Sikorsky's helicopter was not the first bought by the organization that would eventually become the United States Air Force. World War I had stimulated many to explore the possibility of true vertical flight. None had solved the riddle of stability, but the potential of vertical lift machines for military purposes continued to interest many. Among these were a few officers of the Army Air Service who had become intrigued with the writings of a Russian with a French name: Dr. George de Bothezat. De Bothezat, a scientist who had fled the Bolshevik Revolution, was a big, bearded man with a quick wit and a violent temper. He was also an extreme egotist who once boasted publicly, "I am the world's greatest mathematician and scientist." In Russia, de Bothezat had gained international renown for his theories about vertical flight.
    [Show full text]
  • Monthly Catalogue, United States Public Documents, July 1920
    I " ■Pp :: Monthly Catalogue United States Public Documents No. 307 July, 1920 ISSUED BY THE SUPERINTENDENT OF DOCUMENTS .. 1920 Abbreviations Appendix ---------------------------- __________ app. Page, pages--------------------- ---------------------- P-~ Congress------------------------------_________Cong. Part, parts-------------------------------------pt., pts.. Department________________ _________ Dept. Plate, plates------------------------------------------PL Document------ ---------------------__________ doc. Portrait, portraits___________________ por. Facsimile, facsimiles------------_______ facsim. Quarto__________________________ _______ 4°- Folio_______________________ _____________fo House______________________ ____________ H. House bill------ -------------------- _________H. R. Section, sections----------------------------------sec. House concurrent resolution. _ H. Con. Res. Senate, Senate bill--------------------- .----------- 8- House document----------------- _______ H. doc. Senate concurrent resolution S. Con. Res. House executive document—____ H. ex. doc. Senate document---------------------------- S. doc. House joint resolution--------- ____ H. J. Res. Senate executive document--------- S. ex. doc. House report---------------------- ________ H. rp. Senate joint resolution---------------- S. J. Res. House resolution (simple) —_______ H. Res. Senate report----------------------------------- S. rp. Illustration, illustrations----____________ 11. Senate resolution (simple)-------------- S. Res. Inch, inches ------------------------____________In.
    [Show full text]
  • Aircraft Propellers
    U.S. WORKS PROGRESS ADMINISTRATION BIBLIOGRAPHY OF A E R 0 N A U T I C S Part 27 - Aircraft Propellers Compiled from the INDEX OF AERONAUTICS of the INSTITUTE OF THE AERONAUTICAL SCIENCES 30 Rockefeller Plaza New York City The Index and Bibliographies have been prepared by workers under the supervision of the U.S. WORKS PROGRESS ADMINISTRATION Cecil A. Ross Senior Project Supervisor Project 465-97-S-S1 (Formerly 165-97-6055) 19 3 7 FOREWORD This bibliography is one of a series which aims to cover a large part of aeronautical literature. It is pub­ lished by the U. S. Works Progress Administration Project 465-97-3-21 (formerly 165-97-6055) under the sponsorship of the New York City Department of Docks with the cooperation of the Institute of the Aeronautical Sciences. Request for Additions The Institute of the Aeronautical Sciences which is directing the U. S. Works Progress Administration staff of workers will appreciate receiving additional references, corrections and criticism, so that the bibliographies will be.more helpful when issued in final form. Request for Copies The bibliographies have been prepared with funds allotted by the U. S. Works Progress Administration. They may not be sold. Persons and organizations wishing to procure copies may apply for them by letter, stating the use for which they are needed. When it is possible to prepare additional copies such requests will receive first consideration. Robert R. Dexter Aeronautical Engineer Address all correspondence to: John R. Palmer Managing Project Supervisor U- S. Works Progress Administration 5111 R.C.A.
    [Show full text]
  • Autumn Offerings
    Autumn Offerings • Air-to-Air Helicopters • Joint Operations Perspectives • Autogyros and Doctrine Secretary of the Air Force Edward C. Aldridge, Jr. Air Force Chief of Staff Gen Larry D. Welch Commander, Air University Lt Gen Ralph E. Havens Commander, Center for Aerospace Doctrine, Research, and Education Col Sidney J. Wise Editor Col Keith W. Geiger Associate Editor Maj Michael A. Kirtland Professional Staff Hugh Richardson. Contributing Editor Marvin W. Bassett, Contributing Editor John A. Westcott, Art Director and Production Manager Steven C. Garst, Art Editor and Illustrator The Airpower Journal, published quarterly, is the professional journal of the United States Air Force. It is designed to serve as an open forum for presenting and stimulating innovative thinking on m ilitary doctrine, strategy, tactics, force struc- ture, readiness, and other national defense mat- ters. The views and opinions expressed or implied in the Journal are those of the authors and should not be construed as carrying the official sanction of the Department of Defense, the Air Force, Air University, or other agencies or departments of the US government. Articles in this edition may be reproduced in whole or in part without permis- sion. If reproduced, the Airpower Journal re- quests a courtesy line. JOURNAL FALL 1988, Vol. II, No. 3 AFRP 50-2 Editorial Mayday! Mayday! Mayday! 2 Joint Operations: The W orld Looks Different From 10,000 Feet Col Dennis M. Drew, USAF 4 A Question of Doctrine Maj Richard D. Newton, USAF 17 The Operator-Logistician Disconnect Col Gene S. Bartlow, USAF 23 Of Autogyros and Dinosaurs Lt Col L.
    [Show full text]
  • Replace with Your Title
    Advancing Vertical Flight: A Historical Perspective on AHS International and its Times M.E. Rhett Flater L. Kim Smith AHS Executive Director (1991-2011) AHS Deputy Director (1993-2011) M. E. Rhett Flater & Associates M.E. Rhett Flater & Associates Pine Knoll Shores, NC Pine Knoll Shores, NC ABSTRACT1 This paper describes AHS’s vital role in the development of the rotorcraft industry, with particular emphasis on events since 1990. It includes first-hand accounts of the formation of the Society, how it matured and evolved, and the particular influences that compelled change. It describes key events which occurred during various stages of the Society’s growth, including the formation of its technical committees, the evolution of the AHS Annual Forum and technical specialists’ meetings, and the creation and evolution of the Society’s publications. Featured prominently are accounts of AHS’s role in pursuing a combined government, industry and academia approach to rotorcraft science and technology. Also featured is the creation in 1965 of the Army-NASA Agreement for Joint Participation in Aeronautics Technology, the establishment of the U.S. Army Rotorcraft Centers of Excellence, the National Rotorcraft Technology Center (NRTC), the inauguration of the Congressional Rotorcraft Caucus and its support for the U.S. defense industrial base for rotorcraft, the battle for the survival of NASA aeronautics and critical NASA subsonic ground test facilities, and the launching of the International Helicopter Safety Team (IHST). First Annual AHS Banquet, October 7, 1944. 1Presented at the AHS 72nd Annual Forum, West Palm Beach, Florida, USA, May 17-19, 2016. Copyright © 2016 by the American Helicopter Society International, Inc.
    [Show full text]
  • Up from Kitty Hawk Chronology
    airforcemag.com Up From Kitty Hawk Chronology AIR FORCE Magazine's Aerospace Chronology Up From Kitty Hawk PART ONE PART TWO 1903-1979 1980-present 1 airforcemag.com Up From Kitty Hawk Chronology Up From Kitty Hawk 1903-1919 Wright brothers at Kill Devil Hill, N.C., 1903. Articles noted throughout the chronology provide additional historical information. They are hyperlinked to Air Force Magazine's online archive. 1903 March 23, 1903. First Wright brothers’ airplane patent, based on their 1902 glider, is filed in America. Aug. 8, 1903. The Langley gasoline engine model airplane is successfully launched from a catapult on a houseboat. Dec. 8, 1903. Second and last trial of the Langley airplane, piloted by Charles M. Manly, is wrecked in launching from a houseboat on the Potomac River in Washington, D.C. Dec. 17, 1903. At Kill Devil Hill near Kitty Hawk, N.C., Orville Wright flies for about 12 seconds over a distance of 120 feet, achieving the world’s first manned, powered, sustained, and controlled flight in a heavier-than-air machine. The Wright brothers made four flights that day. On the last, Wilbur Wright flew for 59 seconds over a distance of 852 feet. (Three days earlier, Wilbur Wright had attempted the first powered flight, managing to cover 105 feet in 3.5 seconds, but he could not sustain or control the flight and crashed.) Dawn at Kill Devil Jewel of the Air 1905 Jan. 18, 1905. The Wright brothers open negotiations with the US government to build an airplane for the Army, but nothing comes of this first meeting.
    [Show full text]
  • Un Pionier Al Inventicii Românești–George De Bothezat
    CZU 929:629.73 U – G B. R (3)* | EC. ING. BOGDAN BORESCHIEVICI (Continuare din Intellectus nr. 1 și 2, 2018) Un gând special de recunoștinţă dlui dr. ing. Vasile BUIU, fără de susţinerea căruia acest articol nu apărea Încheiem prin acest capitol (Epilog) prezentarea da- telor biografi ce ale lui Gheorghe Botezatu, inventa- tor de origine basarabeană, cel care a inventat unul dintre primele elicoptere din lume. EPILOG În 1951, la 2 Octombrie, George de Bothezat va pri- mi, postum, brevetul de inventie 2.569.882.- ”CON- TROL AND SUPPORT CONNECTION FOR `HELICOP- TER ROTOR SYSTEMS” kpuGpz{vyphGpu}luŨppsvyaGklGshGpkllGˀGshGptwsltlu{hyl myvtG{olGopz{vyGvmGpu}lu{pvuzaGmyvtGpklhGˀG{vGptwsltlu{h{pvu * În prima parte a articolului (Intellectus nr. 1/2018) și în cea de a doua (Intellectus 2/2018), autorul ne prezintă prodigioasa activitate știinţifi că și inventivă a lui George de Botezat. Partea a treia cuprinde anexele ce documentează multirateral rea- lizările marelui inventator. 106 | pu{lsslj{|zG[VYWX_ Inventatorul este GEORGE DE BOTHEZAT – decedat; executorii testamentari sunt WATSON WASHBURN coexecutor New York; JULIA R(AMSAYHILTON) DE BOTHEZAT coexecutrix, Lar- chmont, New York, assignors to Elicopter Corpora- tion of America, Flushing, N.Y., a corporation of New York. Application June 29, 1946, Serial Mo. 680384. ------------------------------------------------------------------- ANEXA 1 Lista documentelor disponibile neincluse în articol 1. Listă brevete: Ţara și nr.brevet Titlul Data depunerii GB191211493A Aeroplane having Automatic
    [Show full text]
  • A Quadrotor Sensor Platform
    A Quadrotor Sensor Platform A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Michael J. Stepaniak November 2008 2 The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the United States Government. 3 This dissertation titled A Quadrotor Sensor Platform by MICHAEL J. STEPANIAK has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Frank van Graas Fritz J. and Dolores H. Russ Professor of Electrical Engineering Maarten Uijt de Haag Associate Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology 4 Abstract STEPANIAK, MICHAEL J., Ph.D., November 2008, Electrical Engineering A Quadrotor Sensor Platform (124 pp.) Directors of Dissertation: Frank van Graas and Maarten Uijt de Haag A quadrotor sensor platform capable of lifting a ten pound payload is presented. Platform stabilization is accomplished using classical control methodology and is implemented on a field programmable gate array. The flight control system relies on attitude information derived using a technique that circumvents the electromagnetic susceptibility of the inertial unit while minimizing the propagation of errors. This dissertation develops models for the high-power brushless motors. In particular, the rotational losses as a function of motor speed and the operational characteristics of the electronic speed controller are considered. Furthermore, losses within the batteries are found to dominate the power budget at planned operating speeds.
    [Show full text]
  • Invenţia În Standardele De Evaluare a Performanţei Academice
    REVISTA ROMÂNĂ DE PROPRIETATE INDUSTRIALĂ EDITORIAL EDITORIAL Invențiile românești primesc zeci de premii Romanian Inventions Are Awarded Tens of internaționale, dar performanța inovatoare a International Prizes, however Romania’s 3 României este modestă Innovative Performance Is Rather Low ing. jur. Eduard Gabriel VLAD, OSIM Dipl. Eng. Jur. Eduard Gabriel VLAD, OSIM GHID DE PRACTICĂ PRACTICE GUIDELINES De ce ignoră cercetarea serviciile de consiliere în Why Research System Disregards the Patent brevetarea invenției? Attorneys’ Services upon patenting their 7 prof. univ. dr. ing. Tudor ICLĂNZAN, Consilier PI inventions? Univ. Professor Eng. Tudor ICLĂNZAN, PhD, IP Attorney CONTRIBUTIONS TO THE DEVELOPMENT OF IP CONTRIBUŢII LA DEZVOLTAREA DPI LAW Reglementări ale proprietăţii intelectuale la nivel International and National Intellectual internaţional şi naţional Property Regulations 21 dr. jur. Dănuţ NEACŞU, OSIM Jur. Dănuţ NEACŞU, PhD, OSIM Brevetele lui George Botezat - George De The Patents of George Botezat - George de Bothezat - Partea I Bothezat - Part I 54 ing. ec. Bogdan BORESCHIEVICI Dipl. Eng. Ec. Bogdan BORESCHIEVICI Inventatori români la a 46-a ediţie a Expoziţiei Romanian Inventors at the 46th International internaţionale a invenţiilor de la Geneva Exhibition of Inventions of Geneva 96 ec. Cristina-Maria BARARU, OSIM Ec. Cristina-Maria BARARU, OSIM DIN ISTORIA PI FROM IP HISTRORY Românce faimoase și celebre - Ștefania Mărăcineanu Famous Romanian Women - Ştefania ing. jur. Eduard Gabriel VLAD, OSIM Mărăcineanu 133 Dipl. Eng. Jur. Eduard Gabriel VLAD, OSIM Invenţii antice orientale Ancient Orient Inventions fil. Adriana-Cătălina GRIGORE, OSIM Phil. Adriana-Cătălina GRIGORE, OSIM 150 CALEIDOSCOP KALEIDOSCOPE Invenţii mai puţin obişnuite (XIII) Less Ordinary Inventions (XIII) fil. Adriana NEGOIŢĂ, OSIM Phil.
    [Show full text]
  • Major Contributor to the Evolution of Aircraft Design
    MAE 371 Yuan ● MAE371-ch2.pdf ● MAE371-ch3.pdf ● Shear flow in open thin-walled beams.pdf ● Homework ❍ Hr#1 formula.pdf ● Homework Solutions: ● Exams: ❍ 1st hr exam MAE371, 2001 ❍ 1st hr exam MAE371, 2002 ❍ 2nd hr exam sample Major Contributors to the Evolution of Aircraft Design Oleg Antonov Ed Heinemann John K. Northrop Walter Beech Ernst Heinkel Hans von Ohain Lawrence Dale Bell Stanley Hiller Frank Piasecki Louis Blériot V. I. Ilyushin William Piper William Edward Boeing Clarence L. "Kelly" Johnson Arthur Raymond George de Bothezat Hugo Junkers Alliot Verdon Roe Louis Charles Breguet Charles Kaman Burt Rutan George Cayley "Dutch" Kindelberger Igor Sikorsky Clyde V. Cessna Samuel P. Langley Andrei Nikolaevich Tupolev Octave Chanute William P. Lear Chance B. Vought Juan de la Cierva Otto Lilienthal Barnes Wallis Paul Cornu Alexander M. Lippisch Fred Weick Glenn Curtiss Paul MacCready Richard T. Whitcomb Marcel Dassault Glenn L. Martin Frank Whittle Geoffrey DeHavilland James S. McDonnel, Jr. Orville Wright & Wilbur Wright Claudius Dornier Willy Messerschmitt Alexander Sergeivitch Yakovlev Donald W. Douglas Artem Mikoyan Arthur Young Anton Flettner Mikhail Mil - Henrich Focke Reginald Mitchell - Anthony H. G. Fokker Sanford Moss - Oleg Constantinovitch Antonov (1906-1984) (by Jeffrey Arthur) Designer, academician, one of the founders of the soviet gliders. In early years designed glider OKA-1, -2, -3, Standart-1, -2, City of Lenin. Upon graduation from Leningrad Polytechnic (1930) - chief of glider KB of Osavaichim in Moscow, 1933-38 designer at glider factory in Tushino. Designed more than 30 types of gliders, including UPAR, Us-1, Us-4, BS-3, -4, -5, Rot-Front-1 through -7, IP, RE, M, BA-1.
    [Show full text]
  • American Aviation Heritage
    National Park Service U.S. Department of the Interior National Historic Landmarks Program American Aviation Heritage Draft, February 2004 Identifying and Evaluating Nationally Significant Properties in U.S. Aviation History A National Historic Landmarks Theme Study Cover: A Boeing B-17 “Flying Fortress” Bomber flies over Wright Field in Dayton, Ohio, in the late 1930s. Photograph courtesy of 88th Air Base Wing History Office, Wright-Patterson Air Force Base. AMERICAN AVIATION HERITAGE Identifying and Evaluating Nationally Significant Properties in U.S. Aviation History A National Historic Landmarks Theme Study Prepared by: Contributing authors: Susan Cianci Salvatore, Cultural Resources Specialist & Project Manager, National Conference of State Historic Preservation Officers Consultant John D. Anderson, Jr., Ph.D., Professor Emeritus, University of Maryland and Curator for Aerodynamics, Smithsonian National Air and Space Museum Janet Daly Bednarek, Ph.D., Professor of History, University of Dayton Roger Bilstein, Ph.D., Professor of History Emeritus, University of Houston-Clear Lake Caridad de la Vega, Historian, National Conference of State Historic Preservation Officers Consultant Marie Lanser Beck, Consulting Historian Laura Shick, Historian, National Conference of State Historic Preservation Officers Consultant Editor: Alexandra M. Lord, Ph.D., Branch Chief, National Historic Landmarks Program Produced by: The National Historic Landmarks Program Cultural Resources National Park Service U.S. Department of the Interior Washington, D.C.
    [Show full text]
  • Bibliography of Aeronautics 1922
    ro&>3 BIBLIOGRAPHY OF AERONAUTICS 1922 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON GOVERNMENT PRINTING OFFICE 1925 BIBLIOGRAPHY OF AERONAUTICS 1922 By PAUL BROCKETT Smithsonian Institution in ABBREVIATIONS. Aer. Eng. Suppl. The Aeroplane The Aeroplane- . Aeronautical En- gineering Supplement to The Aero- plane, London. Aeron. Journ Aeronautical Journal, London. Amer. Mach American Machinist, New York. Amer. Gas Eng. Journ American Gas Engineering Journal, New York. Aut. Eng Automotive Engineering, New York. Aut. Flugv Automobil-Motorad und Flugverkehr, Berlin. Ann. Soc. Met. France Annuaire, Soci6te M6teorologique de France, Paris. Automobile-Automotive Ind The Automobile and Automotive Indus- tries, New York. Aviat. Aer. Eng Aviation and Aeronautical Engineering, New York. Bull. Aero-Club Suisse The Bulletin, Aero Club Suisse, Berne. Bull. Exper. Depart. Airplane Eng. Div.. The Bulletin of the Experimental De- partment, Airplane Engineering Divi- sion, TJ. S. A., Dayton, Ohio. Bull. Soc. Enc. Ind. Nat Bulletin de la Soci6t6 d'Encouragement pour 1' Industrie Nationale, Paris. Conq.l'Air See La Conq. 1'Air. Deutsche Luftf . Zeitschr Deutsche Luftfahrer Zeitschrift, Berlin. Electr. Railw. Journ Electric Railway Journal, New York.v Journ. Amer. Soc. Mech. Eng Journal of the American Society of Me- chanical Engineers, New York. Journ. Amer. Water Works Ass'n Journal of the American Water Works Association, Baltimore. Journ. Inst. Electrical Engineers Journal of the Institute of Electrical En- gineers, New York. Journ. Frankl. Inst Journal of the Franklin Institute, Phila- delphia. Journ. Mil. Serv. Inst Journal of the Military Service Institu- tion, Governors Island, New York. Journ. Soc. Automotive Engineers Journal of the Society of Automotive Engineers, New York.
    [Show full text]