Major Contributor to the Evolution of Aircraft Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theodore Von KÃ
http://oac.cdlib.org/findaid/ark:/13030/kt2f59p3mt No online items Guide to the Papers of Theodore von Kármán, 1871-1963 Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu © 2003 California Institute of Technology. All rights reserved. Guide to the Papers of Theodore Consult repository 1 von Kármán, 1871-1963 Guide to the Papers of Theodore von Kármán, 1871-1963 Collection number: Consult repository Archives California Institute of Technology Pasadena, California Contact Information: Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu Encoded by: Francisco J. Medina. Derived from XML/EAD encoded file by the Center for History of Physics, American Institute of Physics as part of a collaborative project (1999) supported by a grant from the National Endowment for the Humanities. Processed by: Caltech Archives staff Date Completed: 1978; supplement completed July 1999 © 2003 California Institute of Technology. All rights reserved. Descriptive Summary Title: Theodore von Kármán papers, Date (inclusive): 1871-1963 Collection number: Consult repository Creator: Von Kármán, Theodore, 1881-1963 Extent: 93 linear feet Repository: California Institute of Technology. Archives. Pasadena, California 91125 Abstract: This record group documents the career of Theodore von Kármán, Hungarian-born aerodynamicist, science advisor, and first director of the Daniel Guggenheim Aeronautical Laboratory at the California Institute of Technology. It consists primarily of correspondence, speeches, lectures and lecture notes, scientific manuscripts, calculations, reports, photos and technical slides, autobiographical sketches, and school notebooks. -
The Flying Octopus--October 1990
The Flying Octopus--October 1990 http://www.afa.org/magazine/1990/1090octopus.html October 1990, Vol. 73, No. 10 Sikorsky's was the first practical helicopter, but a different Russian and a younger Air Service got a chopper off the ground in 1922 The Flying Octopus By C. V. Glines MOST aviation historians agree that Igor I. Sikorsky deserves credit for designing, building, and flying the first practical helicopter. His XR-4, the first rotary-winged aircraft accepted by the Air Force, weighed 1,900 pounds and could lift 500 pounds of payload. It first flew in January 1942 and was demonstrated to Gen. Henry H. "Hap" Arnold the next July. General Arnold liked what he saw. "The Army Air Force," said he, "has taken flyers before with not so much gain promised." One "flyer" to which General Arnold may have been referring was an earlier helicopter venture. Sikorsky's helicopter was not the first bought by the organization that would eventually become the United States Air Force. World War I had stimulated many to explore the possibility of true vertical flight. None had solved the riddle of stability, but the potential of vertical lift machines for military purposes continued to interest many. Among these were a few officers of the Army Air Service who had become intrigued with the writings of a Russian with a French name: Dr. George de Bothezat. De Bothezat, a scientist who had fled the Bolshevik Revolution, was a big, bearded man with a quick wit and a violent temper. He was also an extreme egotist who once boasted publicly, "I am the world's greatest mathematician and scientist." In Russia, de Bothezat had gained international renown for his theories about vertical flight. -
Monthly Catalogue, United States Public Documents, July 1920
I " ■Pp :: Monthly Catalogue United States Public Documents No. 307 July, 1920 ISSUED BY THE SUPERINTENDENT OF DOCUMENTS .. 1920 Abbreviations Appendix ---------------------------- __________ app. Page, pages--------------------- ---------------------- P-~ Congress------------------------------_________Cong. Part, parts-------------------------------------pt., pts.. Department________________ _________ Dept. Plate, plates------------------------------------------PL Document------ ---------------------__________ doc. Portrait, portraits___________________ por. Facsimile, facsimiles------------_______ facsim. Quarto__________________________ _______ 4°- Folio_______________________ _____________fo House______________________ ____________ H. House bill------ -------------------- _________H. R. Section, sections----------------------------------sec. House concurrent resolution. _ H. Con. Res. Senate, Senate bill--------------------- .----------- 8- House document----------------- _______ H. doc. Senate concurrent resolution S. Con. Res. House executive document—____ H. ex. doc. Senate document---------------------------- S. doc. House joint resolution--------- ____ H. J. Res. Senate executive document--------- S. ex. doc. House report---------------------- ________ H. rp. Senate joint resolution---------------- S. J. Res. House resolution (simple) —_______ H. Res. Senate report----------------------------------- S. rp. Illustration, illustrations----____________ 11. Senate resolution (simple)-------------- S. Res. Inch, inches ------------------------____________In. -
3-VIEWS - TABLE of CONTENTS to Search: Hold "Ctrl" Key Then Press "F" Key
3-VIEWS - TABLE of CONTENTS To search: Hold "Ctrl" key then press "F" key. Enter manufacturer or model number in search box. Click your back key to return to the search page. It is highly recommended to read Order Instructions and Information pages prior to selection. Aircraft MFGs beginning with letter A ................................................................. 3 B ................................................................. 6 C.................................................................10 D.................................................................14 E ................................................................. 17 F ................................................................. 18 G ................................................................21 H................................................................. 23 I .................................................................. 26 J ................................................................. 26 K ................................................................. 27 L ................................................................. 28 M ................................................................30 N................................................................. 35 O ................................................................37 P ................................................................. 38 Q ................................................................40 R................................................................ -
E&T Magazine, Volume 11, Issue 9, October 2016
88 TIME OUT COLUMNIST One of the great joys of inventing something is being able to name it – unless of course no one is meant to know about it. That’s how Léon Theremin ended up the proud inventor of a device called ‘The Thing’. by Justin Pollard SPY EQUIPMENT Competition himself listening in to his American colleagues on an open FEAR AT THE HEART What is The Thing thinking? channel. It was just by luck that The wittiest caption emailed he happened to be listening on OF POWER: THEREMIN to [email protected] the right frequency when the by 5 October 2016 wins a Soviets were ‘painting’ the Thing AND THE THING pair of books from Haynes. with its radio signal. The Americans were informed and in March 1951 the official residence. What he didn’t device was discovered inside the know was that, from that Great Seal. The device was moment, it was transmitting his quickly copied by the British conversations back to the NKVD. and Americans and rapidly Now, the Americans weren’t installed wherever they might idiots. They were aware that get away with it. unprompted gifts from Soviet The idea of a passive institutions might contain more electronic transmitting device than they bargained for and they has since taken on a life of its expected attempts to be made to own – we just don’t call them bug the ambassador’s residence ‘Things’, we call them RFIDs. So in Moscow. Gifts were checked to next time you’re making a make sure they weren’t contactless payment, or using an ‘transmitting’ and the rooms Oystercard, it’s worth were regularly swept for bugs. -
Download Chapter 66KB
Memorial Tributes: Volume 22 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 22 EUGENE E. COVERT 1926–2015 Elected in 1980 “Contributions to aerodynamics, aeronautics, education of engineers, and the national security.” BY EDWARD M. GREITZER, WILLIAM T.G. LITANT, AND SHEILA E. WIDNALL EUGENE EDZARDS COVERT, a renowned aerodynamicist, aerospace engineer, and engineering educator, passed away January 15, 2015, at age 88. His career spanned research, teach- ing, and public service. He is credited with developing the world’s first practical wind tunnel magnetic suspension system, he served on the commission that investigated the destruction of the Space Shuttle Challenger, and he received the Daniel Gug- genheim Medal, one of the most prestigious awards in aviation. Gene was born February 6, 1926, in Rapid City, South Dakota, to Perry and Eda (née Edzards) Covert. He received his bachelor of aeronautical engineering at age 20 from the University of Minnesota and immediately went to work for the Naval Air Development Center, Pilotless Aircraft Division, on projects that resulted in the Sparrow, the West’s primary air-to-air missile from the 1950s to the 1990s. In 1948 he com- pleted his master’s degree, also in aeronautical engineering at the University of Minnesota. In 1952 he joined the Department of Aeronautics and Astronautics (AeroAstro) at the Massachusetts Institute of Technology as a research engineer in MIT’s Naval Supersonic Laboratory. He also enrolled in the department’s graduate program and earned an ScD in 1958. 71 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 22 72 MEMORIAL TRIBUTES Throughout the 1950s he conducted experiments on numerous aircraft, including the F-4 Phantom. -
Unit – I - Elements of Helicopter Aerodynamics – Sae1608
SCHOOL OF MECHANICAL ENGINEERING DEPARTMENT OF AERONAUTICAL ENGINEERING UNIT – I - ELEMENTS OF HELICOPTER AERODYNAMICS – SAE1608 I. INTRODUCTION Principles of Flight A helicopter is a heavier than air flying machine that has a lifting force created by a main rotor according to aerodynamic principles. The basic components of a helicopter are as follows • Main rotor. Put in motion by the power plant (engine). • Fuselage. Intended for accommodation of crew, passengers, equipment and cargo. • Landing gear, that is, arrangement intended for movement over the ground /6 or for parking. • Tail rotor. Provides directional equilibrium and directional control of the helicopter. • Propulsion system which sets in motion the lifting and tail rotors and auxiliary systems. • Transmission transfers the torque from the power plant to the main and tail rotors. Fig.1 2 • Flight is possible for a flying machine if there is a lifting force counterbalancing its weight. • The lifting force of the helicopter originates at the main rotor. By the rotation of the main rotor in the air a thrust force is developed perpendicular to the plane of rotor rotation. • If the main rotor rotates in the horizontal plane, then its thrust force T is directed vertically upwards (Figure 2), that is, vertical flight is possible. Figure 2: Vertical Flight • The characteristics of the flight depend on the correlation between the thrust force of the main rotor and the weight of the helicopter. • If the thrust force equals the weight of the helicopter, then it will remain motionless in the air. • If, though, the thrust force is greater than the weight, then the helicopter will pass from being motionless into a vertical climb. -
FOKKER and the USAAS T-3 COMPETITION by Gert P.M
FOKKER and the USAAS T-3 COMPETITION By Gert P.M. Blüm The still unpainted F.V Monoplane shortly after its completion at Schiphol Airport, without registration. This photo dates from early 1923. (Netherland Fokker photo 466 from the Gert Blüm collection) n April 1923 in the U.S. aviation press, there appeared Foothold in the U.S. several articles on the Dutch Fokker F.V airliner. It was In the early 1920s, Anthony Fokker put a lot of energy Idescribed as a logical successor in the line of earlier Fokker and cost into selling his hardware in the U.S. A branch of his transport aircraft. Of these, the F.IV, or Air Service T-2, was Dutch company had an offi ce at 286 Fifth Ave. in New York already well known in the U.S. for its world endurance record with Robert B.C. Noorduyn in charge. With WWI still fresh and long distance fl ights. Its nonstop transcontinental fl ight had in people’s minds, the branch was named Netherlands Aircraft yet to come. Manufacturing Co. (NAMC), omitting the Fokker name, which As Anthony H.G. “Tony” Fokker stated after his four- was also dropped from the Dutch fi rm’s title at the time: N.V. minute fi rst fl ight in the F.V that it fl ew like a mob, the positive Nederlandsche Vliegtuigenfabriek (NVNV). Originally the introduction in the contemporary press was at least remarkable. Fokker name was printed only on the branch’s letterhead, When the War Department instructed the Air Service on June 24, although later on the well known logo was added. -
Artifacts and Aircraft
International Journal of Business, Humanities and Technology Vol. 5, No. 2; April 2015 The Ancients: Artifacts and Aircraft Susan Kelly Archer, EdD Embry-Riddle Aeronautical University Department of Doctoral Studies College of Aviation Daytona Beach, Florida USA Abstract Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. In 1996, Lumir Janku wrote about a set of artifacts, discovered in Peru and determined to be Pre-Columbian, that can be interpreted as models of delta- winged fliers. The design of the Peruvian artifacts has been interpreted in multiple ways by a variety of professionals. The delta wing was also incorporated into the design of civilian aircraft during the 20th Century. Modern delta-winged aircraft were used successfully in both military and civilian applications for more than 40 years. It is interesting to read about the possibility that this aeronautical design may have originated millennia earlier with a culture that did not leave written records to explain its artifacts crafted in gold. Keywords: aviation history, delta wing, Pre-Columbian artifacts Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. Man’s fascination with how birds fly can be linked to the ancient legends of Daedalus or the winged Egyptian gods, and then more recently to John Damien’s attempt to fly with wings made from chicken feathers (Brady, 2000) or Otto Lillienthal’s essays linking the physiology of birds to the design of early gliders (Lillienthal, 2001). -
Aircraft Collection
A, AIR & SPA ID SE CE MU REP SEU INT M AIRCRAFT COLLECTION From the Avenger torpedo bomber, a stalwart from Intrepid’s World War II service, to the A-12, the spy plane from the Cold War, this collection reflects some of the GREATEST ACHIEVEMENTS IN MILITARY AVIATION. Photo: Liam Marshall TABLE OF CONTENTS Bombers / Attack Fighters Multirole Helicopters Reconnaissance / Surveillance Trainers OV-101 Enterprise Concorde Aircraft Restoration Hangar Photo: Liam Marshall BOMBERS/ATTACK The basic mission of the aircraft carrier is to project the U.S. Navy’s military strength far beyond our shores. These warships are primarily deployed to deter aggression and protect American strategic interests. Should deterrence fail, the carrier’s bombers and attack aircraft engage in vital operations to support other forces. The collection includes the 1940-designed Grumman TBM Avenger of World War II. Also on display is the Douglas A-1 Skyraider, a true workhorse of the 1950s and ‘60s, as well as the Douglas A-4 Skyhawk and Grumman A-6 Intruder, stalwarts of the Vietnam War. Photo: Collection of the Intrepid Sea, Air & Space Museum GRUMMAN / EASTERNGRUMMAN AIRCRAFT AVENGER TBM-3E GRUMMAN/EASTERN AIRCRAFT TBM-3E AVENGER TORPEDO BOMBER First flown in 1941 and introduced operationally in June 1942, the Avenger became the U.S. Navy’s standard torpedo bomber throughout World War II, with more than 9,836 constructed. Originally built as the TBF by Grumman Aircraft Engineering Corporation, they were affectionately nicknamed “Turkeys” for their somewhat ungainly appearance. Bomber Torpedo In 1943 Grumman was tasked to build the F6F Hellcat fighter for the Navy. -
Brigadier General Chuck Yeager Collection, 1923-1987
Marshall University Marshall Digital Scholar Guides to Manuscript Collections Search Our Collections 2010 0455: Brigadier General Chuck Yeager Collection, 1923-1987 Marshall University Special Collections Follow this and additional works at: https://mds.marshall.edu/sc_finding_aids Part of the History of Science, Technology, and Medicine Commons, Military History Commons, and the United States History Commons GENERAL CHARLES E. "CHUCK" YEAGER PAPERS Accession Number: 1987/0455 Special Collections Department James E. Morrow Library Marshall University Huntington, West Virginia 2010 • GENERAL CHARLES E. "CHUCK" YEAGER PAPERS Accession Number: 455 Processed by: Kathleen Bledsoe, Nat DeBruin, Lisle Brown, Richard Pitaniello Date Finally Completed: September 2010 Location: Special Collections Department Chuck Yeager and Glennis Yeager donated the collection in 1987. Collection is closed to the public until the death of Charles and Glennis Yeager . • -2- TABLE OF CONTENTS Brigadier General Chuck E. "Chuck" Yeager ................................................................................ 4 The Inventory - Boxed Files ....................................................................................................... 9 The Inventory - Flat Files ......................................................................................................... 62 The Inventory - Display Cases in the General Chuck Yeager Room ....................................... 67 Accession 0234: Scrapbook and Clippings compiled by Susie Mae (Sizemore) Yeager..................75 -
04 Delta Wings
ExperimentalExperimental AerodynamicsAerodynamics Lecture 4: Delta wing experiments G. Dimitriadis Experimental Aerodynamics Introduction •! In this course we will demonstrate the use of several different experimental aerodynamic methodologies •! The particular application will be the aerodynamics of Delta wings at low airspeeds. •! Delta wings are of particular interest because of their lift generation mechanism. Experimental Aerodynamics Delta wing history •! Until the 1930s the vast majority of aircraft featured rectangular, trapezoidal or elliptical wings. •! Delta wings started being studied in the 1930s by Alexander Lippisch in Germany. •! Lippisch wanted to create tail-less aircraft, and Delta wings were one of the solutions he proposed. Experimental Aerodynamics Delta Lippisch DM-1 Designed as an interceptor jet but never produced. The photos show a glider prototype version. Experimental Aerodynamics High speed flight •! After the war, the potential of Delta wings for supersonic flight was recognized both in the US and the USSR. MiG-21 Convair XF-92 Experimental Aerodynamics Low speed performance •! Although Delta wings are designed for high speeds, they still have to take off and land at small airspeeds. •! It is important to determine the aerodynamic forces acting on Delta wings at low speed. •! The lift generated by such wings are low speeds can be split into two contributions: –! Potential flow lift –! Vortex lift Experimental Aerodynamics Delta wing geometry cb Wing surface: S = 2 2b Aspect ratio: AR = "! c c! b AR Sweep angle: tan ! = = 2c 4 b/2! Experimental Aerodynamics Potential flow lift •! Slender wing theory •! The wind is discretized into transverse segments. •! The flow around each segment is modeled as a 2D flow past a flat plate perpendicular to the free stream Experimental Aerodynamics Slender wing theory •! The problem of calculating the flow around the wing becomes equivalent to calculating the flow around each 2D segment.