Ecological Scoping Assessment for the Expansion of the Pollution Control Dams Associated with the Continuous Disposal of Ash at the Majuba Power Station

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Scoping Assessment for the Expansion of the Pollution Control Dams Associated with the Continuous Disposal of Ash at the Majuba Power Station Ecological Scoping Assessment for the Expansion of the Pollution Control Dams associated with the Continuous Disposal of Ash at the Majuba Power Station, Mpumalanga Province November 2018 for Advisian Worley Parsons Marinda le Roux [email protected] DRAFT Cell: 0614174281 PREPARED BY Enviro-Insight CC Corné Niemandt (Cand. Sci. Nat.) [email protected] REVIEWED BY Luke Verburgt (Pr. Sci. Nat.) [email protected] 1 , TABLE OF CONTENTS 1 Introduction .......................................................................................................................................................................... 5 1.1 Project Details and Background ................................................................................................................................. 5 1.2 Study area .................................................................................................................................................................. 5 1.3 Study Limitations ........................................................................................................................................................ 6 2 Methods ............................................................................................................................................................................... 7 2.1 Desktop Survey .......................................................................................................................................................... 7 2.1.1 Flora Assessment ................................................................................................................................................... 7 2.1.2 Fauna Assessment ................................................................................................................................................. 7 2.1.3 GIS ......................................................................................................................................................................... 8 2.2 Field survey ................................................................................................................................................................ 8 2.3 Species of conservation concern ................................................................................................................................ 9 DRAFT 3 Results ................................................................................................................................................................................ 9 3.1 Climate ....................................................................................................................................................................... 9 3.2 Regional Vegetation ................................................................................................................................................. 11 3.3 Mpumalanga Biodiversity Conservation Plan ........................................................................................................... 12 3.4 Important Bird Areas ................................................................................................................................................. 13 3.5 Overview and Current Impacts ................................................................................................................................. 14 3.6 Habitats .................................................................................................................................................................... 15 3.6.1 Survey sites .......................................................................................................................................................... 15 3.6.2 Main Habitats ....................................................................................................................................................... 18 3.7 Observed and Expected Fauna ................................................................................................................................ 19 3.8 Floral Species of Conservation Concern .................................................................................................................. 25 3.9 Faunal Species of Conservation Concern ................................................................................................................ 26 3.10 Habitat Sensitivity ..................................................................................................................................................... 27 2 , 4 Conclusion and Professional Opinion ................................................................................................................................ 28 5 References ........................................................................................................................................................................ 28 6 Appendix ........................................................................................................................................................................... 30 6.1 Appendix 1: Flora species list ................................................................................................................................... 30 6.2 Appendix 3: Mammal species list ............................................................................................................................. 44 6.3 Appendix 4: Avifauna species list ............................................................................................................................. 45 6.4 Appendix 5: Herpetofauna species list ..................................................................................................................... 49 6.5 Appendix 6: Specialists Proof of Qualification and CV ............................................................................................. 51 LIST OF FIGURES Figure 1-1: Locality of the study area for the proposed PCD expansions. ................................................................................... 6 Figure 3-1: The mean temperature recorded at Majuba Power Station over the survey period. ................................................ 10 Figure 3-2: Strong winds at Majuba Power Station blowing ash DRAFToff the ash dump into the surroundings. ................................. 10 Figure 3-3: Regional vegetation types in relation to the study area. .......................................................................................... 12 Figure 3-4: The study area in relation to the Mpumalanga Terrestrial Biodiversity Conservation Plan. ..................................... 13 Figure 3-5: The study area in relation to Important Bird Areas. .................................................................................................. 14 Figure 3-6: Specialist coverage (GPS tracks) and location of sample sites during the field survey. .......................................... 15 Figure 3-7: Habitat types identified within and surrounding the study area. ............................................................................... 19 Figure 3-8: Photographic evidence of a selection of avifauna observed during the field survey. ............................................... 23 Figure 3-9: Photographic evidence of a selection of avifauna observed during the field survey. ............................................... 24 Figure 3-10: Preliminary habitat sensitivity of the study area. .................................................................................................... 27 LIST OF TABLES Table 3-1: Attributes of the Amersfoort Highveld Clay Grassland regional vegetation unit 11 3 , Table 3-2: A short habitat description and visual representation of the 12 survey sites surrounding the PCD extension areas. *PCD = Pollution Control Dam. 16 Table 3-3: Observed fauna at the different survey sites. 20 Table 3-4: Potential plant Species of Conservation Concern. 25 DRAFT 4 , 1 INTRODUCTION 1.1 PROJECT DETAILS AND BACKGROUND Enviro-Insight CC was commissioned by Advisian Worley Parsons to perform a Scoping and Environmental Impact Assessment (EIA) specialist report for the expansion of the Pollution Control Dams (PCD’s) associated with the ash disposal facilities at the Majuba Power Station, Mpumalanga Province. Majuba Power Station is Eskom’s second largest power plant in South Africa. The ash generated by the facility is currently being disposed by means of “dry ashing” within Eskom owned land and on the premises of the Majuba Power Station. The current ash dump was initially designed for the planned life of operation of the Majuba Power Station. However, Eskom have recently decided to extend the planned operation of the Majuba Power Station until 2045. This process therefore requires the continuous disposal of ash on existing facilities and the extension of new ash disposal sites to accommodate increased ashing requirements of the power station for the next 27 years. Associated with this ash disposal facility extension is the necessity to increase the PCD’s to accommodate the increased facility size. This scoping report therefore seeks to detail any potential environmental impacts associated with the extension of three existing PCD’s servicing the current ash disposal facility. 1.2 STUDY AREA DRAFT The study area is located approximately 16 km southwest (SW) of Amersfoort and approximately 40 km north northwest (NNW) of Volksrust
Recommended publications
  • Global Meta‐
    Received: 28 March 2018 | Revised: 3 November 2018 | Accepted: 5 November 2018 DOI: 10.1111/geb.12877 META‐ANALYSIS Global meta‐analysis of soil‐disturbing vertebrates reveals strong effects on ecosystem patterns and processes Max Mallen‐Cooper1,2 | Shinichi Nakagawa2 | David J. Eldridge1,2 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Abstract Sciences, University of New South Wales, Aim: Organisms that disturb the soil while foraging or creating shelter (ecosystem Sydney, New South Wales, Australia engineers) can have profound effects on ecosystems. Soil ejecta from these distur- 2Ecology and Evolution Research Centre, School of Biological, Earth and bances can enhance surface nutrients and the resulting depressions accrue organic Environmental Sciences, University of New matter and develop into biological hotspots. Here, we describe a global meta‐analysis South Wales, Sydney, New South Wales, Australia of studies that assessed the impacts of vertebrate soil disturbance on both biotic and abiotic components of ecosystems. Correspondence Max Mallen‐Cooper, Centre for Ecosystem Location: Global land surface. Science, School of Biological, Earth and Time period: 1941–2016. Environmental Sciences, University of New South Wales, Sydney, New South Wales, Major taxa studied: Vertebrates. 2052, Australia. Methods: After conducting a systematic literature search, we quantitatively synthe- Email: m.mallen‐[email protected] sized the findings of 149 published studies that compared disturbed and undisturbed Funding information surfaces. Our meta‐analysis included 64 engineer species, primarily comprised of ro- Australian Research Council, Grant/Award Number: FT130100268 dents and a subset of other mammals. Results: We found that vertebrate soil disturbance significantly enhanced soil nitro- Editor: Sally Keith gen (by 77%) and phosphorus (35%), and the productivity (32%) and recruitment (32%) of vascular plants.
    [Show full text]
  • Anti-Inflammatory Effects of Leucosidea Sericea
    Available online at www.sciencedirect.com South African Journal of Botany 80 (2012) 75–76 www.elsevier.com/locate/sajb Research note Anti-inflammatory effects of Leucosidea sericea (Rosaceae) and identification of the active constituents ⁎ J.J. Nair, A.O. Aremu, J. Van Staden Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa Received 17 August 2011; received in revised form 12 January 2012; accepted 23 February 2012 Abstract The ‘Oldwood’ tree Leucosidea sericea is the sole representative of the genus Leucosidea and as such occupies a botanically-privileged status within the Rosaceae of southern Africa. The use of the plant in the traditional medicinal practices of some of the indigenous people of the region has been known for over a hundred years. Amongst these, its use as a vermifuge and astringent medicine, as well as anti-inflammatory agent, amongst the Basuto and Zulu tribes has been recorded. Based on these observations, the plant was here examined for the underlying phytochemical principles which might corroborate these interesting traditional uses. In the process, the known cholestane triterpenoids β-sitosterol and β-sitostenone were isolated for the first time from stems of L. sericea and identified by physical and spectroscopic techniques. These findings provide insights to the traditional usage of the plant for inflammation related ailments. © 2012 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Anti-inflammatory; Leucosidea sericea; Rosaceae; β-sitostenone; β-sitosterol Despite its wide global distribution, the family Rosaceae is for over a hundred years (Harvey and Sonder, 1894).
    [Show full text]
  • Terrestrial Ecological Assessment for the Expansion of the Pollution Control Dams Associated with the Continuous Disposal of Ash at the Majuba Power Station
    Terrestrial Ecological Assessment for the Expansion of the Pollution Control Dams associated with the Continuous Disposal of Ash at the Majuba Power Station, Mpumalanga Province May 2019 for DRAFT Advisian Worley Parsons Marinda le Roux [email protected] Cell: 0614174281 PREPARED BY Enviro-Insight CC Luke Verburgt (Pr. Sci. Nat.) - [email protected] Corné Niemandt (Pr. Sci. Nat.) - [email protected] 69 , TABLE OF CONTENTS 1 Introduction .......................................................................................................................................................................... 5 1.1 Project Details and Background ................................................................................................................................. 5 1.2 Study area .................................................................................................................................................................. 5 1.3 Study Limitations ........................................................................................................................................................ 5 2 Methods ............................................................................................................................................................................... 6 2.1 Desktop Survey .......................................................................................................................................................... 6 2.1.1 Flora Assessment ..................................................................................................................................................
    [Show full text]
  • Biology of Invasive Plants 1. Pyracantha Angustifolia (Franch.) C.K. Schneid
    Invasive Plant Science and Biology of Invasive Plants 1. Pyracantha Management angustifolia (Franch.) C.K. Schneid www.cambridge.org/inp Lenin Dzibakwe Chari1,* , Grant Douglas Martin2,* , Sandy-Lynn Steenhuisen3 , Lehlohonolo Donald Adams4 andVincentRalphClark5 Biology of Invasive Plants 1Postdoctoral Researcher, Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa; 2Deputy Director, Centre for Biological Control, Department of Zoology and Cite this article: Chari LD, Martin GD, Entomology, Rhodes University, Makhanda, South Africa; 3Senior Lecturer, Department of Plant Sciences, and Steenhuisen S-L, Adams LD, and Clark VR (2020) Afromontane Research Unit, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa; 4PhD Biology of Invasive Plants 1. Pyracantha Candidate, Department of Plant Sciences, and Afromontane Research Unit, University of the Free State, angustifolia (Franch.) C.K. Schneid. Invasive Qwaqwa Campus, Phuthaditjhaba, South Africa and 5Director, Afromontane Research Unit, and Department of Plant Sci. Manag 13: 120–142. doi: 10.1017/ Geography, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa inp.2020.24 Received: 2 September 2020 Accepted: 4 September 2020 Scientific Classification *Co-lead authors. Domain: Eukaryota Kingdom: Plantae Series Editors: Phylum: Spermatophyta Darren J. Kriticos, CSIRO Ecosystem Sciences & David R. Clements, Trinity Western University Subphylum: Angiospermae Class: Dicotyledonae Key words: Order: Rosales Bird dispersed, firethorn, introduced species, Family: Rosaceae management, potential distribution, seed load. Genus: Pyracantha Author for correspondence: Grant Douglas Species: angustifolia (Franch.) C.K. Schneid Martin, Centre for Biological Control, Synonym: Cotoneaster angustifolius Franch. Department of Zoology and Entomology, EPPO code: PYEAN Rhodes University, P.O. Box 94, Makhanda, 6140 South Africa.
    [Show full text]
  • An Overview on Leucosidea Sericea Eckl. Ampamp; Zeyh
    Journal of Ethnopharmacology 203 (2017) 288–303 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review An overview on Leucosidea sericea Eckl. & Zeyh.: A multi-purpose tree MARK with potential as a phytomedicine ⁎ Tshepiso C. Mafolea, Adeyemi O. Aremua, , Thandekile Mthethwab, Mack Moyoc a School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa b Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Technology, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, Cape Town, South Africa c Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, Cape Town, South Africa ARTICLE INFO ABSTRACT Keywords: Ethnopharmacological relevance: Leucosidea sericea (the sole species in this genus) is a tree species found in Antimicrobial southern Africa and possesses several therapeutical effects against infectious diseases in humans and livestock. Antioxidants This review aims to document and summarize the botany, phytochemical and biological properties of fl Anti-in ammatory Leucosidea sericea. Essential oil Materials and methods: Using the term ‘Leucosidea sericea’, we systematically searched literature including Natural product library catalogues, academic dissertations and databases such as PubMed, SciFinder, Web of Science, Google Rosaceae ‘ ’ Toxicology Scholar and Wanfang. Taxonomy of the species was validated using The Plant List (www.theplantlist.org). Results: Leucosidea sericea remains a widely used species among the different ethnic groups in southern Africa. The species is a rich source of approximately 50 essential oils and different classes of phytochemicals (phenolics, phloroglucinols, cholestane triterpenoids, alkaloids and saponins) which may account for their diverse biological properties.
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Zimbabwe Zambia Malawi Species Checklist Africa Vegetation Map
    ZIMBABWE ZAMBIA MALAWI SPECIES CHECKLIST AFRICA VEGETATION MAP BIOMES DeserT (Namib; Sahara; Danakil) Semi-deserT (Karoo; Sahel; Chalbi) Arid SAvannah (Kalahari; Masai Steppe; Ogaden) Grassland (Highveld; Abyssinian) SEYCHELLES Mediterranean SCruB / Fynbos East AFrican Coastal FOrest & SCruB DrY Woodland (including Mopane) Moist woodland (including Miombo) Tropical Rainforest (Congo Basin; upper Guinea) AFrO-Montane FOrest & Grassland (Drakensberg; Nyika; Albertine rift; Abyssinian Highlands) Granitic Indian Ocean IslandS (Seychelles) INTRODUCTION The idea of this booklet is to enable you, as a Wilderness guest, to keep a detailed record of the mammals, birds, reptiles and amphibians that you observe during your travels. It also serves as a compact record of your African journey for future reference that hopefully sparks interest in other wildlife spheres when you return home or when travelling elsewhere on our fragile planet. Although always exciting to see, especially for the first-time Africa visitor, once you move beyond the cliché of the ‘Big Five’ you will soon realise that our wilderness areas offer much more than certain flagship animal species. Africa’s large mammals are certainly a big attraction that one never tires of, but it’s often the smaller mammals, diverse birdlife and incredible reptiles that draw one back again and again for another unparalleled visit. Seeing a breeding herd of elephant for instance will always be special but there is a certain thrill in seeing a Lichtenstein’s hartebeest, cheetah or a Lilian’s lovebird – to name but a few. As a globally discerning traveller, look beyond the obvious, and challenge yourself to learn as much about all wildlife aspects and the ecosystems through which you will travel on your safari.
    [Show full text]
  • Prey Selection by Caracal in the Kgalagadi Transfrontier Park
    Prey selection by caracal in the Kgalagadi Transfrontier Park H.I.A.S. Melville1*, J. du P. Bothma1 & M.G.L. Mills2 1Centre for Wildlife Management, University of Pretoria, Pretoria, 0002 South Africa 2SAN Parks, Endangered Wildlife Trust and Mammal Research Institute, University of Pretoria, Private Bag X402, Skukuza, 1350 South Africa Received 29 August 2003. Accepted 4 March 2004 In the Kgalagadi Transfrontier Park, 116 caracal (Caracal caracal) scat samples were col- lected and 327 attempted hunts were reconstructed from spoor-tracking. The data were analysed to establish the prey use of caracals in the Kgalagadi Transfrontier Park and to study the extent to which caracals use small stock by moving into the adjacent farmland in Namibia. It was found that the primary prey resource was small mammals, the vast majority of which were rodents, including springhare (Pedetes capensis). Larger prey animals included steenbok (Raphicerus campestris) and smaller carnivores up to the size of a black-backed jackal (Canis mesomelas). Birds were an abundant prey resource, especially the larger ground-roosting species. Invertebrate remains were found in a large proportion of the scats, indicating that they were commonly used as a source of food. Domestic livestock remains were identified in eight of the scat samples and the temporal distribution of these indicated an increased use of domestic livestock by caracals in the cold season. Key words: caracal, Felidae, livestock, scat analysis, small mammals, spoor-tracking. INTRODUCTION where stock farms border on the Kgalagadi The survival of any predator is directly related Transfrontier Park. Although widely condemned to the quality and quantity of its diet.
    [Show full text]
  • A Plant Ecological Study and Management Plan for Mogale's Gate Biodiversity Centre, Gauteng
    A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG By Alistair Sean Tuckett submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject ENVIRONMENTAL MANAGEMENT at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROF. L.R. BROWN DECEMBER 2013 “Like winds and sunsets, wild things were taken for granted until progress began to do away with them. Now we face the question whether a still higher 'standard of living' is worth its cost in things natural, wild and free. For us of the minority, the opportunity to see geese is more important that television.” Aldo Leopold 2 Abstract The Mogale’s Gate Biodiversity Centre is a 3 060 ha reserve located within the Gauteng province. The area comprises grassland with woodland patches in valleys and lower-lying areas. To develop a scientifically based management plan a detailed vegetation study was undertaken to identify and describe the different ecosystems present. From a TWINSPAN classification twelve plant communities, which can be grouped into nine major communities, were identified. A classification and description of the plant communities, as well as, a management plan are presented. The area comprises 80% grassland and 20% woodland with 109 different plant families. The centre has a grazing capacity of 5.7 ha/LSU with a moderate to good veld condition. From the results of this study it is clear that the area makes a significant contribution towards carbon storage with a total of 0.520 tC/ha/yr stored in all the plant communities. KEYWORDS Mogale’s Gate Biodiversity Centre, Braun-Blanquet, TWINSPAN, JUICE, GRAZE, floristic composition, carbon storage 3 Declaration I, Alistair Sean Tuckett, declare that “A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG” is my own work and that all sources that I have used or quoted have been indicated and acknowledged by means of complete references.
    [Show full text]
  • Micromammal Paleoecology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CU Scholar Institutional Repository University of Colorado, Boulder CU Scholar Anthropology Graduate Theses & Dissertations Anthropology Spring 1-1-2011 Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The rC adle of Humankind World Heritage Site, South Africa Jennifer Nicole Leichliter University of Colorado at Boulder, [email protected] Follow this and additional works at: http://scholar.colorado.edu/anth_gradetds Part of the Biological and Physical Anthropology Commons Recommended Citation Leichliter, Jennifer Nicole, "Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa" (2011). Anthropology Graduate Theses & Dissertations. Paper 7. This Thesis is brought to you for free and open access by Anthropology at CU Scholar. It has been accepted for inclusion in Anthropology Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa by Jennifer Leichliter B.A., Colorado College, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master’s of Anthropology Department of Anthropology 2011 This thesis entitled: Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa written by Jennifer Nicole Leichliter has been approved for the Department Anthropology ________________________________________________ Dr.
    [Show full text]
  • Rich Sister, Poor Cousin: Plant Diversity and Endemism in the Great Winterberg–Amatholes (Great Escarpment, Eastern Cape, South Africa)
    South African Journal of Botany 92 (2014) 159–174 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Rich sister, poor cousin: Plant diversity and endemism in the Great Winterberg–Amatholes (Great Escarpment, Eastern Cape, South Africa) V.R. Clark a,⁎, A.P. Dold b,C.McMasterc, G. McGregor d, C. Bredenkamp e, N.P. Barker a a Great Escarpment Biodiversity Programme, Department of Botany, Rhodes University Grahamstown, 6140, South Africa b Selmar Schonland Herbarium, Department of Botany, Rhodes University, Grahamstown 6140, South Africa c African Bulbs, P.O. Box 26, Napier 7270, South Africa d Department of Geography, Rhodes University, Grahamstown 6140, South Africa e National Herbarium, South African National Biodiversity Institute, Private Bag X101, Pretoria 0001, South Africa article info abstract Article history: The Great Winterberg–Amatholes (GWA) is part of the Great Escarpment in southern Africa and ‘sister’ to the Received 20 June 2013 Sneeuberg and Stormberg ranges in the Eastern Cape. It comprises a historically well-sampled Amathole Compo- Received in revised form 3 January 2014 nent, and a poorly known Great Winterberg Component. Accordingly, overall plant diversity and endemism have Accepted 4 January 2014 been unknown. Here we define the boundaries of the GWA as an orographic entity and present a comprehensive Available online 12 March 2014 list of taxa compiled from existing collection records supplemented by intensive fieldwork. With a flora of 1877 Edited by RM Cowling taxa, the GWA is surprisingly richer than the adjacent and larger Sneeuberg, but predictably poorer than the very much larger Drakensberg Alpine Centre (DAC).
    [Show full text]
  • Invasive Plant Species in Lesotho's Rangelands: Species Characterization and Potential Control Measures
    Land Restoration Training Programme Keldnaholt, 112 Reykjavik, Iceland Final project 2016 INVASIVE PLANT SPECIES IN LESOTHO'S RANGELANDS: SPECIES CHARACTERIZATION AND POTENTIAL CONTROL MEASURES Malipholo Eleanor Hae Ministry of Forestry, Range and Soil Conservation P.O. Box 92 Maseru Lesotho Supervisors Prof. Ása L. Aradóttir Agricultural University of Iceland [email protected] Dr. Jόhann Thόrsson Soil Conservation Service of Iceland [email protected] ABSTRACT Lesotho is experiencing rangeland degradation manifested by invasive plants including Chrysochoma ciliata, Seriphium plumosum, Helichrysum splendidum, Felicia filifolia and Relhania dieterlenii. This threatens the country’s wool and mohair enterprise and the Lesotho Highland Water Project which contributes significantly to the economy. A literature review- based study using databases, journals, books, reports and general Google searches was undertaken to determine species characteristics responsible for invasion success. Generally, invasive plants are alien species, but Lesotho invaders are native as they are traced back to the 1700s. New cropping systems, high fire incidence and overgrazing initiated the process of invasion. The invaders possess inherent characteristics such as high reproduction capacity associated with a long flowering period that ranges between 3-5 months. They are perennial, belong to the Asteraceae family and therefore have small seeds with adaptation structures that allow them to be carried long distances by wind. These invaders are able to withstand harsh environmental conditions. Some are allelopathic, have an aggressive root system that efficiently uses soil resources. As opposed to preferred rangeland plants, they are able to colonize bare ground. Additionally, F. filifolia and R. dieterlenii are fire tolerant while H. splendidum and S.
    [Show full text]