Environmental and Biogeographic Influences on the Distribution and Composition of the Southern Cape Forests (Veld Type 4)

Total Page:16

File Type:pdf, Size:1020Kb

Environmental and Biogeographic Influences on the Distribution and Composition of the Southern Cape Forests (Veld Type 4) ' ' I ENVIRONMENTAL AND BIOGEOGRAPHIC INFLUENCES ON THE DISTRIBUTION AND COMPOSITION OF THE SOUTHERN CAPE FORESTS (VELD TYPE 4) by Coert Johannes Geldenhuys A thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Faculty of Science University of Cape Town Rondebosch UniversityAugust of 1989Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town i CONTENTS Page Abstract i i Acknowledgements vi Preamble 1 Chapter I DISTRIBUTION, SIZE AND OWNERSHIP OF FORESTS IN THE SOUTHERN CAPE 10 Chapter 2 BERGWIND FIRES AS DETERMINANTS OF FOREST PATCH PATTERN IN THE SOUTHERN CAPE LANDSCAPE, SOUTH AFRICA 46 Chapter 3 COMPOSITION OF THE SOUTHERN CAPE FOREST FLORA, WITH ANNOTATED CHECKLIST 74 Chapter 4 RICHNESS, COMPOSITION AND RELATIONSHIPS OF THE FLORAS OF SELECTED FORESTS IN SOUTHERN AFRICA 138 Chapter 5 COMPOSITION AND BIOGEOGRAPHY OF FOREST PATCHES IN THE INLAND MOUNTAINS OF THE SOUTHERN CAPE 209 Chapter 6 DISJUNCTIONS AND DISTRIBUTION LIMITS OF FOREST SPECIES 'IN THE SOUTHERN CAPE 247 Chapter 7 PHYTOGEOGRAPHY OF THE SOUTHERN CAPE FOREST FLORA 276 Chapter 8 ENVIRONMENTAL AND BIOGEOGRAPHIC INFLUENCES ON THE DISTRIBUTION AND COMPOSITION OF THE SOUTHERN CAPE FORESTS: A SYNTHESIS 310 ii ABSTRACT This study aims at explaining the distribution and composition of the southern Cape forests, the largest forest complex in southern Africa. These are the only forests in southern Africa which are actively and scientifically managed for their products and values. Population growth due to forestry, agricultural and economic development and a growing tourism industry exerts increasing pressures on the natural environment of the southern Cape coast and therefore affect the dynamics and conservation of the ,forests. Conservation and sustained utilization of the forests require a sound knowledge of the composition, structure and dynamics of the forests. This study was aimed at an understanding of the biogeography of the forests at the landscape level in order to isolate those variables which contributed to the present distribution and composition of the forests. Determinants of the forest location pattern in the southern Cape were identified as rainfall above 500 mm, which determines the potential limits of the forests, and the bergwind fire pattern, which determines the actual forest distribution. Fires driven by the hot, dry, northwesterly, f6hnlike bergwinds interacted with the terrain physiography since prehistorical times and the forests persisted in ' topographic shadow areas. The largest forests in the area therefore occur on the coastal platform at the foot of the mountains, in the river valleys and on the coastal scarp. Forests in the mountains, with high rainfall, are small and scattered. The results have shown that the bergwind driven fires control the distribution of forests which have important implications for the understanding of forest dynamics and for conservation management of forests in multiple-use management systems. Forest composition at the landscape level was studied by means of plant species 1 i sts. A species 1 i st for the southern Cape forests was annotated with information on the growth form, breeding system, propagule type, forest type, moisture tolerance, abundance and spread in the study area, and the distribution range in southern Africa, of each species. Analyses of the list showed that the iii species/family ratios for the southern Cape forest flora are very low, that woody plants have mostly fleshy propagul es and herbaceous plants mostly dry propagules, and that several species have adaptations to adverse conditions. The species richness and composition, and floristic similarity and relationships were compared between the southern Cape forest flora and the floras of 13 other forests representing particular geographic regions in southern Africa. Forest size explained relatively little of the variation in species richness of the forests. Stepwise multiple regression analyses indicated that the number of dispersal corridors, the proximity to other forests and mean altitude explained most of the variation in number of woody species, whereas the number of landscape types and dispersal corridors explained most of the variation in number of herbaceous species. The high similarity between the southern Cape forest flora and those of the forests along the escarpment from the eastern Cape to northern Transvaal, and the southern attenuation of species suggest that the forests were once continuous. It is suggested that the Sundays river valley east of Port Elizabeth i so 1a ted the southern Cape forests from those to the east a1 ready during the Pliocene or earlier. Patterns in species richness of 23 small, isolated forests in the inland mountains of the southern Cape were not explained by habitat preferences, species-area relationships or long-distance dispersal. However, patterns in species richness and composition show definite trends when they are considered in relation to dispersal corridors along the Gouritz and Gamtoos rivers, the only two rivers which connect the coastal forests with the inland mountains. The patterns relate to the geomorphological history of the river systems. The results indicated that at least four.floras can be recognized and that relative dates can be attached to their domination of the ·area and their contribution to the southern Cape coastal forest flora. The 206 species which reach their distribution limits within the southern Cape forests, or have disjunct distributions within this area and wider distributions outside were found to be mostly concentrated in a few localities within the study area. Biological variables such as growth form and dispersal· type, and habitat iv variables such as forest type and moisture tolerance did not correlate with the drop-out of species. Species which were concentrated in the western limit of the forests, and in other parts of the high forests, relate to the major forest decline with the onset of the Late Pliocene marine regression. Species tolerant of drier conditions are concentrated in various disjunct localities along the coast and this pattern is attributed to the elimination of coastal dune forest and subtropical transitional thicket on the Agulhas Bank during the marine transgression after the Last Glacial Maximum. Finally, the distribution ranges of the 465 species of the southern Cape forest flora were used to establish generalized tracks of the flora in order to test the hypothesis that regional speciation of the floral elements of the tropical, subtropical and temperate regions of southern Africa have enriched the older . Afromontane forest flora. Log-linear analysis was used to determine the dependence between the biological and ecological characteristics of the species and their geographical categories. The results indicated that the ecological characteristics of the species of each geographical group reflected the environmental conditions and disturbance regimes which prevailed in each source area. The results confirmed that the southern Cape forest flora was made up of elements of a narrower cool, humid Afromontane area, elements of a transition zone between the montane zone and the humid, warm subtropical coastal areas with wide moisture tolerances in the southern Cape, elements which had to adapt to more frequent and extreme droughts and drier conditions of the eastern Cape lowlands, and western Cape elements which are associated with either cool, moist montane areas or with more frequently burnt forest margins. The southern Cape forest flora is therefore a product of a long period of forest expansion and contraction which in this study is taken back to the Late Cretaceous-Palaeocene. The increasing aridity since that time contributed to the narrowing and fagmentation of the forest belt. Species developed which were to 1erant of frequent .fires or droughts. Most of the 1arge p1 ant families, and many of the other important families, are shared between the forests and other vegetation types. This sharing suggests that the forests might have been the original gene source for the speciation of many of the families and genera. v The effect of the increasing aridity and disturbance pressure seems to be that the radiation of species occurred in smaller growth forms outside the forests. vi ACKNOWLEDGMENTS I wish to thank the Director-General of the Department of Environment Affairs and the Director of the South African Forestry Research Institute who gave me ample opportunities in an ideal workplace, and provided the funds for this study. They also funded a study visit to the rainforests of Australia, New Zealand and Ch i1 e during which I was ab 1e to gain a Southern Hemisphere perspective of rainforest dynamics. I became aware of the role of disturbance regimes in shaping the physiognomy and dynamics of the different forests and hence influencing the silvicultural systems applicable in the management of those forests. My colleagues at the Saasveld Forestry Research Centre and in the wider South African Forestry Research Institute with their varied scientific interests and approaches helped to broaden my view of my field of study. From them I learned the art of questioning the things
Recommended publications
  • Indoor Plants Or Houseplants
    Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins.
    [Show full text]
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Licuati Forest Reserve, Mozambique: Flora, Utilization and Conservation
    LICUATI FOREST RESERVE, MOZAMBIQUE: FLORA, UTILIZATION AND CONSERVATION by Samira Aly Izidine Research Project Report submitted in partial fulfilment of the requirements for the taught degree Magister Scientiae (Systematics and Conservation Evaluation) in the Faculty of Natural & Agricultural Sciences Department of Botany (with Department of Zoology & Entomology) University of Pretoria Pretoria Supervisor: Prof. Dr. A.E.van Wyk May 2003 © University of Pretoria Digitised by the Open Scholarship & Digitisation Programme, University of Pretoria, 2016. I LICUATI FOREST RESERVE, MOZAMBIQUE: FLORA, UTILIZATION AND CONSERVATION Samira Aly lzidine 2003 © University of Pretoria Digitised by the Open Scholarship & Digitisation Programme, University of Pretoria, 2016. To the glory of God and to the memory of my dear father, Aly Abdul Azize Izidine, 6-11-1927 - 7-03-2003 A gl6ria de Deus e em memoria ao meu querido pai, Aly Abdul Azize Izidine, 6-11-1927 - 7-03-2003 © University of Pretoria Digitised by the Open Scholarship & Digitisation Programme, University of Pretoria, 2016. TABLE OF CONTENTS DEDICATION .................................................................................................. i LIST OF FIGURES AND TABLES .............................................................. iv LIST OF FIGURES AND TABLES ............................................................... v ABSTRACT ..................................................................................................... 1 PROJECT PROPOSAL ..................................................................................
    [Show full text]
  • Phytochemical, Elemental and Biotechnological Study of Cryptocarya Latifolia, an Indigenous Medicinal Plant of South Africa
    Phytochemical, Elemental and Biotechnological Study of Cryptocarya latifolia, an Indigenous Medicinal Plant of South Africa by Mohammed Falalu Hamza Submitted in fulfillment of the academic requirements for the degree of Master of Science in Chemistry in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban 2013 Phytochemical, Elemental and Biotechnological Study of Cryptocarya latifolia, an Indigenous Medicinal Plant of South Africa by Mohammed Falalu Hamza Submitted in fulfillment of the academic requirements for the degree of Master of Science in Chemistry in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban 2013 As the candidate’s supervisor, I have approved this thesis for submission. Signed_______________________Name__________________________Date_________ DECLARATION I Mohammed Falalu Hamza declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and then source being detailed in the thesis and in the References sections Author: ___________________________________________________ Mohammed Falalu Hamza Supervisor:________________________________________________ Dr.
    [Show full text]
  • Crassula Obovata Var. Dregeana Go to Plants of the Week Advanced Search Crassula Obovata Haw
    Crassula obovata var. dregeana Go to Plants of the Week Advanced Search Crassula obovata Haw. var. dregeana (Harv.) Toelken Family: Crassulaceae Common names: hairy crassula (Eng.); harige crassula (Afr.) View other plants in this familyQR code linkView other plants in this genus A succulent plant growing in crevices or in rocky grassland patches. It has small whitish flowers and fleshy leaves with peculiar hairs, giving it a soft grey appearance. This species will easily grow in shady areas, unlike most of the other species of Crassula. Description Crassula obovata var. dregeana is a decumbent-erect succulent, up to 300 mm long. The base of the plant is often woody, and the leaves fleshy and densely covered with adpressed and recurved hairs. Basal leaves are arranged in rosettes and are obovate to spathulate, with the lower surface convex and the upper surface usually flat. Upper leaves are arranged in opposite pairs and are obovate to elliptic, with the lower surface convex and the upper surface concave. The upper leaves are usually (3–)4–5 mm thick, unlike var. obovata which has thinner leaves. The inflorescences are flat-topped cymes usually with 4–8(–10), tubular flowers that have white or cream-coloured (rarely pink) petals. The petals are 5–7 mm long. The flowering period of C. obovata var. dregeana is in autumn (from April to June). Conservation Status Crassula obovata var. dregeana is considered to be Vulnerable (VU) according to the Red List of South African plants, because of its small distribution range and threats posed by grazing and frequent fires.
    [Show full text]
  • Bark Medicines Used in Traditional Healthcare in Kwazulu-Natal, South Africa: an Inventory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2003, 69(3): 301–363 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory OM Grace1, HDV Prendergast2, AK Jäger3 and J van Staden1* 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Centre for Economic Botany, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom 3 Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen 0, Denmark * Corresponding author, e-mail: [email protected] Received 13 June 2002, accepted in revised form 14 March 2003 Bark is an important source of medicine in South Overlapping vernacular names recorded in the literature African traditional healthcare but is poorly documented. indicated that it may be unreliable in local plant identifi- From thorough surveys of the popular ethnobotanical cations. Most (43%) bark medicines were documented literature, and other less widely available sources, 174 for the treatment of internal ailments. Sixteen percent of species (spanning 108 genera and 50 families) used for species were classed in threatened conservation cate- their bark in KwaZulu-Natal, were inventoried. gories, but conservation and management data were Vernacular names, morphological and phytochemical limited or absent from a further 62%. There is a need for properties, usage and conservation data were captured research and specialist publications to address the in a database that aimed to synthesise published infor- gaps in existing knowledge of medicinal bark species mation of such species.
    [Show full text]
  • Ceropegia Woodii (Rosarhy Vine, String of Hearts ) Ceropegia Can Be Evergreen Or Semi-Evergreen Climbing Plants Usually Succulent, Perennials with Opposite Leaves
    Ceropegia woodii (Rosarhy Vine, String of Hearts ) Ceropegia can be evergreen or semi-evergreen climbing plants usually succulent, perennials with opposite leaves. The plant can reach 10 cm in height and 1.5-2 m in spread. Ceropegia is originated from south Africa. The minimum temperature is can handle is 15 C. Used as house plants. Landscape Information French Name: Ceropegia, Céropégie ou Chaîne des coeurs Pronounciation: seer-oh-PEEJ-ee-uh WOOD- ee-eye Plant Type: Vine Origin: South Africa Heat Zones: 8, 9, 10, 11, 13 Hardiness Zones: 10, 11, 12, 13 Uses: Indoor, Container Size/Shape Growth Rate: Slow Tree Shape: Height at Maturity: Less than 0.5 m Spread at Maturity: 1.5 to 3 meters Time to Ultimate Height: 2 to 5 Years Plant Image Ceropegia woodii (Rosarhy Vine, String of Hearts ) Botanical Description Foliage Leaf Arrangement: Opposite Leaf Venation: Parallel Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: Less than 5 Leaf Shape: Obovate Leaf Margins: Entire Leaf Textures: Waxy Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Showiness: True Flower Size Range: 0 - 1.5 Flower Scent: No Fragance Flower Color: Yellow, White Seasons: Year Round Fruit Seasons: Year Round Flower Image Ceropegia woodii (Rosarhy Vine, String of Hearts ) Horticulture Management Tolerance Frost Tolerant: No Heat Tolerant: No Drought Tolerant: Yes Salt Tolerance: Poor Requirements Soil Requirements: Clay, Loam Soil Ph Requirements: Acidic, Neutral Water Requirements: Moderate Light Requirements: Part, Shade Management Life Span: Less than 25 Edible Parts: None Pests: Mealy-Bug Plant Propagations: Division, Rhizomes Leaf Image MORE IMAGES Fruit Image Other Image.
    [Show full text]
  • Bitou Municipality
    Bitou Municipality GENERAL VALUATION 2017 / 2021 (Plettenberg Bay - Valuation Roll) In accordance with Section 55 of the Municipal Property Rates Act 6 of 2004 Kragtens Artikel 55 van die Munisipale Eiendomsbelastingwet 6 van 2004 Date of valuation : 20160701 © 2010 PenSoft CC (Mass Appraisal Software Solution) 2017/01/22 4:16:40 PM Valuation Roll Bitou Municipality GENERAL VALUATION 2017 / 2021 Page 2 of 321 Categories Reference Category Description Vac Res 8.(3) Vacant properties Res 8.(2)(a) Residential properties Vac bus 8.(3) Vacant properties Bus 8.(2)(c) Business and commercial properties Vac Ind 8.(3) Vacant properties Ind 8.(2)(b) Industrial properties Multi purpose* 8.(2)(i) Properties used for multi purposes, subject to ection 9 Vac Mun 8.(3) Vacant properties Psi 8.(2)(g) Public service infrastructure properties Pbo 8.(2)(h) Properties owned by public benefit organisations and used for specified public benefit activities Vac Pbo 8.(3) Vacant properties State 8.(2)(f) Properties owned by an organ of state and used for public service purposes Vac Pop 8.(3) Vacant properties Vac Agri 8.(3) Vacant properties Agri 8.(2)(d) Agricultural prperties Vac Pos 8.(3) Vacant properties Vac state 8.(3) Vacant peopwerties © 2010 PenSoft CC (Mass Appraisal Software Solution) 2017/01/22 4:16:40 PM Valuation Roll Bitou Municipality GENERAL VALUATION 2017 / 2021 Page 3 of 321 Geographical Area : Plettenberg Bay Erf No Portion Owner/s Category Address Extent Value Other Particulars 1 Neill & Sue Ovenstone Family Trust Bus Strand Street 444 m²
    [Show full text]
  • The Functional Role of Birds As Pollinators in Southern Cape Fynbos
    The functional role of birds as pollinators in southern Cape fynbos. Kellyn J. Whitehead A thesis presented in fulfilment of the academic requirements for the degree of Masters of Science in Ecological Sciences At the University of KwaZulu-Natal, Pietermaritzburg, South Africa January 2018 1 ABSTRACT Nectarivorous birds, particularly sunbirds, are important pollinators of plants in the Cape Flora of South Africa, being responsible for pollinating approximately 5% of plant species. However, interactions between plants and nectarivorous birds in the eastern part of the Cape Floristic Region have not received much attention. This study focussed on two putatively bird-pollinated plant species found within the Nature’s Valley area, namely Kniphofia uvaria and Chasmanthe aethiopica. The breeding systems were determined for each species and, due to their patchy population distribution, potential Allee effects on plant fecundity were also tested for. Flowering phenology in the area was also examined to test for associations between flowering of bird-pollinated plant species and the temporal presence of nectarivorous birds. Selective exclusion experiments showed that sunbirds were the main pollinators of K. uvaria and C. aethiopica – fruit set and the number of viable seeds were much higher for untreated (open control) individuals where birds could visit flowers freely, compared to caged individuals which only allowed for insect visitation. Very few seeds developed when plants of the two species were bagged to exclude all pollinators, indicating that the species are not capable of autonomous self-fertilization. Fruit and seed set were determined for patches of K. uvaria and C. aethiopica in order to test for potential Allee effects.
    [Show full text]
  • Downloaded on 6 September 2014
    Changes in diet resource use by elephants, Loxodonta africana, due to changes in resource availability in the Addo Elephant National Park. by Jana du Toit Submitted in fulfilment of the requirements for the degree of Magister Scientiae in the Faculty of Science at the Nelson Mandela Metropolitan University. 2015 Supervisor: Prof G. I. H. Kerley Co-supervisor: Dr. M. Landman DECLARATION I, Jana du Toit (student number: 214359328), hereby declare that the dissertation for the qualification of Magister Scientiae (Zoology), is my own work and that it has not previously been submitted for assessment or completion of any postgraduate qualification to another University or for another qualification. Faecal samples and forage availability estimates were collected by Dr. M. Landman and her team. Diet quality analysis was done by CEDARA Feed Laboratory, and DNA metabarcoding was done by Dr. P. Taberlet and his team at the Labortoire d’Ecologie Alpine. J. du Toit i ACKNOWLEDGEMENTS I would like to express my deepest gratitude and appreciation to the following people, without whom the completion of this dissertation would not have been possible: This study was funded by a bursary through Prof. Graham Kerley, for which I am deeply thankful. I’d also like to thank SANParks for the opportunity to work in the Addo Elephant National Park, as well as the Mazda Wildlife Fund for providing transport. To my supervisors, Prof. Graham Kerley and Dr. Marietjie Landman, thank you for the opportunity to work on this project, your assistance, support and sharing your knowledge with me. Your strive for excellence motivated me throughout this study.
    [Show full text]
  • Crassula Catalog
    SucculentShop.co.za Page: 2 CAMPFIRE CRASSULA - CRASSULA CAPITELLA The Campfire Crassula is a branching succulent with fleshy propeller-like leaves that mature from bright lime green to bright red. Leaves turn bright red if not over-watered and the plant receives direct sun for SucculentShop.co.za Page: 3 most of the day, during drought or in cold temperatures. It has a prostrate habit, forming mats about 15 cm tall and up to a meter wide. It does best in partial sun and requires more shade in hotter inland sites When grown in shade, the leaves are bright apple green for most of the year. Although fairly drought tolerant, it requires occasional watering. Spikes of insignificant white, star-shaped flowers are borne in summer and attract bees, butterflies and other tiny insects. Works very well for hanging basket gardens. Plant in full sun or partial shade. Well-drained soil. Prune after flowering. Size: up to 20cm Read More SucculentShop.co.za Page: 4 FAIRY CRASSULA - CRASSULA MULTICAVA 15 - 20 cm cutting The Fairy Crassula or Crassula multicava is a succulent herbaceous plant native to the mountainous regions of KwaZulu-Natal (South Africa). It is frequently used as a hedge plant because its stems branch off a lot of forming quite compact foliage agglomerations. It is also appreciated for its resistance to periods of drought and extreme temperatures and the beauty of its flowering. It is currently marketed as an ornamental plant in numerous nurseries worldwide. This species is characterized by forming stems erect low (generally nor exceed 25 cm) very branched and thin of green-red.
    [Show full text]
  • The Risk of Injurious and Toxic Plants Growing in Kindergartens Vanesa Pérez Cuadra, Viviana Cambi, María De Los Ángeles Rueda, and Melina Calfuán
    Consequences of the Loss of Traditional Knowledge: The risk of injurious and toxic plants growing in kindergartens Vanesa Pérez Cuadra, Viviana Cambi, María de los Ángeles Rueda, and Melina Calfuán Education Abstract The plant kingdom is a producer of poisons from a vari- ered an option for people with poor education or low eco- ety of toxic species. Nevertheless prevention of plant poi- nomic status or simply as a religious superstition (Rates sonings in Argentina is disregarded. As children are more 2001). affected, an evaluation of the dangerous plants present in kindergartens, and about the knowledge of teachers in Man has always been attracted to plants whether for their charge about them, has been conducted. Floristic inven- beauty or economic use (source of food, fibers, dyes, etc.) tories and semi-structured interviews with teachers were but the idea that they might be harmful for health is ac- carried out at 85 institutions of Bahía Blanca City. A total tually uncommon (Turner & Szcawinski 1991, Wagstaff of 303 species were identified, from which 208 are consid- 2008). However, poisonings by plants in humans repre- ered to be harmless, 66 moderately and 29 highly harm- sent a significant percentage of toxicological consulta- ful. Of the moderately harmful, 54% produce phytodema- tions (Córdoba et al. 2003, Nelson et al. 2007). titis, and among the highly dangerous those with alkaloids and cyanogenic compounds predominate. The number of Although most plants do not have any known toxins, there dangerous plants species present in each institution var- is a variety of species with positive toxicological studies ies from none to 45.
    [Show full text]